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Abstract

Open-pollinated (OP) mating is frequently used in forest tree breeding due to the relative temporal 
and financial efficiency of the approach. The trade-off is the lower precision of the estimated 
genetic parameters. Pedigree/sib-ship reconstruction has been proven as a tool to correct and 
complete pedigree information and to improve the precision of genetic parameter estimates. Our 
study analyzed an advanced generation Eucalyptus population from an OP breeding program 
using single-step genetic evaluation. The relationship matrix inferred from sib-ship reconstruction 
was used to rescale the marker-based relationship matrix (G matrix). This was compared with a 
second scenario that used rescaling based on the documented pedigree. The proposed single-step 
model performed better with respect to both model fit and the theoretical accuracy of breeding 
values. We found that the prediction accuracy was superior when using the pedigree information 
only when compared with using a combination of the pedigree and genomic information. This 
pattern appeared to be mainly a result of accumulated unrecognized relatedness over several 
breeding cycles, resulting in breeding values being shrunk toward the population mean. Using 
biased, pedigree-based breeding values as the base with which to correlate predicted GEBVs, 
resulted in the underestimation of prediction accuracies. Using breeding values estimated on 
the basis of sib-ship reconstruction resulted in increased prediction accuracies of the genotyped 
individuals. Therefore, selection of the correct base for estimation of prediction accuracy is critical. 
The beneficial impact of sib-ship reconstruction using G matrix rescaling was profound, especially 
in traits with inbreeding depression, such as stem diameter.
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Precise estimation of genetic parameters is essential to perform an 
accurate selection of genetically superior individuals and best prac-
tice management of genetic diversity in operational breeding pro-
grams. To achieve these goals, pedigrees that are both error-free and 
complete across generations should be established. Documenting 
and maintaining complete pedigrees in forest tree breeding is 

time-consuming and labor-intensive. In many cases achieving 
crossing, designs are technically challenging due to biological con-
straints, differential temporal sexual maturation or the differen-
tial size of reproduction organs physically preventing a successful 
cross (Potts and Dungey 2004). Costs of tracking parents mean that 
progeny tests based on open-pollinated (OP) mating are preferred  
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(Burdon and Shelbourne 1971). OP strategies can not fully track 
pedigree and so do suffer from the presence of hidden relatedness, 
the proportion of which is affected by conditions under which 
reproduction was performed (i.e., wild stands vs. breeding arbore-
tum vs. polymix breeding). Hidden relatedness can affect the accu-
racy of genetic parameter estimation and rankings of estimated 
breeding values (Squillace 1974; Askew and El-Kassaby 1994; 
Namkoong et al. 1988; Vidal et al. 2015; Tambarussi et al. 2018). 
The development of highly polymorphic genetic markers, such as 
simple sequence repeats, has enabled pedigree reconstruction to be 
performed, eliminating the deleterious effect of hidden relatedness 
on accuracy of genetic parameters and breeding values in genetic 
evaluations (Lambeth et al. 2001; Grattapaglia et al. 2004; Doerksen 
and Herbinger 2010; Hansen and McKinney 2010; El-Kassaby et al. 
2011).

More recently, the development of next-generation sequencing 
technologies has facilitated the development of genomic resources, 
even for organisms with missing reference genomes such as for-
est trees (Elshire et al. 2011; Chen et al. 2013; Neves et al. 2013; 
Plomion et  al. 2014; Silva-Junior et  al. 2015). These technologies 
generate abundant genome-wide genetic markers, such as single 
nucleotide polymorphisms (SNPs), which allow the construction 
of a marker-based relationship matrix (Nejati-Javaremi et al. 1997; 
VanRaden 2008). Such matrices provide a tool to track Mendelian 
segregation (Visscher et  al. 2006; Zapata-Valenzuela et  al. 2013), 
historical relatedness before base population defined by pedigree 
(Powell et al. 2010) and linkage disequilibrium (LD) between mark-
ers and quantitative trait loci (QTLs) (Habier et al. 2013). In particu-
lar, tracking LD improves the ability to estimate genetic covariance 
and helps achieve the more accurate estimation of genetic variance 
(Lippert et al. 2013). The marker-based relationship matrix can then 
be used as a tool to predict phenotypes for individuals with geno-
types through genomic selection (GS) models (Resende et al. 2012; 
Beaulieu et al. 2014; Muñoz et al. 2014; Gamal El-Dien et al. 2015; 
Ratcliffe et al. 2015; Bartholomé et al. 2016; Isik et al. 2016).

Forest tree species are a challenge as they are often characterized 
by high genetic diversity, large effective population size, and rapid 
LD decay, which requires genotyping of large training populations to 
fully utilize all the benefits of the genomics approach. The complete 
genotyping of a forest tree progeny test is currently cost-prohibitive 
due to their large dimensions (thousands of trees), and a reasonable 
alternative should be used (Beaulieu et  al. 2014). El-Kassaby and 
Lstibůrek (2009) proposed a partial pedigree reconstruction as an 
efficient alternative to full pedigree reconstruction to improve the 
comparative precision of genetic parameters (El-Kassaby et al. 2011). 
Single-step evaluation (Legarra et al. 2009; Misztal et al. 2009) can 
be seen as a genomic-based equivalent of the above mentioned par-
tial pedigree reconstruction to reasonably implement genomics into 
forest tree testing schemes. This strategy has already been success-
fully applied in animal breeding and also in some forest tree genetic 
evaluations (Christensen and Lund 2010; Meuwissen et  al. 2011; 
Christensen et  al. 2012; Cappa et  al. 2017, 2018; Ratcliffe et  al. 
2017). The rescaling of the marker-based relationship matrix to that 
inferred from the documented pedigree is the greatest challenge in 
single-step genetic evaluation to avoid any inaccuracy of genetic 
parameter estimates. Usually, the marker-based matrix G is adjusted 
regarding differences of average diagonal and average off-diagonal 
elements to its pedigree-based counterpart. Nevertheless, the rescal-
ing effects are highly variable and depend on the method used for G 
matrix construction (Forni et al. 2011). Several rescaling approaches 
have already been developed (Forni et al. 2011; Vitezica et al. 2011; 

Gao et al. 2012). However, there is lack of knowledge on the effect of 
incomplete pedigree information on accuracy of predicted breeding 
values in single-step evaluation. The rescaling of the G matrix based 
on incomplete pedigree-based relationship appears to be causing an 
issue. Individuals with shallow, single-generation pedigrees are caus-
ing the G matrix elements to be larger, on average, compared with 
the pedigree-based matrix A. In contrast, individuals with deep pedi-
grees have, on average, G matrix elements that are smaller (Misztal 
et al. 2013). The strategy to avoid this issue is through implement-
ing patterns of population history. Misztal et al. (2013) developed a 
strategy based on implementation of unknown parental groups in 
a multibreed population. We found this strategy, however, unsuit-
able in our case due to the lack of isolation in mating events and 
rather we focused on reconstruction of hidden relatedness. A previ-
ous study performed on the material used in the current study was 
focused on sib-ship reconstruction and found a reasonable propor-
tion of relatedness (including selfing), unrecognized by documented 
pedigree. The implementation of the relationship matrix based on 
sib-ship reconstruction improved the precision of genetic parameters 
and response to selection especially in traits suffering from inbreed-
ing depression (Klápště et  al. 2017). This study, therefore, investi-
gates the efficiency of single-step genetic evaluation in an advanced 
generation of a Eucalyptus nitens breeding population, with an only 
partially tracked pedigree. It compares the effect of using related-
ness inferred from sib-ship reconstruction versus the documented 
pedigree in the process of marker-based relationship matrix rescal-
ing. In addition, the pedigree-based matrix was modified to take into 
account the probability of selfing in an attempt to further improve 
the accuracy of this strategy.

Methods

Material
The studied population is a third generation breeding population, 
derived from 2 seed orchards (Klápště et al. 2017). The experiment 
includes 3593 individuals structured into 116 half-sib families, of 
which 691 were randomly selected, representing 72 tested families 
analyzed through sib-ship reconstruction in previous study (Klápště 
et al. 2017). The individuals were measured for diameter at breast 
height (DBH) and scored for straightness (STR) using a 9° scale 
from 1—crooked to 9—straight and malformation (MAL) coded as 
a binary trait where 1 is perfectly formed and 0 otherwise.

Genetic markers were generated through EUChip60K SNP chip 
(Silva-Junior et  al. 2015) and filtered for GenTrain score > 0.5, 
GenCall > 0.15, minor allele frequency (MAF) > 0.05 and SNP call 
rate > 0.6 which generated 13 844 markers.

Statistical Analysis
Pedigree-Based Analysis
Genetic parameters such as additive genetic variance and heritabil-
ity were estimated using a linear mixed model, implemented in the 
ASReml-R package (Butler et al. 2009) as follows:

	 y = X + Za + Zr + Zr(s) + eββ

where y is the vector of observations, β is the vector of fixed effects 
such as intercept and seed orchard, a is the vector of random 
effects for breeding values following var( ~ ( , )a A) N a0 2σ , where A 
is the average numerator relationship matrix (Wright 1922) which 
is substituted by the combined relationship matrix H using both 
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pedigree and marker information in the single-step evaluation (see 
below) and σ a

2  is the additive genetic variance, r is the vector of 
random replication effects following var( ~ ( , )r I) N r0 2σ , where I is 
the identity matrix and σ r

2  is the replication variance, r(s) is the 
vector of random set nested within replication effects following 
var(r I( )) ~ ( , )( )s N r s0 2σ  (set represents incomplete block within rep-
lication having fixed number of families from each seed orchard), e 
is the vector of residuals following var( ~ ( , )e I) N e0 2σ , where σ e

2  is 
the residual variance, X and Z are incidence matrices assigning fixed 
and random effects to observations in vector y.

Single-Step Genetic Evaluation
Since the marker-based relationship matrix is reflecting both tem-
poral and historical relatedness (Powell et al. 2010), the reference 
(base) population is different compared with the pedigree-based 
counterpart. Such discrepancies can result in biased estimations 
of genetic parameters and reduced accuracy of breeding values 
(Vitezica et al. 2011). Therefore, the adjustment of the marker-based 
relationship matrix is the most crucial step in the single-step evalu-
ation. The marker-based relationship matrix G was constructed fol-
lowing (VanRaden 2008):

	 G
ZZ= ′

∑ −2 1j j jp p( )

where Z = M − P, M is the matrix of genotypes coded 0, 1, and 2 
as reference allele homozygote, heterozygote, and alternative allele 
homozygote, respectively, and P is the vector of doubled frequencies 
for alternative alleles, pj is the frequency of the alternative allele at 
jth loci. The rescaling of the marker-based relationship matrix to 
adjust for a base population defined by the documented pedigree 
was performed following (Gao et al. 2012):

	 Avg.diag Avg.diag
Avg.offdiag Avg.offdiag

( ) ( )
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G
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β α

+ =
+ =
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
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Since the investigated field experiment is derived from a 3rd gen-
eration breeding population in a program with incomplete tracking 
of relatedness, 2 A22 matrices were implemented to rescale the G 
matrix: 1) based on tracked pedigree (HBLUP1), and 2) based on 
sib-ship reconstruction performed in a previous study (Klápště et al. 
2017) (HBLUP2). We hypothesize that the implementation of a rela-
tionship matrix based on sib-ship reconstruction should result in a 
more precise adjustment of the marker-based relationship matrix to 
pedigree. The G matrix is usually not positive semi-definite, which 
is one of the mixed linear model assumptions, and weighting of the 
genomic and pedigree-based relationship matrices is required as 
follows:

	 G G w A ww 22= ( )1− +

Alternatively, the pedigree-based relationship matrix was modified 
to take into account partial selfing following (Dutkowski et al. 2001; 
Gilmour and Dutkowski 2004). This pedigree-based matrix was 
produced by using the “selfing” option in “asreml.Ainverse” func-
tion, implemented in the ASReml-R package (Butler et al. 2009).

The H matrix, implementing both marker and pedigree-based 
information, was constructed as follows:

	 H =
A + A A (G - A )A A A A G

G A A G
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where A11 is the relationship matrix for nongenotyped individuals, 
A12 and A21 are the relationship matrices between genotyped and 
nongenotyped individuals and A22 is the pedigree-based relationship 
matrix for genotyped individuals, G is the marker-based relationship 
matrix which is only available for genotyped individuals.

Narrow-sense heritability for continuous traits was estimated as 
follows:

	 ˆ ˆ
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and its alternative for binary trait was estimated as follows:
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where φ  is the over/under dispersion coefficient. The theoretical 
accuracy of breeding values was estimated as follows:

	 r
Fi a

= −
+

1
1 2

PEV
( )σ

where PEV is prediction error variance (Mrode 2014), and Fi is the 
inbreeding coefficient of the ith individual. The leave-one-out cross-
validation strategy was implemented as an independent evaluation 
of the tested models. Prediction accuracy for continuous traits was 
estimated as the correlation between breeding values estimated in 
the pedigree-based analysis and those predicted in the cross-valida-
tion procedure. Additionally, the predicted genomic breeding val-
ues for genotyped individuals were correlated with breeding values 
estimated in the independent analysis using the relationship matrix 
based on information from sib-ship reconstruction. Correlations 
were only estimated using the set of genotyped individuals. The area 
under a ROC curve (AUC) was used to estimate prediction accuracy 
for binary traits.

Results

The pedigree-based analysis resulted in heritability from 0.05 (MAL) 
to 0.28 (STR) for form traits and 0.22 (DBH) for the growth trait 
analyzed. The estimates for all traits were found to be statistically 
significant with regard to their standard errors (α = 0.05). The accur-
acy of the breeding values was moderate and reached 0.54 for the 
growth trait DBH and from 0.32 to 0.58 for form traits (MAL and 
STR) (Table 1). The LD in our population decayed to an r2 of 0.2 
within 3 kb, which is a common pattern in forest trees (Figure 1). 
The comparison of marker-based and sib-ship reconstruction-based 
relationship coefficients showed a clear deflation of marker-based 
estimates across the whole spectrum of relationship coefficients 
(Figure  2). The marker-based relationship matrix G was rescaled 
following Gao et  al. (2012), using pedigree-based and sib-ship 
reconstruction-based relationship matrices. The parameters α and β 
reached values of 0.005090189 and 1.322984116 in the pedigree-
based scenario and 0.01343057 and 1.33787272 in the sib-ship 
reconstruction scenario.
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The single-step evaluation resulted in heritability estimates 
ranging from 0.05 to 0.28 in the documented pedigree-based sce-
nario and from 0.05 to 0.28 in the sib-ship reconstruction scenario. 
A slight increase in heritability from 0.22 to 0.24 was observed in 
the HBLUP1 scenario for DBH but was not accompanied by any 
concurrent increase in model fit. STR was the only trait to show 
improvement in the theoretical accuracy of breeding values when 

using information from sib-ship reconstruction to rescale the G 
matrix compared with the pedigree-based scenario. The trend in 
the theoretical accuracy of the breeding values, however, is a reflec-
tion of the trend in heritability, which was not always a reflection of 
the model fit. The prediction accuracy was investigated through a 
leave-one-out strategy only in the default scenario (no selfing prob-
ability and 0.05 weight on pedigree information). Our study found 

Figure 1.  LD decay in population under study.

Table 1. Variance components, heritability, their standard errors in parentheses, breeding values accuracy, their prediction accuracy (PA) 
in parentheses [2 prediction accuracies are reported for genotyped individuals regarding base to which are correlated (a) documented 
pedigree-based breeding value estimates; (b) sib-ship–based breeding value estimates—bold], and model fit for pedigree-based model 
(ABLUP), single-step evaluation where G matrix is rescaled to documented pedigree (HBLUP1) and single-step evaluation where G matrix 
is rescaled to information from sib-ship reconstruction (HBLUP2) under no selfing probability

Model Parameter DBH STR MAL

ABLUP Additive genetic var. 132.4 (28.88) 0.488 (0.096) 0.218 (0.078)
Replicate var. 0.000 (0.000) 0.074 (0.025) 0.011 (0.013)
Rep(set) var. 0.000 (0.000) 0.016 (0.011) 0.000 (0.000)
Residual var. 480.5 (26.81) 1.280 (0.052) 1.000 (0.000)
Heritability 0.216 (0.045) 0.278 (0.052) 0.050 (0.017)
Acc (PA)—total 0.54 (0.69) 0.58 (0.68) 0.32 (0.56)
Acc (PA)—mother 0.54 (NA) 0.56 (NA) 0.35 (NA)
Acc (PA)—offspring 0.54 (0.69) 0.58 (0.68) 0.31 (0.56)
AIC 25153.28 5290.2 8271.75

HBLUP1 Additive genetic var. 147.7 (31.47) 0.484 (0.086) 0.216 (0.077)
Replicate var. 0.000 (0.000) 0.073 (0.025) 0.011 (0.013)
Rep(set) var. 0.000 (0.000) 0.017 (0.013) 0.000 (0.000)
Residual var. 469.8 (27.75) 1.277 (0.076) 1.000 (0.000)
Heritability 0.239 (0.048) 0.275 (0.047) 0.050 (0.017)
Acc (PA)—total 0.57 (0.66) 0.59 (0.64) 0.34 (0.56)
Acc (PA)—mother 0.55 (NA) 0.56 (NA) 0.36 (NA)
Acc (PA)—offspring NonGen 0.55 (0.66) 0.58 (0.68) 0.32 (0.56)
Acc (PA)—offspring Gen 0.63 (0.58, 0.37) 0.65 (0.47, 0.58) 0.40 (0.57)
AIC 25148.78 5286.23 8272.943

HBLUP2 Additive genetic var. 131.9 (28.39) 0.488 (0.088) 0.231 (0.078)
Replicate var. 0.000 (0.000) 0.074 (0.025) 0.011 (0.013)
Rep(set) var. 0.000 (0.000) 0.017 (0.011) 0.00 (0.000)
Residual var. 480.2 (25.85) 1.272 (0.077) 1.000 (0.000)
Heritability 0.215 (0.044) 0.277 (0.047) 0.053 (0.017)
Acc (PA)—total 0.55 (0.67) 0.59 (0.64) 0.34 (0.56)
Acc (PA)—mother 0.54 (NA) 0.56 (NA) 0.36 (NA)
Acc (PA)—offspring NonGen 0.53 (0.66) 0.58 (0.68) 0.32 (0.56)
Acc (PA)—offspring Gen 0.62 (0.58, 0.42) 0.66 (0.47, 0.58) 0.39 (0.57)
AIC 25137.04 5283.96 8275.39
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the highest prediction accuracy was reached in the pedigree-based 
analysis (ABLUP), ranging from 0.68 to 0.69. Similar prediction 
accuracies were found in the HBLUP1 and HBLUP2 scenarios for 
individuals without genomic information, ranging from 0.66 to 
0.68. The lowest prediction accuracy was obtained among individu-
als with genomic information and ranged from 0.47 to 0.58 in both 
the HBLUP scenarios when predicted genomic breeding values were 
correlated with breeding values estimated in ABLUP. However, when 
the predicted genomic breeding values were correlated with breed-
ing values estimated using relationships from sib-ship reconstruction 
(performed in only genotyped sample), the prediction accuracy in 
DBH increased from 0.37 obtained in HBLUP1 to 0.42 obtained in 
HBLUP2. The prediction accuracy in STR remained constant across 
both scenarios (Table 1). The reduced accuracy of predicted breeding 
values was caused by the fact that while sib-ship–based estimated 
breeding values were estimated using only genotyped individuals, 
predicted breeding values are biased because nongenotyped individ-
uals are also used in the prediction process and representing 80% of 
the total population size.

The increase of selfing probability in the pedigree-based rela-
tionship matrix resulted in a decrease in heritability across all inves-
tigated traits. The different weights applied to the pedigree-based 
information did not affect the heritability, except for MAL, where a 
higher weight set on the pedigree-based relationship matrix resulted 
in a decrease in heritability, with a more obvious pattern in the sib-
ship reconstruction scenario (Supplementary File 1). The theoret-
ical accuracy of breeding value estimations was slightly higher in 
the single-step evaluation compared with the pedigree-based alter-
native, mainly due to the noted improvement in the accuracy of 
genotyped individuals. The sib-ship scenario in MAL, however, also 
improved the accuracy of mothers and nongenotyped offspring. The 
introduction of selfing probability followed the pattern observed in 
heritability and decreased with the increase of selfing probability. 
Similarly, the increased weight of the pedigree-based relationship 
matrix in the rescaling process resulted in a reduction of breeding 
value accuracy, with the most noticeable trend for the trait MAL 
(Supplementary File 1).

Discussion

Controlled pollination in forest tree breeding is expensive, time-
consuming, and labor-intensive and its efficiency is affected by 
both biological and environmental limitations. Therefore, open pol-
lination has been preferred in forest tree breeding programs, such 
as in the case of the E. nitens program in New Zealand (Burdon 
and Shelbourne 1971). However, this strategy comes at the cost 
of incomplete knowledge of genealogy, likely to cause the estima-
tion of genetic parameters in quantitative genetic evaluations that 
are less reliable (Ratcliffe et al. 2017). The development of genetic 
markers has allowed recovery of missing relatedness and genealogy 
through pedigree/sib-ship reconstruction (Askew and El-Kassaby 
1994; Lambeth et al. 2001; Vidal et al. 2015). Dense marker arrays 
have also allowed the construction of realized relationship matri-
ces (Nejati-Javaremi et  al. 1997; VanRaden 2008), which usually 
increase the accuracy of genetic parameter estimates and allow for 
more efficient selection of superior genotypes (Resende et al. 2012; 
Gamal El-Dien et  al. 2015; Ratcliffe et  al. 2015, 2017; Suontama 
et al. 2018).

El-Kassaby and Lstibůrek (2009) and El-Kassaby et  al. (2011) 
found partial pedigree reconstruction as a feasible and cost-effective 
alternative to full pedigree reconstruction to improve the precision 
of genetic parameters. Our previous study (Klápště et  al. 2017) 
focused on the effect of sib-ship reconstruction to improve genetic 
parameters. A significant benefit was demonstrated for those traits 
suffering from inbreeding depression, achieved by recognizing selfs 
in the population, consequently leading to an increase in additive 
genetic variance, heritability, and improvement in estimated genetic 
gain. Improvement in breeding value accuracy was also observed for 
traits free of inbreeding depression due to the recovery of hidden 
relatedness and potential correction of pedigree errors. The analysis 
found 630 pair-wise relationships originally defined as half-sibs to be 
unrelated (See figure 2 in Klápště et al. 2017). However, defining all 
pedigree errors was not possible due to an inability to assign parents 
to each individual in the sib-ship reconstruction strategy. Similarly, 
the current study found a benefit when rescaling the marker-based 
G matrix according to the relationship matrix based on information 
from sib-ship reconstruction, rather than the documented pedigree. 
The benefit seen in the improved model fit (Table 1) and breeding 
values accuracy (Table 1—bold numbers) was more evident in pro-
duction trait (DBH), which was more likely to suffer from inbreeding 
depression (Hardner and Tibbits 1998). Therefore, parentage/sib-
ship reconstruction should be performed before G matrix rescaling 
in single-step evaluations, when applied in OP breeding programs. 
However, the low correlations between breeding values estimated 
on the basis of sib-ship reconstruction with those predicted in sin-
gle-step evaluation is a result of the high influence of unrecognized 
relatedness and pedigree errors from nongenotyped individuals (con-
tributing by 80% of the total population size) on breeding values 
predicted from single-step evaluation. On the other hand, there was 
no improvement in the accuracy of breeding values estimated in 
the nongenotyped part of the population after implementation of 
genomic information. This can be again caused by a high level of 
uncertainty in relatedness (coming from both the hidden relatedness 
and pedigree errors) across the population. In this case, we recom-
mend the pedigree/sib-ship reconstruction of the whole population 
to reach a higher accuracy of predicted breeding values.

Results presented in this study showed that accumulation 
of unrecognized relatedness and pedigree errors across several 

Figure  2.  Correspondence of sib-ship and marker-based relatedness/
self-relatedness.
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generations of breeding cycles resulted in virtually nonexistent 
between-family variation, with the main source of genetic variation 
generated by within-family variation (Figure 3). In contrary, the ana-
lysis using traits having similar level of heritability but complete 
pedigree information found large proportion of the genetic variance 
attributed to between-family variance (Thistlethwaite et al. 2017). 
Therefore, the missing pedigree information on the paternal side of 
the current progeny population, as well as for the parents in pre-
vious generations, appears to undermine the ability of the REML 
algorithm to differentiate families, and breeding values are shrunk 
toward the population mean (Figure 3) (Henderson 1975; Garrick 
et al. 2009). On the other hand, using genomic markers allowed the 
recovery of hidden relatedness and pedigree errors, resulting in a 
more disperse distribution of genomic breeding values compared 
with their pedigree-based equivalents (Figure 4). There are several 
strategies developed in animal breeding to overcome uncertain 
paternity using phenotypic data (Sapp et al. 2007) or construction of 
a sire probability matrix (Henderson 1988). However, the probabil-
ity for many possible males (as would be the most likely scenario in 
forest trees) assigned to each nongenotyped offspring is not sufficient 
to increase the accuracy of genetic parameter estimates (Konigsberg 
and Cheverud 1992). The purpose of GS is primarily the approxima-
tion of pedigree-based breeding values through the implementation 
of genetic markers (Meuwissen et al. 2001). When the pedigree-based 
estimates of breeding values are imprecisely estimated, however, the 
resulting prediction accuracy (in terms of correlation between ped-
igree-based estimated and marker-based predicted breeding values) 
will undermine the efficiency of genomic predictions. Under such 
conditions, we would highly recommend implementation of genetic 
markers across the whole population and perform either pedigree or 

sib-ship reconstruction to obtain relatedness structure approaching 
the reality. The breeding values estimated on the basis of pedigree/
sib-ship reconstruction will reach higher accuracy and provide a bet-
ter base for the estimation of prediction accuracy.

The construction of a relationship matrix based on informa-
tion from genetic markers allows tracking of not only temporal 
relatedness, as defined by the pedigree-based base population, but 
also Mendelian sampling (Visscher et al. 2006; Zapata-Valenzuela 
et  al. 2013) and historical relatedness (Powell et  al. 2010). This 
is highly beneficial in species in the initial phase of domestica-
tion, where pedigrees are shallow and simple, such as forest trees. 
Additional information from all genotyped individuals increases the 
precision of breeding values considerably (Table 1). Ratcliffe et al. 
(2017) investigated the effect of genotyping intensity in a single-
step evaluation in white spruce and found continuous improvement 
in the accuracy of genetic parameters and model fit with increas-
ing genotyping intensity. The study demonstrates the high value of 
genomic information, implemented in the initial phase of breeding 
programs, where pedigrees are simple and incomplete. Similarly, we 
found a large increase in the theoretical accuracy of breeding val-
ues for genotyped individuals compared with those without geno-
types showing no improvement (Table 1). However, the prediction 
accuracy of genotyped individuals increased only when sib-ship 
reconstruction-based breeding values were used as a base. The fact 
that nongenotyped individuals reached higher prediction accuracy 
than genotyped individuals can be explained by the highly biased 
estimates of family means targeted in pedigree-based predictions 
(Zapata-Valenzuela et al. 2013). On the other hand, within-family 
variation targeted by genomic-based prediction is largely unreliable 
due to accumulated unrecognized relatedness and pedigree errors 

Figure 3.  Distribution of pedigree-based breeding values within each family.
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across the breeding cycles. Therefore, genomic approaches remain 
a very attractive option in forest species even where shortening of 
the breeding cycle is not possible due to late flowering. Gains can be 
made instead through a more complete understanding of underlying 
relationships and more accurate estimation of genetic parameters.

The precision of marker-based estimates of genetic parameters 
remain sensitive to selection, and a combination of marker and pedi-
gree information is still recommended (Ducrocq and Patry 2010; 
Vitezica et  al. 2011). In addition, the definition of the reference 
population in marker-based relationship matrices is rather arbitrary 
(Speed and Balding 2015) and should be rescaled with respect to the 
pedigree. de los Campos et al. (2015) argued that total heritability 
can be recovered only when all QTLs are included in the marker 
array, and is partially lost due to imperfect LD when only SNPs 
surrounding QTLs are available. Lippert et al. (2013) investigated 
the effect of using both QTL and non-QTL markers to construct a 
marker-based relationship matrix and found that only using QTL 
markers provides the most accurate estimate of additive genetic 
variance and heritability. Our analysis was performed using a mul-
tispecies Eucalyptus SNP chip (Silva-Junior et al. 2015), and ~10k 
markers were informative in this E. nitens population. The decay in 
LD was fast, as is common in forest tree species, and disappeared 
within ~3  kb (Figure  1). Therefore, capturing markers linked to 
QTLs is rather unlikely, and relatedness with co-segregation is 
probably the major source of capturing QTL effects. On the other 
hand, using an overwhelming amount of the genomic data does not 
increase the accuracy of prediction model after reaching saturation 
(Habier et al. 2013) and trait specific SNP prioritization should be 
applied (Lippert et  al. 2013). However, the genetic complexity of 
the investigated traits can prohibit the reliable selection of causal 
variants, and therefore, prediction models rely rather on related-
ness and co-segregation (Habier et  al. 2007, 2013). Our previous 
analysis (Suontama et al. 2018) found that the sample coming from 
Tinkers (seed orchard undergoing more intensive selection) had a 
higher GEBV accuracy compared with the sample coming from the 
Waiouru seed orchard (seed orchard established as a clonal arch-
ive having broader genetic diversity), which was reached thanks to 
slower LD decay, capturing longer effective chromosomal fragments. 
Due to the fact that sample from Waiouru seed orchard had twice 
the sample size and produced lower accuracy of GEBVs, we found 
that the model didn’t reach a saturation point where any additional 
markers wouldn’t increase accuracy of GEBVs. Therefore, there 
appeared to still be space for improvement of genomic resources in 
Eucalyptus species to create a robust genomic prediction model.

The recovered relatedness through genetic markers in the set of 
genotyped individuals was underestimated compared with expec-
tations (Figure  2). This can be caused by several cycles of selec-
tion and a lack of unrelated individuals to provide a reference for 
inferring actual relatedness among related individuals (Speed and 
Balding 2015), and had to be rescaled with respect to the ped-
igree-based counterpart before blending with the pedigree-based 
relationship matrix. The rescaling of the marker-based relation-
ship matrix with respect to the pedigree-based equivalent is the 
most crucial step in single-step genetic evaluation. The difference 
in the scale of relationship coefficients between marker-based and 
pedigree-based counterparts causes a decrease in the accuracy of 
genomic breeding values (Ducrocq and Patry 2010; Forni et  al. 
2011; Vitezica et al. 2011). We tested 2 scenarios: 1) rescaling of 
the marker-based relationship matrix with regard to the docu-
mented pedigree and 2)  rescaling the marker-based relationship 
matrix with regard to the relationship matrix derived from sib-ship 
reconstruction. The implementation of information from sib-ship 
reconstruction in the G matrix rescaling process resulted in a con-
siderable improvement in model fit compared with the model that 
used the documented pedigree. This trend is especially observed in 
traits suffering from inbreeding depression, such as DBH (Hardner 
and Tibbits 1998). These improvements were achieved in spite of 
the fact that the sib-ship reconstruction could only recover higher 
classes of relatedness, such as full-sibs and half-sibs, but not first 
and second order cousins as found in the documented pedigree. 
This means that the greater degree of relatedness recovered by sib-
ship reconstruction has a more significant impact on the improve-
ment of genetic parameter estimates through the G matrix rescaling 
process than ignored or undiscovered lower degrees of relatedness. 
Therefore, pedigree/sib-ship reconstruction is highly recommended 
prior to G matrix rescaling in the single-step genetic evaluation, 
especially in species with an OP breeding program, where selfs are 
viable. However, we could not utilize the full potential of related-
ness recovered by sib-ship reconstruction due to loss of connectiv-
ity with the remainder of the pedigree, as a simple blending of the 
sib-ship reconstruction-based relationship matrix (sib-ship–based 
A22) into the pedigree-based relationship matrix would cause 
the resulting matrix not to be positive definite. Therefore, newly 
obtained relatedness information should be used only in the rescal-
ing, but not in the weighting step. A more useful strategy would be 
to perform parentage analysis instead of sib-ship reconstruction 
when genomic information is also available for parental popula-
tions. In this case, consistency between original pedigree and the 

Figure 4.  Density of EBV/GEBV values distribution for continuous traits DBH (left plot) and STR (right plot) under the various models tested in population of 
genotyped individuals. Horizontal lines represent peak of the breeding values distributions for each scenario.
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reconstructed part would remain and positive definite nature of 
resulting relationship matrix warranted.

In some cases, marker information is not sufficient to capture all 
additive genetic variance, and residual polygenic effects have to be 
included in the prediction model (Aguilar et al. 2010; Christensen 
and Lund 2010). In addition, the implementation of a residual 
polygenic effect reduces the bias in SNP effects and increases their 
transferability over generations (Solberg et  al. 2009). Similarly, in 
the single-step genetic evaluation, the weighting of marker and pedi-
gree information is applied. We tested a broad range of weights 
from 0.05 to 0.5 for the pedigree information, but any increase 
resulted in a decrease in breeding value accuracies for genotyped 
individuals, while no effect was observed in nongenotyped individu-
als (Supplementary File 1).

Our previous analysis identified ~4% selfing in the genotyped 
sample (Klápště et al. 2017) and, therefore, we modified the pedi-
gree-based matrix for selfing probability as proposed by Dutkowski 
et al. (2001) before blending with the marker-based G matrix. The 
modified selfing probability did not result in any additional improve-
ment in the accuracy of breeding values, with decreases observed 
once probability exceeded 3% (Supplementary File 1). These results 
confirm our finding of 4% selfing in previous sib-ship reconstruction 
analysis (Klápště et al. 2017), it is, therefore, beneficial to implement 
selfing probability in any single-step genetic evaluation in species 
where there is strong evidence of viable selfing.

In this study, we have shown how the increase in connectivity 
between genotyped individuals through genomic similarity has a big 
impact on the resulting accuracy of breeding values compared with 
information from a sparse pedigree. In addition, implementation of 
genomic information in a quantitative genetic evaluation can dis-
sect genetic and environment effects more precisely (Gamal El-Dien 
et  al. 2016). Modification of the relationship matrix for selfing 
before blending and/or rescaling was found to be important in our 
population and would be recommended for other OP tree breeding 
programs.
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