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INTRODUCTION 
 
Due to the declining fertility rate and the increasing life 
expectancy, the world is on the brink of a demographic 
milestone: adults above the age of 65 will soon 
outnumber children under the age of 5 [1–3]. Population 
aging is accompanied by increases in illness, disability  

 

and dependency [4]. Consequently, noncommunicable 
diseases that more commonly occur in adults and older 
people are imposing the greatest burden on global 
health. Extending the period of life free of disability and 
disease is the key to limiting health and social costs. 
The most promising approach to this end is to identify 
age-related biological changes in body function or 
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ABSTRACT 
 
DNA methylation changes within the genome can be used to predict human age. However, the existing 
biological age prediction models based on DNA methylation are predominantly adult-oriented. We established 
a methylation-based age prediction model for children (9-212 months old) using data from 716 blood samples 
in 11 DNA methylation datasets. Our elastic net model includes 111 CpG sites, mostly in genes associated with 
development and aging. The model performed well and exhibited high precision, yielding a 98% correlation 
between the DNA methylation age and the chronological age, with an error of only 6.7 months. When we used 
the model to assess age acceleration in children based on their methylation data, we observed the following: 
first, the aging rate appears to be fastest in mid-childhood, and this acceleration is more pronounced in autistic 
children; second, lead exposure early in life increases the aging rate in boys, but not in girls; third, short-term 
recombinant human growth hormone treatment has little effect on the aging rate of children. Our child-specific 
methylation-based age prediction model can effectively detect epigenetic changes and health imbalances early 
in life. This may thus be a useful model for future studies of epigenetic interventions for age-related diseases. 
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structure that are more accurate than the chronological 
age in predicting the future onset of age-related diseases 
or the remaining years of life [5]. 
 
Biomarkers of biological aging can be classified as 
molecular markers (based on DNA, RNA, etc.) or 
phenotypic biomarkers (based on anthropometric data 
such as bone age assessment, blood pressure, lipid levels, 
etc.) [5]. However, most studies of such biomarkers have 
been conducted in animals or older individuals [6–9]. 
Animals with short lifespans are typically not accurate 
models of the complex multifactorial exposures during 
human aging. Furthermore, most elderly study 
participants already suffer from age-related diseases. The 
theory of the fetal origins of adult disorders [10–13] 
proposes that many health problems in adults or the 
elderly are rooted in early life experiences and living 
conditions. Thus, interventions to reverse or delay age-
related diseases and aging itself must be performed in 
childhood. The lack of tools to quantify aging in children 
is a significant obstacle to this goal. 
 
Thus far, the most remarkable biological age predictor has 
been the epigenetic clock. Hannum et al. built a 
quantitative model of aging by measuring over 450,000 
CpG markers in whole blood samples from 656 human 
subjects aged 19 to 101 years [14]. Horvath et al. 
developed a biomarker of aging called the multi-tissue 
predictor based on DNA methylation levels [15]. Using 
only three CpG sites, Weidner et al. constructed an age 
prediction model that was more precise than techniques 
based on telomere length [16]. The above studies 
demonstrated the feasibility of biological age prediction 
based on DNA methylation, but these models were mostly 
focused on adults. Although some of these predictive 
models included samples from children, the large age 
range (0–101 years old) and age unit (years) of these 
models reduced their accuracy both in predicting the 
biological ages of children (0 - 18 years old) and in 
revealing biologically relevant epigenetic abnormalities. 
 
There has been some progress in DNA methylation 
research in children, but there are still many problems to 
be solved. For instance, Alisch et al. found 2078 age-
associated CpG sites in boys (3–17 years old), but did 
not propose operational quantitative tools [17]. 
Almstrup et al. only used the data from 51 healthy 
children (5–16 years old) before and after pubertal onset 
to predict adolescent development [18]. Freire-Aradas 
et al. built a preliminary age prediction model using a 
dataset of 180 donors (2–18 years old) with the 
EpiTYPER® DNA methylation analysis system [19]. 
None of these studies completely covered the age range 
from 0 to 18 years, and each study used a single sample 
data type with a small number of samples, so the results 
were not highly accurate or applicable. 

To delineate the aging pattern precisely throughout 
childhood, we analyzed DNA methylation datasets 
from a large cohort of children to construct a child-
specific methylation-based age prediction model 
covering the whole age period from 0 to 18 years 
with a small age unit (months). Our model is a new 
tool for quantifying health imbalances and 
monitoring predictors of age-related diseases early in 
life, and thus may facilitate early prevention and 
intervention. 
 
RESULTS 
 
Establishment of a child-specific methylation-based 
age prediction model 
 
Characteristics of the DNA methylation datasets 
We obtained publicly available DNA methylation 
datasets that were generated with the Illumina 27K or 
Illumina 450K array platform. Data from 716 healthy 
children aged 9 to 212 months from 11 different 
datasets were used to build the quantitative model 
(Table 1, Figure 1A). These healthy children included 
529 boys and 187 girls (Supplementary Figure 1A). 
Nearly half of the samples (46.5%) were assessed on the 
Illumina 450K platform (Supplementary Figure 1B). 
We only studied the 21,979 CpG sites that were present 
on both Illumina platforms. For simplicity and 
accuracy, we discarded markers on sex chromosomes 
and markers with more than 10 missing values across 
the datasets. DNA methylation levels were recorded as 
β values between 0 (completely unmethylated) and 1 
(completely methylated). To study the link between 
disease and methylation age in childhood, we also 
analyzed the datasets of children with diseases 
(Supplementary Table 1). Details on the above datasets 
and the data preprocessing steps are provided in the 
Materials and Methods. 
 
A precise DNA methylation age prediction model in 
children 
By combining sure independence screening [20] and 
penalized multivariate (elastic net) regression [21], 
we established a child-specific methylation-based age 
prediction model in the training cohort, and called the 
prediction value the DNA methylation age (Figure 2). 
K-fold cross-validation (k = 10) [22] was implemented 
to divide the training sets and test sets. The optimal 
model included 111 CpG sites that were accurately 
predictive of age (regression coefficients in 
Supplementary Table 2). In the training sets, the model 
was highly accurate, with a 98% correlation between 
age and predicted age, and an error of 5.9 months 
(Figure 1B). The accuracy remained the same when  
this model was validated on the test sets, as
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Table 1. Summary details of the DNA methylation datasets from children. 

ID Availability Methylation 
array n Age(months) Gender Ethnicity Citation 

1 GSE27097 Illumina 27K 334 43.0-212.0 M: 334 

white: 266, asian: 14, african-amer: 3, 
other: 9, 

more-than-one-race: 35, native-
american: 1, 

native-hawaiian: 1, not-specified: 5 

Alisch et al. 

2 GSE32148 Illumina 450K 13 60.0-210.0 M: 1 
F: 8 null Harris et al. 

3 GSE57484 Illumina 27K 9 120.24-127.8 M: 9 null Voisin et al. 

4 GSE64495 Illumina 450K 18 27.6-129.6 M: 6 
F: 12 null Brunet et al. 

5 E-MTAB-4187 Illumina 450K 84 67.0-196.7 M: 51 
F: 33 null Almstrup et al. 

6 GSE34257 Illumina 27K 15 9.0 M: 7 
F: 8 null Khulan et al. 

7 GSE36054 Illumina 450K 127 12.0-203.0 M: 76 
F: 51 

Black: 69, White: 8, Other: 42, 
Asian: 3, Unknown: 5 Alisch et al. 

8 GSE23638 Illumina 27K 18 31.1-204.0 M: 9, 
F: 9 null Chen et al. 

9 GSE41037 Illumina 27K 7 180.0-207.3 M: 6 
F: 1 null Horvath et al. 

10 GSE52588 Illumina 450K 3 120.0-180.0 M: 1 
F: 2 null Bacalini et al. 

11 GSE73103 Illumina 450K 88 158.2-204 M: 25 
F: 63 null Voisin et al. 

 

 
 
Figure 1. Characteristics of the prediction model. (A) Histogram of the age distribution for healthy children. The x-axis represents the 
chronological age of the individuals (age unit is years) and the y-axis (counts) represents the number of individuals. (B) Scatterplot of the DNA 
methylation (DNAm) age (x-axis) against the chronological age (y-axis) for the individuals in the training sets (age unit is months). For the 
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training data, the correlation between the DNAm age and chronological age was 0.98, and the error (median absolute difference) was 5.9 
months. (C) Scatterplot of the DNAm age (x-axis) against the chronological age (y-axis) for individuals in the test sets (age unit is months). For 
the test data, the correlation was 0.98 and the error was 6.7 months. (D) Heatmap of the DNA methylation levels of 111 CpG sites. Each row 
represents one CpG site, and the blue to red color spectrum represents β values from 0 to 1. The individuals are sorted by age (9 to 212 
months), and it can be seen that the DNA methylation levels change with age. (E) Gene ontology analysis of the 111 CpG sites revealed 
several ontologies (P < 0.05) that may be associated with development and aging. Biological process gene ontologies were plotted in a 
sematic space with REVIGO, which groups related ontologies together. 
 

 
 

Figure 2. Schematic of the prediction model. A flow 
diagram of the child-specific methylation-based age prediction 
model. The green boxes represent the input data, the red 
diamonds represent the analysis methods and the blue ovals 
represent the prediction results. AAD: age acceleration 
difference; AMAR: apparent methylation aging rate; SIS: sure 
independence screening. 

there was a 98% correlation between age and predicted 
age, and the error was 6.7 months (Figure 1C). The β 
values of the 111 CpG sites exhibited some certain 
trends with increasing age, although most of these 
changes were not very dramatic. The effects of age on 
the 111 CpG sites were visualized on a heat map, which 
showed the trends in DNA methylation across subjects 
(Figure 1D). 
 
Age-related CpG sites associated with development 
and aging 
To determine the biological functions of the 111 age-
related CpG sites, we searched for significantly 
enriched GO terms (biological processes, cellular 
components and molecular functions, P < 0.05) and 
KEGG signaling pathways among the genes associated 
with these CpG sites. The top 20 GO terms and KEGG 
pathways are listed in Supplementary Figure 1. The GO 
terms were then drawn in a semantic space, and similar 
terms were combined. The results revealed clusters 
associated with developmental growth, immune 
responses, metabolic regulation and age-related diseases 
such as systemic lupus erythematosus, rheumatoid 
arthritis and cancer (Figure 1E, Supplementary  
Figure 1C and 1D, Supplementary Table 3). 
 
Comparing the child-specific age predictor with other 
age predictors 
We then explored the CpG sites selected for different 
age prediction models. There were only three 
overlapping sites among Hannum’s 71 CpGs [14], 
Horvath’s 353 CpGs [15] and our 111 CpGs (Figure 
3A a, b): cg04474832, cg09809672 and cg19722847. 
These sites are associated with the ABHD14A, 
EDARADD and IPO8 genes, respectively. Of the 
remaining 108 sites in our study, 59 (54.6%) 
overlapped with 2,078 previously-identified age-
related sites in children [17]; these sites involved 43 
genes (Figure 3A c, d). We also compared our model 
with the model established by Freire-Aradas et al. [19], 
and obtained only two overlapping genes: EDARADD 
and PRKG2. 
 
Since different data and methods were used to construct 
the above models, it was not possible to identify the most 
accurate model simply by comparing the error values of 
the models for the test sets. Thus, to further explore the 
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accuracy and applicability of our model, we validated it 
with data from 67 pairs of monozygotic twins in the 
dataset GSE56105 [23]. We took this approach because 
the DNA methylation ages of healthy monozygotic twins 
who share the same genetic background and living 
environment should theoretically be similar. First, we 
used our model and the commonly used multi-tissue 
predictor [15] to calculate the DNA methylation ages of 
the monozygotic twins. The predictions from our model 
were closer to the actual ages of the twins, and the 
distribution of DNA methylation ages was more 
concentrated than that of the multi-tissue predictor (Figure 
3B). Second, we compared the DNA methylation ages of 
twins 1 and 2 calculated by these two models. The 

predicted DNA methylation ages of twins 1 and 2 did not 
differ significantly when our model was used (Figure 3C, 
P = 0.51, paired t-test), while they did differ significantly 
when the multi-tissue predictor was used (Figure 3D, P = 
0.025, paired t-test). Finally, we compared the absolute 
values of the DNA methylation age differences between 
twins 1 and 2 calculated by the two models. The absolute 
values of the two models differed significantly (Figure 3E, 
P < 0.01, t-test), and the values calculated by our model 
were closer to zero than those calculated by the multi-
tissue predictor. Therefore, our prediction model 
performed better than the multi-tissue predictor in 
estimating children’s DNA methylation ages based on 
blood samples. 

 

 

 

Figure 3. Comparison and verification of our model. (A) (a and b) Venn diagrams of the CpG sites (a) and genes associated with the 
CpG sites (b) selected from the three models. (c and d) Venn diagrams of the CpG sites (c) and genes (d) associated with age from our study 
and the study of Alisch et al. (B) Density plot of age and DNA methylation (DNAm) age. The red peak represents the chronological age, the 
green peak represents the DNAm age predicted by our model, and the blue peak represents the DNAm age predicted by Horvath et al. 
Dashed lines represent mean values. (C) Boxplot comparing the DNAm ages predicted by our model for monozygotic twins (paired t-test, n = 
67 each for twins 1 and 2). The blue box indicates twin 1 and the yellow box indicates twin 2. (D) Boxplot comparing the DNAm ages 
predicted by the model of Horvath et al. for monozygotic twins (paired t-test, n = 67 each for twins 1 and 2). The blue box indicates twin 1 
and the yellow box indicates twin 2. (E) Boxplot comparing the absolute values of the DNAm age differences of monozygotic twins predicted 
by the two models (two-sided t-test, n = 67). The blue box indicates the results from Horvath et al. and the yellow box indicates our results. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780611/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780611/figure/F1/
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We could not compare the accuracy of our model with 
that of the model established by Freire-Aradas et al. 
[19] because the authors did not report their predicted 
age calculation formula and data; however, the error of 
1.25 years (15 months) reported by Freire-Aradas et al. 
[19] was larger than the error of our model  
(6.7 months). 
 
Aging patterns in children revealed by our model 
 
Our aging model not only predicted the age of most 
children with high accuracy, but also revealed 
individual biological differences and aging trends in the 
pediatric population [14, 15]. To examine whether these 
differences were true biological differences (rather than 
measurement error or intrinsic variability), we used our 
aging model for two measurements of age acceleration. 
The first, called the age acceleration difference (AAD), 
is the DNA methylation age minus the chronological 
age. The second, called the apparent methylation aging 
rate (AMAR), is the DNA methylation age divided by 
the chronological age. 
 
Age acceleration in children seems not to be 
influenced by gender or ethnicity 
We then explored the association of the AAD and 
AMAR with the potentially clinically relevant factors of 
gender and ethnicity. In terms of gender, the mean AAD 
and AMAR values in all the healthy children’s samples 
were -0.01 months and 1.01, respectively. The AAD 
and AMAR values for boys were 0.003 months and 
1.006, respectively, while the values for girls were -
0.040 months and 1.020, respectively. Neither the AAD 
nor the AMAR differed significantly between boys and 
girls (AAD: P = 0.92, Wilcoxon test; Supplementary 
Figure 2A), although the AMAR was approximately 
1.4% faster in girls than in boys (Supplementary Figure 
2B). In contrast, in adults, the AMAR was reported to 
be 4% faster in men than in women [14]. This 
difference may be due to the fact that girls develop 
earlier than boys [24–26]. Regarding ethnicity, 
neither the AAD nor the AMAR differed 
significantly among children of different ethnicities 
(AAD: P = 0.9, AMAR: P = 0.26, ANOVA; 
Supplementary Figure 2C and 2D). 
 
Age acceleration is the greatest in mid-childhood 
We observed a trend in age acceleration in healthy 
children between the ages of 0 and 18 years. The age 
acceleration was close to zero before the age of 4, 
gradually rose after the age of 5, and fell to a negative 
value after the age of 12 (Figure 4A). To further explore 
the aging pattern in children, we divided childhood into 
three periods: toddlerhood (0–4 years), mid-childhood 
(5–11 years) and adolescence (12–18 years). We found 
that the AAD and AMAR were significantly greater in 

mid-childhood than in toddlerhood, and were 
significantly lower in adolescence than in mid-
childhood (AAD: P = 7.2×10-14, AMAR: P = 4.5×10-6, 
ANOVA; Figure 4B and C). The same phenomenon 
was observed after sex stratification. Moreover, in mid-
childhood, the aging rate seemed to be marginally faster 
in girls than in boys (Figure 4D, Supplementary Figure 
3). These differences in the AAD and AMAR at 
different stages of childhood indicate that the aging rate 
of children is not completely consistent with the growth 
curve, which may be related to the development of 
several major organ systems. 
 
To verify the above results, we analyzed an independent 
dataset from the study of Almstrup et al. [18]. These 
authors described longitudinal whole-genome changes 
in DNA methylation in peripheral blood samples  
(n = 84) before and after adolescence in 42 healthy 
children. Coincidentally, the pre-puberty (5.6–11.3 
years) and post-puberty (12.2–16.4 years) age segments 
in their study were almost the same as our mid-
childhood and adolescent age settings, so we could use 
this dataset to verify our results. As expected, the rate of 
aging was significantly higher before puberty than after 
puberty (AAD: P = 6.1×10-7, AMAR: P = 1.3×10-6, 
Wilcoxon test; Figure 4E and 4F). The conclusion of the 
study by Almstrup et al. also confirmed this finding. 
 
Association of DNA methylation age with disease 
 
To investigate the association of the DNA methylation 
age with potential health problems in children, we 
analyzed three datasets, which respectively focused on 
diseases, short-term interventions and long-term 
environmental exposures in children. 
 
Age acceleration and autism 
Using the dataset GSE27044 (details in Supplementary 
Table 4), we analyzed the association of the three types 
of autism (autism, autism spectrum disorder and 
Asperger syndrome) with the DNA methylation age 
(Supplementary Figure 4A) [17]. We found no 
significant difference in the AAD or AMAR between 
these three types of autistic children and their 
unaffected siblings (AAD: P = 0.47, AMAR: P = 0.098, 
ANOVA; Supplementary Figure 4B and 4C).  
 
We then assessed whether children with the first type of 
autism conformed to the aforementioned pattern in 
which the aging rate was significantly greater in mid-
childhood. We grouped the samples according to the 
previous criteria, but there was no toddler group 
because there was only one child aged less than 48 
months. As expected, the rate of aging was significantly 
higher in mid-childhood than in adolescence in the 
autistic children (AAD: P = 2.2×10-16, Wilcoxon test; 
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Supplementary Figure 4D). Surprisingly, the aging rate 
was significantly higher in autistic children than in their 
unaffected siblings in mid-childhood (AAD: P = 0.013, 
Wilcoxon test; Table 2, Figure 5A and 5B), but this 
difference was not observed in adolescence. This 

finding suggests that autistic children age faster than 
healthy children in mid-childhood. The above results 
also indicate that it is worthwhile to examine the 
significance of mid-childhood and to analyze subgroups 
throughout childhood (0–18 years). 

 

 
 

Figure 4. Age acceleration in different periods of childhood. (A) Histogram of the mean value distribution of the age acceleration 
difference for all individuals. A pink column indicates a negative value, meaning that the average difference between the DNA methylation 
age and the chronological age is less than zero. A blue column indicates a positive value, meaning that the average difference between the 
DNA methylation age and the chronological age is greater than zero. The green circle represents the average difference between the DNA 
methylation age and the chronological age (age unit is years). (B) Boxplot of the age acceleration difference during different periods of 
childhood. The blue box indicates toddlerhood, the yellow box indicates mid-childhood and the gray box indicates adolescence. (C) Boxplot of 
the apparent methylation aging rate during different periods of childhood. The box colors have the same meaning as above. (D) Histograms 
of the mean value distribution of the age acceleration difference for girls and boys, respectively. (E) Boxplot comparing the age acceleration 
difference between pre-pubertal and post-pubertal individuals. The blue box indicates pre-pubertal individuals and the yellow box indicates 
post-pubertal individuals. (F) Boxplot comparing the apparent methylation aging rate between pre-pubertal and post-pubertal individuals. 
The box colors are the same as above. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780611/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780611/figure/F1/
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Table 2. Overview of two measures of age accelerations evaluating the effect of autism. 

Group Sample (n) 
Age 

(months)* 
Mean±SD △Mean 95%CI Cohen’s d 95%CI 

P 
value 

Power 
(%) 

AAD: DNAm age – Age (months) 
Case† 260 48 - 132 6.79±20.67 

3.96±1.66 [0.71, 7.21] 0.215 [0.036, 0.394] 0.013 77.0 
Control† 226 48 - 132 2.83±15.83 
AMAR: DNAm age / Age 
Case† 260 48 - 132 1.09±0.25 0.1±0.02 [0.06, 0.14] 0.263 [0.084, 0.442] 0.003 91.5 Control† 226 48 - 132 1.03±0.20 

* min – max. 
† Case: Autism; Control: Unaffected siblings. 

 

 
 

Figure 5. Age acceleration in children with diseases. (A) Histograms of the mean value distribution of the age acceleration difference in 
autistic children and their unaffected siblings. The pink columns indicate the children with autism, while the blue columns indicate their 
unaffected siblings (‘Autism-sib’). (B) Boxplot comparing the age acceleration difference between autistic children and their unaffected 
siblings during two periods of childhood. The blue box and the yellow box indicate the autistic children and their unaffected siblings, 
respectively, in mid-childhood. The gray box and the red box indicate the autistic children and their unaffected siblings, respectively, in 
adolescence. (C) Boxplot comparing the age acceleration differences of boys and girls with different blood lead levels. A cutoff value of 5 
μg/dL was used for the blood lead level. The jitter points represent the age acceleration differences of individual samples. (D) Boxplot 
comparing the apparent methylation aging rates of boys and girls with different blood lead levels. A cutoff value of 5 μg/dL was used for the 
blood lead level. The jitter points represent the apparent methylation aging rates of individual samples. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780611/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780611/figure/F1/
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Age acceleration and short-term rhGH 
treatment 
We analyzed data from 48 peripheral blood samples 
taken from 24 patients prior to the first dose and after 
four days of rhGH treatment (GSE57205 [27]). The 
rate of aging in these patients did not differ 
significantly before and after rhGH treatment (P > 
0.05, t-test; Supplementary Figure 4E). The diagnoses 
leading to rhGH treatment in this cohort were classical 
GH deficiency (classical GH deficiency [STH-D], n = 
7; panhypopituitarism [PAN], n = 1; and small for 
gestational age [SGA], n = 1), neurosecretory 
dysfunction leading to GH deficiency (NSD, n = 6), 
SGA with a lack of catch-up growth (SGA, n = 7), 
qualitative GH deficiency (Q-STH-D, n = 2, Kowarski 
syndrome), Turner syndrome (n = 1) and primary 
insulin-like growth factor 1 deficiency (n = 1). We 
compared the AAD values of patients with the first 
three diagnoses before the treatment; the remaining 
types had too few samples and were not included in 
the analysis. The AAD was lower in the NSD group 
than in the other two groups (P < 0.05, t-test; 
Supplementary Figure 4F), which may reflect the 
underlying neurosecretory dysfunction in NSD 
patients [28, 29]. These results suggest that short-term 
rhGH treatment does not significantly influence age 
acceleration, although different types of GH deficiency 
may be associated with different rates of age 
acceleration. 
 
Age acceleration and lead exposure early in life 
We then evaluated a dataset of 42 dry blood spots from 
24 boys and 18 girls aged three months to five years 
who were exposed to lead in the environment (from 
GES60598 [30]). The grouping criterion was a blood 
lead level (BLL) > 5 μg/dL, the maximum safe limit 
recommended by the Advisory Committee on 
Childhood Lead Poisoning Prevention in 2012. Boys 
are more sensitive than girls to lead exposure [31, 32]; 
thus, we expected to observe significantly greater 
changes in the AAD and AMAR in boys than in 
girls if the DNA methylation age was associated 
with lead exposure. When we grouped the samples by 
gender, we found that this indeed was the case. The 
AMAR differed significantly between boys with BLL 
values > 5 μg/dL and ≤ 5 μg/dL in a t-test (P = 0.033, 
Table 3), but this phenomenon was not observed in 
girls. To control for spurious findings, we performed 
one-way ANOVA to assess the association between 
lead exposure and DNA methylation age, controlling 
for the age of the children and the age, gestational age 
and smoking status of their mothers. The AAD and 
AMAR were significantly higher in lead-exposed boys 
(BLL > 5 μg/dL) than in nonexposed boys (BLL ≤ 5 
μg/dL) (AAD: P = 0.0116, AMAR: P = 0.00349; 
Figure 5C and 5D). 

To sum up, DNA methylation age abnormalities may be 
associated with certain health problems in children. Our 
child-specific methylation-based age prediction model 
can be used to reveal aging trends, to study the 
relationship of age acceleration with diseases and 
environmental factors impacting children’s growth and 
development, and to explore the influence of these 
factors on children’s health and longevity. 
 
DISCUSSION 
 
Recently, several age prediction models based on DNA 
methylation have been published. However, due to their 
large age range (0–101 years old) and age unit (years), 
most of these models cannot accurately predict the 
biological ages of children [14–16]. Although a few 
studies have examined DNA methylation in childhood, 
they used small amounts of data detected on infrequently 
used platforms and provided no explicit quantitative tools 
[17–19]. Therefore, we employed data from two 
commonly used methylation chips (Illumina 27K and 
Illumina 450K array platforms) to construct a child-
specific methylation-based age prediction model covering 
the entire period of childhood (0–18 years old) with a 
small age unit (months). Our model has the following 
advantages over other age prediction models: a) it 
comprehensively reflects the aging patterns in childhood; 
b) it uses months as the age unit, thus increasing the 
accuracy of the prediction results; c) it solves the problem 
of insufficient variable selection methods by using sure 
independence screening [20] before multiple linear 
regression (elastic net) [21], as the former performs better 
when the dimension of the predictor p is much larger than 
the sample size n; and d) it is based on data from whole 
blood samples analyzed with two types of chips (Illumina 
27K array and Illumina 450K arrays), and thus can 
enhance the practical diagnostic design and analysis of 
samples collected from other studies. Although the multi-
tissue age predictor has broader applicability than our 
model, tissue specificity can influence the accuracy of 
predictions. We will later validate and optimize our model 
in other tissue types. Moreover, we will examine how to 
better balance the accuracy and applicability of the model. 
 
There were only three overlapping sites between the 
adult-directed age prediction model and our child-specific 
methylation-based age prediction model. The cg09809672 
site is associated with the EDAR-associated death domain 
gene (EDARADD), which has been linked to ectodermal 
dysplasia, especially hypohidrotic ectodermal dysplasia 
[16, 33–35]. The cg04474832 and cg19722847 sites are 
associated with the ABHD14A and IPO8 genes, 
respectively. ABHD14A may be involved in the 
development of granule neurons, while IPO8 is involved 
in a common bone marrow mesenchymal stem cell 
degenerative joint disease [36]. These three sites are most 
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Table 3. Overview of two measures of age accelerations evaluating the effect of lead exposure early. 

Group Sample (n) 
Age 

(months)* 
Mean±SD △Mean 95%CI Cohen’s d 95%CI 

P 
value 

Power 
(%) 

AAD: DNAm age – Age (months) 
BLL† > 5 
μg/dl 

13 12 - 60 12.74±9.97 
10.67±5.05 [0.77, 20.57] 1.027 [0.055, 1.999] 0.058 63.8 

BLL† ≤ 5 
μg/dl 

7 9 - 48 2.07±11.18 

AMAR: DNAm age / Age 
BLL† > 5 
μg/dl 

13 12 - 60 1.46±0.37 
0.42±0.17 [0.09, 0.75] 1.135 [0.151, 2.119] 0.033 76.2 BLL† ≤ 5 

μg/dl 
7 9 - 48 1.04±0.37 

* min – max. 
† BLL: Blood lead level. 
 

likely associated with aging throughout the entire life 
process, but the low number of overlapping sites indicates 
that children have specific age-related methylation 
characteristics. 
 
Surprisingly, 54.6% of the remaining 108 sites screened 
by our model overlapped with previously determined age-
related sites in children [17]. This high overlap rate 
indicates that our model effectively reflects the specific 
age-related methylation changes in children. Alisch et 
al. [17] reported that age-related DNA methylation 
changes in peripheral blood occurred more rapidly 
during childhood; thus, our choice of peripheral blood 
samples was appropriate. We identified the gene loci of 
these 59 CpG sites and annotated them using GO 
terms. The genes were involved in a concentrated set of 
developmental processes and immune functions, 
consistent with the known associations between DNA 
methylation changes and age-related immune system 
activities [37, 38]. 
 
When we compared our model with that established by 
Freire-Aradas et al. [19], we identified two overlapping 
genes. EDARADD was introduced in the previous 
paragraph, and has appeared in most of the relevant 
studies [15, 16]. The protein encoded by the PRKG2 
gene regulates intestinal fluid balance, and changes in 
its methylation level correlate highly with age in 
children [17]. 
 
Since our model can effectively reflect the specific age-
related methylation characteristics of children aged 0 to 
18 years, it can be used to monitor abnormalities in 
children’s growth and development, as well as to 
predict the occurrence of diseases and the process of 
aging. Similar to bone age, which can be used to detect 
precocious puberty [39, 40], the DNA methylation age 

can be used to quantify the rate of aging in children. 
Our results revealed a pattern of changes in 
epigenetic age acceleration in healthy children. We 
attempted to explain this phenomenon by using the k-
means clustering algorithm to analyze the variation in 
the β values of the 111 CpG sites (Supplementary 
Figure 5). The average β values of the sites from 
some clusters (e.g., cg26227465) were higher in 
toddlerhood, lower in mid-childhood and higher 
again in adolescence, whereas those from other 
clusters (e.g., cg25827666) were lower in 
toddlerhood, higher in mid-childhood and then 
slightly lower during adolescence. The cg26227465 
site is located near the IFNG gene, which encodes a 
protein secreted by cells of both the innate and 
adaptive immune systems. This gene is associated 
with increased susceptibility to viral, bacterial and 
parasitic infections and to several autoimmune 
diseases [41–43]. The cg25827666 site is upstream of 
the NTRK1 gene, which encodes a member of the 
neurotrophic tyrosine kinase receptor family. This 
kinase promotes cellular differentiation and may 
contribute to sensory neuron subtype specification 
[44, 45]. DNA methylation is considered an epigenetic 
marker of expression ability, as decreases in 
methylation are usually associated with increases in 
gene expression, and vice versa. Therefore, it was 
reasonable that the aging patterns of children were 
reflected in DNA methylation changes with increasing 
age. 
 
Next, we applied our predictive model to children with 
autism and early lead exposure, and found that the DNA 
methylation age was accelerated in autistic children in 
mid-childhood and in boys exposed to lead. To 
demonstrate the legitimacy of our findings, we will now 
report our statistical power. First, the sample of 260 
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autistic children and 226 unaffected siblings was large 
enough to detect a significant AMAR difference of 0.1 
between the two groups with adequate statistical power 
(91%). Previous studies have also provided some 
evidence of the accelerated aging of autistic patients. 
Autism is a lifelong condition [46] that increases the 
incidence of nearly all age-related health impairments in 
adulthood, including immune conditions, gastrointestinal 
and sleep disorders, seizures, obesity, dyslipidemia, 
hypertension and diabetes [47]. Autism can also 
markedly increase premature mortality [48] and reduce 
the quality of life [49]. Second, although the groups of 
13 lead-exposed boys and 7 controls were relatively 
small, they also achieved 76% power to detect a 
significant AMAR difference of 0.4. Eid and Zawia also 
reported that lead induces brain aging and increases 
susceptibility to adult neurodegenerative diseases, 
particularly Alzheimer's disease and Parkinson's disease 
[50]. Given the improvements in our child-specific 
methylation-based age prediction model, we expect that 
it will be widely applied in research on pediatric health 
assessment and disease prevention. This could reveal 
aging trends with many practical implications. 
 
Although our model can measure the biological ages of 
children more accurately than previous models, we do 
not currently have data on the outcomes of the included 
children later in life (e.g., risk of disease, time of death) 
to verify whether this new clock accurately measures 
biological aging caused by pediatric diseases. 
Therefore, Guangzhou Women and Children’s Medical 
Center is establishing pediatric disease cohorts for long-
term follow-up. In this process, multi-omics data at 
different stages of life (continuing to adulthood and 
even to death) will be measured to test the ability of 
children’s biological clocks to characterize biological 
aging. Our pediatric cohort will also provide a larger 
database for this study, thus addressing the problem of 
the insufficient sample size and enabling us to explore 
the association of extensive disease outcomes with 
biological aging. 
 
In conclusion, childhood (0–18 years) is the fastest 
period of development of various systems. Age-related 
DNA methylation changes in the peripheral blood of 
children occur more rapidly and with greater flexibility 
than those in adults. We established a methylation-
based age prediction model specifically for children, 
which enabled us to quantify children’s biological ages 
with great accuracy, and to identify several 
determinants and variation trends of age acceleration in 
children. In addition to assessing the aging trends that 
correlated with epigenetic changes in childhood, we 
also investigated the effects of autism, GH deficiency 
and lead exposure on biological age in children. In 
future studies, our model can be used to identify other 

factors influencing the AAD and AMAR, including 
other childhood diseases or environmental factors (such 
as maternal smoking, alcohol intake or eating habits), 
and to quantify the impact of these factors on the health 
and longevity of children. Our biological age prediction 
model in children could be developed into a quantitative 
health assessment tool that detects health imbalances 
early in life, effectively preventing age-related diseases 
and postponing the aging process. 
 
MATERIALS AND METHODS 
 
Description of the datasets 
 
We collected publicly available genome-wide 
methylation datasets of healthy children’s peripheral 
blood samples from the Gene Expression Omnibus 
database and other online resources to build our model. 
Details about the individual datasets (datasets 1–11) can 
be found in Table 1, along with the relevant citations. 
Dataset 1 consisted of leukocyte samples from 334 
healthy (entirely male) subjects (mean age 10, range 3–
17 years old) [17]. Dataset 2 included 13 unaffected 
subjects from a DNA methylation study of Crohn's 
disease and ulcerative colitis [51]. Dataset 3 comprised 
nine subjects of normal weight from an adolescent 
dietary fat study [52]. Dataset 4 involved 18 unaffected 
individuals from a study of age-related diseases [53]. 
Dataset 5 was obtained from a longitudinal analysis of 
genome-wide methylation changes in peripheral blood 
samples (n = 84) from healthy children before and after 
pubertal onset [18]. Dataset 6 consisted of 15 samples 
from a study on the effects of periconceptional maternal 
micronutrient supplementation on infant blood 
methylation patterns [54]. Dataset 7 was generated in 
the same lab as dataset 1, and contained samples from 
127 healthy children measured on the Illumina 450K 
platform [17]. Dataset 8 included nine healthy boys and 
nine healthy girls who participated in a sex-specific 
DNA methylation analysis [55]. Dataset 9 comprised 
seven healthy control subjects from an analysis of co-
methylation modules related to age [56]. Dataset 10 was 
obtained from the relatives of patients with Down 
Syndrome (mothers and unaffected siblings) [57]. 
Dataset 11 included 88 lean individuals aged 14 to 16 
years who were recruited by mail and through school 
visits in Uppsala, Sweden [58]. Five datasets were 
obtained from Illumina 27K arrays, while six were 
obtained from Illumina 450K arrays. 
 
The datasets of children with diseases are summarized in 
Supplementary Table 1 (datasets 1–3). These datasets 
were also obtained from the Gene Expression Omnibus 
database. Dataset 1 contained methylation data on 27,578 
CpG dinucleotides in peripheral blood leukocyte DNA 
samples from autistic children and unaffected siblings 
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[17]. Dataset 2 included samples from 24 patients at 
baseline and after four days of recombinant human 
growth hormone (rhGH) treatment [27]. Dataset 3 
consisted of 42 dry blood spots from children exposed to 
lead [30]. 
 
DNA methylation data pre-processing and quality 
control 
 
The public Illumina DNA data described above were 
generated with either the Illumina Infinium 
HumanMethylation27 BeadChip or the Illumina Infinium 
HumanMethylation450 BeadChip. Both arrays are used to 
quantify DNA methylation based on β values, which 
range from 0 (completely unmethylated) to 1 (completely 
methylated). We merged the data from the two platforms 
by focusing on the ~26,000 CpG sites that are present in 
both platforms. The age prediction model was trained on 
21,979 probes that were shared between the Illumina 27K 
and 450K platforms and had ≤ 10 missing values across 
the datasets. Then, the R ‘impute’ package was used to 
impute the remaining missing values with the k-nearest-
neighbors approach (10 nearest markers) [59]. The BMIQ 
R function [60] was used to readjust the 21,000 
overlapping probes so that their distribution met the gold 
standard (the mean β value of the largest single dataset 
(GSE27097) in this article [17]). 
 
We performed a principal component analysis to 
identify and remove outliers. First, each sample was 
converted into a z-score statistic based on the squared 
distance of the first principal component from the 
population mean. Then, the z-score was converted to the 
false-discovery rate through the Gaussian cumulative 
distribution function and the Benjamini-Hochberg 
procedure [61]. Samples falling below a false-discovery 
rate of 0.2 were designated as outliers and were 
removed. This filtering procedure was performed 
iteratively until no samples were determined to be 
outliers. The remaining 716 samples were used in the 
age prediction model. Specific information on these 
samples is shown in Table 1. 
 
Age conversion and DNA methylation age prediction 
model 
 
To improve the accuracy of the prediction model, we used 
months as the age unit. In the included datasets, 84% of 
the sample ages were recorded as months. The sample 
ages recorded as years were converted to months for this 
study. We employed k-fold cross-validation (k = 10) in 
the R ‘caret’ package [22] to randomly cleave the 
datasets 10 times and build a model for each cohort. 
During each run, a different cluster was used as the test 
set, and the remaining clusters were used as the training 
set, with proportions of 10% and 90%, respectively. 

Based on the training set data, we found it 
advantageous to transform age using function F 
before building the prediction model. Using the 
inverse of function F, we transformed the linear part 
of the regression model into the DNA methylation 
age. Function F was as follows (toddler.age was set to 
48 months): 

 

( ) ( )
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. 1 .
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− + ≤

F age log age

log toddler age ifage toddler age
 

( )
( ) ( ). / . 1

.
= − +

>
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age toddler age toddler age ifage
toddler age

 

 
The child-specific biological age prediction model was 
established through sure independence screening 
combined with multivariate linear modeling based on 
the elastic net algorithm. First, we used sure 
independence screening (implemented in the R package 
‘SIS’) [20] to reduce the dimensionality of the 
~21,000 β values in the datasets. This step was taken 
because variable selection methods (e.g., lasso, LARS, 
SCAD) do not perform well when the dimension of the 
predictor variable p is much larger than the sample size 
n. Then, an elastic net regression model (implemented 
in the glmnet R function) [21] was used to regress a 
transformed model of age based on 111 β values in 
the training data. The elastic net approach is a 
combination of traditional lasso and ridge regression 
methods, emphasizing model sparsity while 
appropriately balancing the contributions of correlated 
variables. The glmnet function requires the user to 
specify two parameters (alpha and lambda). Since we 
used an elastic net predictor, alpha was set to 0.48, and 
lambda was set to 0.000954 based on 10-fold cross-
validation of the training data (via the R function 
cv.glmnet). A heat map was drawn in the ‘pheatmap’ 
package in RStudio, and Venn diagrams were produced 
on the Bioinformatics and Evolutionary Genomics 
website (http://bioinformatics.psb.ugent.be/webtools/ 
Venn/). 
 
CpG site annotation and enrichment analysis 
 
The Entrez gene IDs of CpG sites in the 
HumanMethylation27 and HumanMethylation450 
annotation files were used to identify genes. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses were conducted in R with 
the ‘clusterProfiler’ package from Bioconductor [62]. 
Enrichment analyses were performed with Fisher’s 
exact test. Significant GO terms (P < 0.05) were 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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imported into REVIGO for visualization in a semantic 
space [63]. 
 
Statistical analysis 
 
Paired Student’s t-tests were used to compare the DNA 
methylation ages calculated by our model and the multi-
tissue predictor for 67 pairs of monozygotic twins in the 
dataset GSE56105 [23]. Differences between two 
groups of samples were assessed with Wilcoxon tests 
and unpaired Student’s t-test, while differences among 
multiple groups of samples were assessed with analysis 
of variance (ANOVA). P values < 0.05 were considered 
significant. Statistical analyses were performed with 
RStudio. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
 
 

 
 

Supplementary Figure 1. Characteristics of the prediction model. (A) Histograms of the age distribution for healthy girls and boys, 
respectively. The x-axis represents the chronological age of the individuals (age unit is years) and the y-axis (counts) represents the number of 
individuals. The pink columns indicate boys, and the blue columns indicate girls. (B) Pie chart displaying the proportion of the different types 
of Illumina Methylation Assays. Red stands for the 27K assay and green stands for the 450K assay. (C) Gene Ontology (GO) analysis of the 
genes associated with the 111 CpG sites. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the genes associated 
with the 111 CpG sites. 
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Supplementary Figure 2. Age acceleration in children grouped by gender and ethnicity. (A) Boxplot comparing the age 
acceleration difference between girls and boys. (B) Density plot of the apparent methylation aging rates of children separated by gender. 
Dashed lines represent the mean values. (C) Boxplot comparing the age acceleration differences among children of different ethnicities. (D) 
Boxplot comparing the apparent methylation aging rates among children of different ethnicities. 

 

 
 

Supplementary Figure 3. Age acceleration in different periods of childhood by gender. (A) Boxplot of the age acceleration 
difference during different periods of childhood in girls. (B) Boxplot of the age acceleration difference during different periods of childhood in 
boys. 
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Supplementary Figure 4. Age acceleration in children with diseases. (A) Scatterplot of the DNA methylation (DNAm) age (x-axis) 
against the chronological age (y-axis) in the GSE27044 dataset (age unit is months). In this dataset, the correlation between the DNAm age 
and the chronological age was 0.92, and the error (median absolute difference) was 10 months. ‘A’ stands for autistic children and ‘C’ stands 
for their unaffected siblings. (B) Boxplot comparing the age acceleration differences among children with different types of autism and their 
unaffected siblings (‘-sib’). (C) Boxplot comparing the apparent methylation aging rates among children with different types of autism. (D) 
Boxplot comparing the age acceleration differences in mid-childhood and adolescence in children with autism. (E) Boxplot comparing the age 
acceleration differences before and after four days of recombinant human growth hormone treatment. (F) Boxplot comparing the age 
acceleration differences among children with different types of growth hormone deficiency. 
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Supplementary Figure 5. K-means clustering analysis of the 111 CpG sites. (A) The trend of DNA methylation levels and the 
number of genes associated with the CpG sites in Cluster 1. (B) The trend of DNA methylation levels and the number of genes associated 
with the CpG sites in Cluster 2. (C) Density plot of the β value of cg26227465, located near the IFNG gene, during different periods of 
childhood. This site was in Cluster 1. (D) Density plot of the β value of cg25827666, located near the NTRK1 gene, during different periods 
of childhood. This site was in Cluster 2. 
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Supplementary Tables 
 

 

 
Supplementary Table 1. Summary details of the DNA methylation datasets on children in disease. 

ID Availability Methylation 
array n Age(months) Gender Disease Ethnicity Citation 

1 GSE27044 Illumina 27K 866 43.0-214.0 M: 866 

Autism: 397; 
Autism-sib: 382; 

ASD: 34; 
ASD-sib: 36; 
Aspergers: 9; 

Aspergers-sib: 8; 

White: 698; Asian: 32;  
African-amer: 14; 

other: 25; 
more-than-one-race: 

80;  
Native-american: 2; 
Native-hawaiian: 2;  
not-specified: 13; 

Alisch et al. 

2 GSE57205 Illumina 
450K 48(24) 62.0-185.0 M: 14 

F: 10 

NSD: 6; SGA: 7; 
STH-D: 7; 

Q-STH-D: 2; 
IGF1-D: 1; 

UTS: 1; 

null Kolarova et 
al. 

3 GSE60598 Illumina 27K 42 3.0-60.0 M: 24 
F: 18 

BLL ≥ 5 μg/dl: 25; 
BLL < 5 μg/dl: 17; 

African_american: 41; 
Caucasion_mixed: 1 Sen et al. 

1. NSD: GH deficiency due to neurosecretory dysfunction; SGA: small for gestational age; STH-D: classical GH deficiency; Q-
STH-D: qualitative GH deficiency (Kowarski syndrome); IGF1-D: IGF1 deficiency; UTS: Turner-Syndrome; 
2. GSE57205 contains 48 blood samples from 24 patients: 24 samples at baseline and 24 samples after 4-day short-term 
recombinant human growth hormone treatment stimulation; 
3. BLL: blood lead level. 
 

Please browse Full Text version to see the data of Supplementary Tables 2 to 4. 
 
Supplementary Table 2. The regression coefficients of child-specific methylation-based age prediction model. 

 
Supplementary Table 3. The result of REVIGO on the significant GO terms. 

 
Supplementary Table 4. The predict details of GSE27044 dataset. 


