Determination of square equivalent field for rectangular field in electron therapy

Mohammad J．Tahmasebi Birgani，Mohammad A．Behrouz¹，Saeedeh Aliakbari¹，Seyed M． Hosseini²，Davood Khezerloo ${ }^{1}$
Departments of Medical Physics and Radiation Therapy，${ }^{1}$ Medical Physics，University of Jundi Shapoor，School of Medicine，${ }^{2}$ Department of Radiation Therapy，University of Jundi Shapoor，Golestan Hospital，Ahwaz，Iran

Received on：16．07．12 Review completed on：07．01．13 Accepted on：08．01．13

Abstract

Equivalent field for electron beams is considered by using pencil beam theory．According to the Fermi－Eyges model the dose distribution of an electron pencil beam has a Gaussian profile．For this function determination of mean square radial displacement scattering of electrons is important．In this study the contribution of back scatter electron has been taken into account by using the multiple scattering theories for calculating mean square radial displacement scattering．The dimension of standard equivalent field depends on depth and shape of treatment field．Here the depth under study is the depth that mean square radial displacement scattering is extremum and the shape of treatment field is rectangular．In this study four energies were used 6，9，12 and 15 MeV electron beams of 2100C／D Varian Linac．Findings of this study are based on analytical calculations，which are in good agreement with other experimental data．The findings of this study that were resulted from formula，shows，for all circular fields of radius \geq LSE（lateral scattering equilibrium）were considered broad field and equivalent． For validating the findings，Percentage Depth Dose（PDD）and Output factors were measured in 15 MeV electron beams for $7 \times 3-\mathrm{cm}, 6 \times 4-\mathrm{cm}$ and $4 \times 2-\mathrm{cm}$ and their equivalent squares and equivalent circular fields and compared．

Key words：Dosimetry，electron therapy，field equivalence，mass angular scattering power，pencil beam theory

Introduction

The pencil beam theory has been established in considering of the behavior of electron beams．${ }^{[1,2]}$ By using Fermi－Eyges model，one can show that the distribution of an electron pencil beam has a Gaussion profile．${ }^{[3]}$ It is well known that a fundamental parameter of the pencil beam method of electron beam treatment planning is mean square radial displacement scattering $\sigma_{r}^{2}(z)$ ．This parameter has been determined by several methods and tabulated．${ }^{[4,5]}$ In different studies they have been stated

Address for correspondence：

Msc．Saeedeh Aliakbari，
Department of Medical Physics，University of Jundi Shapoor，
School of Medicine，Ahwaz，Iran．
E－mail：sa3edh＠yahoo．com

Access this article online	
Quick Response Code：	
回嵒乐呂回	www．jmp．org．in
	DOI： 10．4103／0971－6203．111317

that the definition of equivalent field for electron beams is not generally possible．${ }^{[1,6]}$ On the other hand in several researches determination of equivalent field for electron beams are investigated by using Fermi－Eyges multiple scattering theory．${ }^{[6,9]}$ In this research the standard equivalent field of rectangular fields have been calculated by minimizing of $\sigma_{r}^{2}(z)$ in different energy electron beams of $2100 \mathrm{C} / \mathrm{D}$ Varian Linac and compared with other studies．

Materials and Methods

The dose distribution of electron pencil beam in a phantom looks like an onion．The lateral spread followed the Gaussian function in a depth．Gaussian function is characterized by $\sigma_{r}(z)$ which shows the raduis extending gaussian function，as well as scatter radius of electron pencil beam in water phantom．The scatter spread parameter $\sigma_{r}(z)$ was theoretically predicted by Eyges．${ }^{[10]}$
$\sigma_{r}^{2}(z)=\int_{0}^{z} \overline{\theta^{2}} \frac{\theta^{\prime}}{\rho l}\left(z^{\prime}\right) \rho\left(z^{\prime}\right)\left(z-z^{\prime}\right)^{2} d z^{\prime}$
$\frac{\overline{\theta^{2}}}{\rho l}$ Is the mass angular scattering power in the water，ρ is density of the slab phantom and z is depth．But there are limitations to the Eyges equation．As pointed out by Werner， Khan and Deible ${ }^{[3,5]} \sigma$ that was given by Eyges equation，
increases with depth infinitely, which is contrary to what is observed experimentally, also Eyges equation is based on small-angle multiple coulomb scattering and under estimate large angle scattering. One can solve this problem by changing the limitations of integral to 0 to practical range $R p$.
$\sigma_{r}^{2}(z)=\int_{0}^{z} \frac{\overline{\theta^{2}}}{\rho l}\left(z^{\prime}\right) \rho\left(z^{\prime}\left(z-z^{\prime}\right)^{2} d z^{\prime}\right.$
By using the values of $\frac{\overline{\theta^{2}}}{\rho l}$ from ICRU report 21 one can solve the above integral for practical range R_{p} at $6,9,12$ and 15 MeV energies of Varian $2100 \mathrm{C}-\mathrm{D}$ linear accelerator. The limits of this integral should be 0 to R_{p}, because of the contribution of scattering electron underlying depth z has been taken into account at depth z . In first approximation of the quantity $\frac{\overline{\theta^{2}}}{\rho l}$ is almost independent of depth $\mathrm{z}^{[5]}$. From Eq. 2 one can obtain.
$\sigma_{r}^{2}(z)=\int_{0}^{z} \overline{\theta^{2}} \frac{\rho l}{\rho l}\left(z^{\prime}\right) \rho\left(z^{\prime}\right)\left(z-z^{\prime}\right)^{2} d z^{\prime}=$
$\left.-\frac{1}{3}\left[\frac{\theta^{2}}{\rho l}\right]\left[\left(z-R_{p}\right)^{3}-z^{3}\right)\right]$
From Eq. 3 it seems that $\sigma_{r}^{2}(z)$ has a maximum value at $z=\frac{R_{p}}{2}$, as the following:
$\left[\sigma_{\max }\left(z=\frac{R_{P}}{2}\right)\right]^{2}=\frac{1}{12} \frac{\overline{\theta^{2}}}{\rho l} R_{p}^{3}$
The energy dependency of $\sigma_{r}(z)^{2}$ is obvious from Eq. 4 by R_{p}.

The depth dose at central axis for irregular shaped field is calculated as the following form.

$$
\begin{align*}
& D_{\text {irreg }}(0,0, z)=D_{\infty}(0,0 z) \frac{\Delta \theta}{2 \pi} \sum_{i=1}^{n}\left[1-\operatorname{Exp}\left(\frac{-R_{i}^{2}}{\sigma_{r}^{2}(z)}\right)\right]= \\
& D_{\infty}(0,0, z) \frac{1}{2 \pi} \int_{0}^{2 \pi}\left[1-\operatorname{Exp}\left(\frac{r^{2}}{\sigma_{r}^{2}(z)}\right)\right] d \theta \tag{5}
\end{align*}
$$

Where the field is divided into n sectors at angular intervals of $\Delta \theta$ and R_{i} is the radius of the $\mathrm{i}^{\text {th }}$ sectors and $D_{\infty}(0,0, z)$ is the central axis depth dose per unit incident flounce for an infinitely wide parallel beam $(2 a, 2 b \geq \sigma(z))$. $\sigma_{r}(z)$ is the root mean square radial spread of the Gaussian pencil beam as a function of depth.

For a beam of circular cross section of radius R , the central axis depth dose distribution Eq. 5 is given by.
$D_{R}(0,0, z)=D_{\infty}(0,0, z)\left[1-\exp \left(\frac{-R_{e q}^{2}}{\sigma_{r}^{2}(z)}\right)\right]$.
With equalizing Eqs. 5 and 6 and solving the integrals for square and rectangular fields, the equivalent radius for rectangular fields $(2 \mathrm{a} \times 2 \mathrm{~b})$ of Figure l becomes:

Figure 1: Rectangular field $(2 a \times 2 b)$

$$
\begin{align*}
& R_{e q}^{2}=-\sigma^{2} \ln \frac{2}{\pi} x \tag{7}\\
& {\left[\int_{0}^{\tan ^{-1}\left(\frac{b}{a}\right)} \exp \left(\frac{-a^{2}}{\sigma^{2} \cos ^{2}(\theta)}\right) d \theta+\int_{\tan ^{-1}\left(\frac{b}{a}\right)}^{\frac{\pi}{2}} \exp \left(\frac{-b^{2}}{\sigma^{2} \sin ^{2}(\theta)}\right) d \theta\right]}
\end{align*}
$$

Lateral scattering equilibrium was calculated by khan formula to determine of limits to define the equivalent fields. ${ }^{[8]}$

Jaws were opened $14 \times 14 \mathrm{~cm}$ for 10×10 applicator and Nine cerrobend cutouts fields $(7 \mathrm{~cm} \times 3 \mathrm{~cm}, 6 \mathrm{~cm} \times 4 \mathrm{~cm}$ and $4 \mathrm{~cm} \times 2 \mathrm{~cm}$ Rectangular fields, their equivalent circular and square fields) were used to perform dosimetry.

Dosimetric measurements were performed for a 15 MeV beam from Varian $2100 \mathrm{C} / \mathrm{D}$ linac, at 100 cm source-to-surface distance (SSD), using CCl 3 ionization chamber $\left(0.13 \mathrm{~cm}^{3}\right.$ volume, total active length 5.8 mm , cylinder length 2.8 mm , inner diameter of cylinder 6.0 mm , wall thickness 0.4 mm , diameter of inner electrode 1.0 mm and length of inner electrode 3.3 mm) in a $50 \times 50 \times 50 \mathrm{~cm}^{3}$ Scanditronix water phantom. The isodose curves, PDD and Output factor for each cutout were drawn and tabulated by omnipro-accept and Excel software.

Results

 $\frac{\overline{\theta^{2}}}{l}$ from ICRU report 21 and practical range R_{p} for $6,9,12$ $\overline{\rho l}$ from ICRU report 21 and practical range R_{p} for 6, 9, 12 and 15 MeV energies of electron beam for Varian 2100C/D Linac were determined. The data are tabulated in Table l.

From Eq. 7 the equivalent radiuses for rectangular field at $6,9,12$ and 15 MeV energies are calculated and tabulated in Tables 2-5.

An equation was fitted to main diagonals of data

Table 1: Values of σ^{2} for 6, 9, 12 and 15 MeV

$E(\mathrm{MeV})$		9	12	15
$\frac{\theta^{2}}{\rho l}\left(\right.$ Radian $\left.^{2} \mathrm{~cm}^{2} \mathrm{gr}^{-1}\right)$	1.87×10^{-1}	9.45×10^{-2}	6.03×10^{-2}	3.67×10^{-2}
$\mathrm{R}_{\mathrm{p}}(\mathrm{cm})$				
$\sigma^{2}\left(\right.$ Radian $\left.{ }^{2} \mathrm{~cm}^{2}\right)$	2.9	4.4	5.9	7.5

Table 2: $R_{\text {eq }}$ for rectangle field sizes, $\mathrm{E}=6 \mathrm{MeV}$ and $\sigma^{2}=0.38$ (radian $^{2} \mathrm{~cm}^{2}$). 2a and 2 b (cm) are the sides of rectangle

$2 b$	$2 a$				
	1	2	3	4	
1	0.56				
2	0.71	1.09			
3	0.72	1.20	1.60	2.10	
	0.72	1.21	1.68		

Table 3: $\boldsymbol{R}_{\text {eq }}$ for rectangle field sizes, $\mathrm{E}=9 \mathrm{MeV}$ and $\sigma^{2}=0.67$ (radian $^{2} \mathrm{~cm}^{2}$) 2 a and $2 \mathrm{~b}(\mathrm{~cm})$ are the sides of rectangle

$2 b$	$2 a$						4	5
	1	2	3					
1	0.56							
2	0.74	1.11						
3	0.79	1.26	1.63	2.14				
4	0.80	1.29	1.75	2.64				
5	0.80	1.29	1.76	2.24	2.64			

Table 4: $R_{\text {eq }}$ for rectangle field sizes, $\mathrm{E}=12 \mathrm{MeV}$ and $\sigma^{2}=1.03\left(\right.$ radian $\left.^{2} \mathrm{~cm}^{2}\right) 2 a$ and $2 b(\mathrm{~cm})$ are the sides of rectangle

$2 b$	$2 a$						
	1	2	3	4	5	6	
1	0.56						
2	0.76	1.11					
3	0.84	1.30	1.65				
4	0.86	1.36	1.81	2.16			
5	0.86	1.36	1.84	2.30	2.67		
6	0.86	1.37	1.85	2.32	2.79	3.17	

Table 5: $R_{\text {eq }}$ for rectangle field sizes, $\mathrm{E}=15 \mathrm{MeV}$ and $\sigma^{2}=1.3$ (radian $^{2} \mathrm{~cm}^{2}$). 2 a and $2 \mathrm{~b}(\mathrm{~cm})$ are the sides of rectangle

$2 b$	$2 a$						
	1	2	3	4	5	6	7
1	0.56						
2	0.77	1.12					
3	0.86	1.32	1.65				
4	0.89	1.39	1.83	2.18			
5	0.9	1.41	1.89	2.34	2.69	3.19	
6	0.9	1.41	1.9	2.37	2.83	3.39	
7	0.9	1.41	1.9	2.37	2.85	3.32	3.69

Tables 2-5 by Matlab software with license No.161052. This equation shows the simple relation between $R_{\text {eq }}$ and $a_{\text {eq }}$ as the following form:

$$
\begin{equation*}
a_{e q}(\mathrm{~cm})=2 R_{e q}(\mathrm{~cm})-(0.0134 E(\mathrm{Mev})+0.13) \tag{8}
\end{equation*}
$$

Equation 8 would be true if 2 a is less than Lateral Scattering Equilibrium ($2 \mathrm{a} \geq \mathrm{LSE}$) because when the sides of a rectangular field were larger than LSE, all fields were considered broad fields and are equivalent. ${ }^{[8]}$

For example, according to Table 5 for a $6 \mathrm{~cm} \times 4 \mathrm{~cm}$ rectangular field size, equivalent radius derived $R_{\text {eq }}=2.4$ and from Eq. $8 a_{\mathrm{eq}}=4.4 \mathrm{~cm}$.

For validating the tabulated data, dosimetric measurements (PDD and Output factors) were performed in 15 MeV electron beam for $7 \mathrm{~cm} \times 3 \mathrm{~cm}, 6 \mathrm{~cm} \times 4 \mathrm{~cm}$ and $4 \mathrm{~cm} \times 2 \mathrm{~cm}$ Rectangular field and their equivalent circular and equivalent square fields, for comparing measured data were tabulated in Tables 6-9. Also this comparison is achieved for percentage depth dose by the PDD curve [Figures 2-4].

Discussion

The calculated σ^{2} for $6,9,12$ and 15 MeV at $z=\frac{R_{p}}{2}$ are in good agreement by practical data that was resulted by Khan and Brunivis ${ }^{[1,11]}$ By applying the pencil beam theory and Equations (5), (6) for irregular and circular field one can derive $R_{\text {eq }}$ and $a_{\text {eq }}$ for any arbitrary shaped electron field.

In this study for deriving equivalent field, the sector integration method for rectangular field is applied. Khan and Higgins have applied Gaussian pencil beam theory to this problem and derived an equation that can be used to

Figure 2: Comparison of depth dose distribution of rectangular field $7 \times 3 \mathrm{~cm}$ and equivalent circular field $R=1.9 \mathrm{~cm}$ and equivalent square field $3.5 \times 3.5 \mathrm{~cm}$ at 15 MeV

Figure 3: Comparison of depth dose distribution of rectangular field 6×4 cm and equivalent circular field $\mathrm{R}=2.4 \mathrm{~cm}$ and equivalent square field $4.4 \times 4.4 \mathrm{~cm}$ at 15 MeV

Table 6: Measured depth dose distribution of rectangular field $7 \times 3 \mathrm{~cm}$ and equivalent circular field $r=2 \mathrm{~cm}$ and equivalent square field $3.5 \times 3.5 \mathrm{~cm}$ for 15 MeV

Depth (mm)	PDD for rectangular field $7 \times 3(\mathrm{~cm})$	PDD for equivalent square field $3.5 \times 3.5(\mathrm{~cm})$	\% error	PDD for equivalent circular field (radius $=2 \mathrm{~cm})$	\% error
0	93.98	94.36	0.40	94.35	0.39
5	97.33	98.12	0.81	97.72	0.40
10	98.95	99.39	0.44	99.37	0.42
15	99.51	99.7	0.19	99.6	0.09
20	99.29	99.21	0.08	99.29	0
25	98.01	98.14	0.13	98.31	0.30
30	95.26	95.89	0.66	95.42	0.16
35	90.72	91.82	1.21	90.87	0.16
40	84.3	85.12	0.97	84.03	0.32
45	76.37	77.01	0.83	75.26	1.45
50	66.87	66.63	0.35	64.78	3.12

PDD: Percentage depth dose

Table 7: Measured depth dose distribution of rectangular field $4 \times 2 \mathrm{~cm}$ and equivalent circular field $r=1.4 \mathrm{~cm}$ and equivalent square field
$\mathbf{2 . 5 \times 2 . 5} \mathbf{c m}$ for 15 MeV
$\left.\begin{array}{lccccc}\hline \begin{array}{c}\text { Depth } \\ (\mathrm{mm})\end{array} & \begin{array}{c}\text { PDD for } \\ \text { rectangular } \\ \text { field } 4 \times 2(\mathrm{~cm})\end{array} & \begin{array}{c}\text { PDD for } \\ \text { equivalent } \\ \text { square field } \\ 2.5 \times 2.5(c m)\end{array} & \text { \% error } & \begin{array}{c}\text { PDD for } \\ \text { equivalent } \\ \text { circular field }\end{array} & \text { \% error } \\ \text { (radius=1.4 cm) }\end{array}\right]$

PDD: Percentage depth dose

Figure 4: Comparison of depth dose distribution of rectangular field $4 \times 2 \mathrm{~cm}$ and equivalent circular field $R=1.4 \mathrm{~cm}$ and equivalent square field $2.5 \times 2.5 \mathrm{~cm}$ at 15 MeV

Table 8: Measured depth dose distribution of rectangular field $6 \times 4 \mathrm{~cm}$ and equivalent circular field $\mathrm{r}=2.4 \mathrm{~cm}$ and equivalent square field $4.4 \times 4.4 \mathrm{~cm}$ for 15 MeV

| Depth
 (mm) | PDD for
 rectangular
 field $6 \times 4(\mathrm{~cm})$ | PDD for
 equivalent
 square field
 $4.4 \times 4.4(\mathrm{~cm})$ | | \% error
 (radius $=2.4 \mathrm{~cm})$ | PDD for
 equivalent |
| :--- | :---: | :---: | :---: | :---: | :---: | \% error

find approximation equivalence circular or square fields of any shaped.

According to the definition of equivalent field, each two fields have the same percentage depth dose on central axis are equivalent. From the Tables 2-5 one can obtain the equivalent radius and finally by applying Eq.8, equivalent square field was derived. The dosimetric measurement (PDD and Output factor) validated the tabulated data with good agreement.

Conclusions

Findings of this study are based on analytical which is in good agreement with other semi empirical. ${ }^{[8]}$ This method was suggested to use in treatment planning system (TPS) for calculating the equivalent square field for rectangular treatment field in electron therapy.

Table 9: Measured output factors of rectangular, equivalent square and equivalent circular field for 15 MeV electron beam at 3.7 cm

Rectangular field	Output factor	Square equivalent field	Output factor	\% error	Radius of equivalent circular field	Output factor	\% error
7×3	0.88	3.5×3.5	0.88	0	2	0.89	1.13
4×2	0.70	2.5×2.5	0.72	2.85	1.4	0.72	2.85
6×4	0.95	4.4×4.4	0.94	1.05	2.4	0.94	1.05

Acknowledgment

The author would like to thank radiotherapy and oncology center of Golestan Hospital of Jundi Shapour medical university for any cooperation in duration of this study and Vice Chancellor of Jundi Shapour medical university for financial support.

References

1. Khan FM, Higgins PD, Gerbi BJ, Deibel FC, Sethi A, Mihailidis DN. Calculation of depth dose and dose per monitor unite for irregularly shaped electron fields. Phys Med Biol 1998;43:2741-54.
2. Hogstrom KR, Mills MD, Almond PR. Electron beam dose calculations. Phys Med Biol 1981;26:445-59.
3. Khan FM. The Physics of radiationtherapy. $4^{\text {th }}$ ed. Philadelphia: Lippincott Williams and Wilkins; 2010.
4. ICRU Report 21, Radiation Dosimetry: Electron With Initial Energies Between 1 and 50 MeV Report 21. Washington, D.C: Interntional Comission on Radiation Units and measurments; 1971.
5. Werner BL, Khan FM, Deibel FC. A modle for calculating electron beam scattering in treatment planning. Med Phys 1982;9:180-7.
6. McParland BJ. An analysis of equivalent fields for electron beam central-axis dose calculations. Med Phys 1992;19:901-6.
7. Biggs PJ, Boyer AL, Doppke KP. Electron dosimetry of irregular fields on the Clinac 18. Int J Radiat Oncol Biol Phys 1979;5:433-40.
8. Khan FM, Higgins PD. Field equivalence for clinical electron beams. Phys Med Biol 2001;46:9-14.
9. Raju MR, Richman C. Negative pion radiotherapy. Phys Radiobiologic Aspects 1972;8:159-233.
10. Eyges L. Multiple scattering with energy loss. Phys Rev 1948;74:1534.
11. Bruinvis IA, Van Amstel A, Elevelt AJ, Van der Laarse R. Calculation of electron beam dose distributions for arbitrarily shaped fields. Phys Med Biol 1983;28:667-83.

How to cite this article: Tahmasebi Birgani MJ, Behrouz MA, Aliakbari S, Hosseini SM, Khezerloo D. Determination of square equivalent field for rectangular field in electron therapy. J Med Phys 2013;38:82-6.
Source of Support: Nil, Conflict of Interest: None declared.

Announcement

iPhone App

Download
iPhone, iPad
application

A free application to browse and search the journal's content is now available for iPhone/iPad. The application provides "Table of Contents" of the latest issues, which are stored on the device for future offline browsing. Internet connection is required to access the back issues and search facility. The application is Compatible with iPhone, iPod touch, and iPad and Requires iOS 3.1 or later. The application can be downloaded from http://itunes.apple.com/us/app/medknow-journals/ id458064375? $\mathrm{l}=1 \& \mathrm{mt}=8$. For suggestions and comments do write back to us.

