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Cheap robust learning of data anomalies with
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Entropic outlier sparsification (EOS) is proposed as a cheap and
robust computational strategy for learning in the presence of
data anomalies and outliers. EOS dwells on the derived analytic
solution of the (weighted) expected loss minimization problem
subject to Shannon entropy regularization. An identified closed-
form solution is proven to impose additional costs that depend
linearly on statistics size and are independent of data dimension.
Obtained analytic results also explain why the mixtures of spher-
ically symmetric Gaussians—used heuristically in many popular
data analysis algorithms—represent an optimal and least-biased
choice for the nonparametric probability distributions when work-
ing with squared Euclidean distances. The performance of EOS
is compared to a range of commonly used tools on synthetic
problems and on partially mislabeled supervised classification
problems from biomedicine. Applying EOS for coinference of data
anomalies during learning is shown to allow reaching an accuracy
of 97%± 2% when predicting patient mortality after heart failure,
statistically significantly outperforming predictive performance of
common learning tools for the same data.
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Detection of data anomalies, outliers, and mislabeling is a
long-standing problem in statistics, machine learning (ML),

and artificial intelligence (1–4). Let {x1, x2, . . . , xT} be a fixed
dataset (where data instances xt are possibly augmented with
labels), let θ be a set of ML model parameters, and let g(xt , θ)
be a scalar-valued loss function measuring a misfit of the data
instance xt . Then, a wide class of learning methods and anomaly
detection algorithms can be formulated as numerical procedures
for a minimization of the following functional:

{
ŵ , θ̂

}
= arg min

w·,θ

T∑
t=1

wtg(xt , θ), [1]

where 0≤ wt ≤ 1 is the outlyingness, taking the values close to
zero if the data point xt is an anomaly (1, 5–7). If w and θ are
both unknown, then the above problem [1] for simultaneous
estimation of model parameters and loss weights becomes ill
posed. Common approaches deal with this ill-posedness problem
imposing additional parametric assumptions on w, for exam-
ple, based on parametric thresholding of one-dimensional lin-
ear projections in Stahel–Donoho estimators or deploying other
parametric tools [like χ(D)-distribution quantiles to determine
outliers of a D-dimensional normal distribution] (1, 5, 7, 8). An
appealing idea would be to make this ill-posed problem well
posed in a nonparametric way, by regularizing it with one of
the common regularization approaches. For example, applying
l1 regularization could result in a sparsification of w and zeroing
out the outlying data points from the estimation (9). However,
applying l1 and other sparsification methods results in a polyno-
mial cost scaling required for a numerical solution of the resulting
optimization problems—and would limit the solution of [1] to
relatively small problems (10).

The key message of this brief report is in showing that the
simultaneous well-posed detection of anomalies and learning
of parameters θ in [1] can be achieved computationally very

efficiently by means of the minimization of expected loss from
the right-hand side of [1]—performed simultaneously to the
regularized Shannon entropy maximization of the loss weight
distribution w,{

w (α), θ(α)
}
= arg min

w∈P(T)
L(w , θ,α),

where L(w , θ,α) =
T∑

t=1

wtg(xt , θ) + α
T∑

t=1

wt logwt ,

such that w ∈ P
(T),

P
(T) :=

{
w ∈ R

T

∣∣∣∣ w ≥ 0 ∧
T∑

t=1

wt = 1

}
. [2]

The following Theorem summarizes the properties of this prob-
lem’s solutions.

Theorem. For any fixed {x1, x2, . . . , xT} and θ such that
supt |g(xt , θ)|<∞ and α > 0, constrained minimization problem
[2] admits a unique closed-form solution w (α),

w
(α)
t =

exp
(
−α−1g(xt , θ)

)
∑T

t=1 exp (−α−1g(xt , θ))
. [3]

The proof of the Theorem is provided in SI Appendix. It is
straightforward to validate that the numerical cost of computing
[3] scales linearly in statistics size T and is independent of the data
dimension D—in contrast to common regularization techniques
that require polynomial cost scaling in the data dimension D (10).

If the loss function g(xt , θ) is a squared Euclidean distance
(as in the least-squares methods), then, according to the above
Theorem, the unique probability distributions w minimizing [2]
are from the α-parametric family of spherically symmetric Gaus-
sians, with the dimension-wise variance σ2 being σ2 = 0.5α. This
result provides an interesting insight into the density-based meth-
ods, for example, in t-stochastic neighbor embedding (t-SNE)
(11)—one of the most popular nonlinear dimensions reduction
approaches in the area of biomedicine (with over 20,000 citations
according to Google Scholar). This method searches for the op-
timal low-dimensional approximations of the high-dimensional
densities defined in a heuristic way as mixtures of spherically
symmetric Gaussians,

wt =
exp

(
−‖|xi − xj‖|2/2σ2

)∑
k exp (−‖|xi − xk‖|2/2σ2)

, [4]
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with a multiindex t = (i , j ). According to the above Theorem,
this heuristics—building a computational foundation of tSNE—
is actually equivalent to the optimal nonparametric density es-
timate [3], in the sense that it is simultaneously minimizing the
expectation of the pairwise squared Euclidean distances between
the data points (when considering loss function g(xt , θ) = ‖θ −
xt‖2 with t ≡ j and θ ≡ xi in [2]) and simultaneously maximizing
the entropy of w (i.e., providing the least-biased estimation) and
is obtained with an explicitly computable closed-form expression.
Furthermore, solution [3] also provides a recipe for computing
such t-SNE density estimates in the cases with non-Euclidean loss
functions g.

It is straightforward to verify that the simultaneous learning of
the parameters θ and probability densities w can be performed
with the monotonically convergent entropic outlier sparsification
(EOS) algorithm (see Algorithm 1).

Eq. 4 establishes a relation between the Gaussian variance
parameter σ2 and the entropic sparsification parameter α in
[3], indicating a possibility of inferring the optimal sparsifica-
tion parameter α∗ for the given data. For example, optimal σ2

in [4]—and hence the optimal sparsification parameter value
α∗—can be obtained by maximizing the log-likelihood of the
distribution wα

t with respect to the parameter α; that is, α∗ =
arg max

α>0

∑
t log(wα

t ). In the practical examples of EOS below, we

Algorithm 1 Entropic outlier sparsification algorithm for the
solution of optimization problem [2]
For a given {x1, x2, . . . , xT}, and α > 0, randomly choose
initial w (1)

I = 1; L(I ) =∞; ΔL(I ) =∞ I = 1; L(I ) =∞; ΔL(I ) =∞
while ΔL(I ) > tol do

θ(I ) ← solution of [2] for fixed w (I )

w (I+1) ← evaluating [3] for fixed θ(I )

L(I+1) ← L(w (I+1), θ(I ),α)
I ← I + 1
ΔL(I ) ← L(I−1) − L(I ).

will follow a simpler grid search approach for selecting the opti-
mal sparsification parameter α∗—deploying the same multiple
cross-validation procedure that is commonly used for determin-
ing metaparameter values in AI and ML. On a predefined grid
of α values, we will select those values that show the best overall
model performance on the validation data that were not used in
the model training.

Fig. 1 summarizes numerical experiments comparing EOS
to common data anomaly detection and learning tools on
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Fig. 1. Comparison of EOS algorithm for the solution of optimization problem [2] to common methods of data anomaly detection (A–F) and supervised
classifier learning (G–I) on synthetic and real data examples from refs. 12–14.
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randomly generated synthetic datasets (representing multivari-
ate normal distributions with asymmetrically positioned uni-
formly distributed outliers; Fig. 1 A–F) and three biomedical
datasets with various proportions of randomly mislabeled data
instances in the training sets (Fig. 1 G–I). All of the compared
algorithms are provided with the same information and run
with the same hardware and software; 50 cross-validations were
performed in every experiment to visualize the obtained 95% CIs.
In numerical experiments with synthetic data (Fig. 1 A–F), the
EOS algorithm is deployed, with g being the negative point-wise
multivariate Gaussian loglikelihood, that is, with g(xt ,μ, Σ) =
1/D

(
0.5 log det(Σ) + 0.5(xt − μ)†Σ−1(xt − μ)

)
, whereμ andΣ

are Gaussian mean and covariance, respectively. Iterative esti-
mation of weighted mean and covariance in the θ-step of the
EOS algorithm is performed using analytical estimates of the
weighted Gaussian covariance and mean, and convergence toler-
ance tol is set to 10−12. Total computational costs and statistical
precisions—the latter are measured as the numbers of correctly
identified points not belonging to the Gaussian distribution di-
vided by the total number of identified outliers—are performed
for various problem dimensions, statistic sizes, and outlier pro-
portions. EOS was compared to all of the outlier detection
methods available in the “Statistics” and “Machine Learning”
toolboxes of MathWorks. Precision is chosen as the measure of
performance here since it is more robust than the other common
measures when the datasets are not balanced, for example, when
the number of instances in one class (outliers) is much less
than in the other class (nonoutliers). These results show that
EOS allows a marked and robust improvement of outlier detec-
tion precision for all of the considered comparison cases. Data
and MATLAB code are provided at https://github.com/horenkoi/
EOS.

Next, real labeled datasets from biomedicine are considered,
including two popular datasets—the University of Wisconsin

Database for Breast Cancer diagnostics data (12) (Fig. 1 G) and
the clinical dataset for predicting mortality after heart failure
(13) (Fig. 1 I)—as well as a single-cell messenger RNA gene
expression dataset from longevity research (14) (Fig. 1 H). The
main focus here is on comparing the robustness of learning
methods to outliers and mislabeled data instances in the training
set, for common binary classifiers and for EOS that is equipped
with loss function g from the scalable probabilistic approximation
(SPA) classifier algorithm (15, 16). SPA is selected since it shows
the highest robustness to mislabeling for all of the considered
datasets (Fig. 1 G and I). As can be seen from Fig. 1 G and
H, EOS with g(xt , θ) from SPA (EOS+SPA, red dashed lines),
allows a statistically significant improvement of prediction per-
formance (measured with the common performance measure
area under curve [AUC]) for all of the tested mislabeling pro-
portions p for all of the considered biomedical examples. As was
shown recently, coinference of data mislabelings can significantly
improve predictive performance of supervised classifiers (17).
Application of the EOS algorithm with model loss function
g(xt , θ) from SPA (EOS+SPA) allows achieving AUC of 0.96 and
accuracy of 97%± 2% (SI Appendix, Fig. S1) when predicting
patients’ mortality after heart failure from clinical patients’ data,
statistically significantly outperforming common learning tools
that do not deploy outlier coinference (Fig. 1I).

EOS and entropic sparsification Eq. 3 can be also applied to
other types of leaning problems, for example, to feature selection
and novelty detection problems.

Data Availability. Data and MATLAB code have been deposited in GitHub
(https://github.com/horenkoi/EOS). Previously published data were used for
this work (12–14).

ACKNOWLEDGMENTS. I.H. acknowledges funding from the Carl-Zeiss Foun-
dation initiative “Emergent Algorithmic Intelligence.”

1. D. L. Donoho, M. Gasko, Breakdown properties of location estimates based on
halfspace depth and projected outlyingness. Ann. Stat. 20, 1803–1827 (1992).

2. D. M. Rocke, D. L. Woodruff, Identification of outliers in multivariate data. J. Am.
Stat. Assoc. 91, 1047–1061 (1996).

3. P. Filzmoser, R. Maronna, M. Werner, Outlier identification in high dimensions.
Comput. Stat. Data Anal. 52, 1694–1711 (2008).

4. H. Wang, M. J. Bah, M. Hammad, Progress in outlier detection techniques: A survey.
IEEE Access 7, 107964–108000 (2019).

5. W. A. Stahel, “Robust estimation: Infinitesimal optimality and covariance matrix
estimators,” PhD thesis, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich,
Switzerland (1981).

6. P. J. Rousseeuw, B. C. Van Zomeren, Unmasking multivariate outliers and leverage
points. J. Am. Stat. Assoc. 85, 633–639 (1990).

7. R. A. Maronna, V. J. Yohai, The behavior of the Stahel-Donoho robust multivariate
estimator. J. Am. Stat. Assoc. 90, 330–341 (1995).

8. Y. Zuo, H. Cui, X. He, On the Stahel-Donoho estimator and depth-weighted means
of multivariate data. Ann. Stat. 32, 167–188 (2004).

9. D. L. Donoho, For most large underdetermined systems of equations, the minimal
l1-norm near-solution approximates the sparsest near-solution. Commun. Pure
Appl. Math. 59, 907–934 (2006).

10. S. Huang, T. D. Tran, Sparse signal recovery via generalized entropy functions
minimization. IEEE Trans. Signal Process. 67, 1322–1337 (2019).

11. L. van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605 (2008).

12. UCI Machine Learning, Data from “Breast cancer Wisconsin (diagnostic) data set.”
Kaggle. https://www.kaggle.com/uciml/breast-cancer-wisconsin-data. Accessed 1
October 2021.

13. D. Chicco, G. Jurman, Machine learning can predict survival of patients with heart
failure from serum creatinine and ejection fraction alone. BMC Med. Inform. Decis.
Mak. 20, 16 (2020).

14. J. Lan et al., Translational regulation of non-autonomous mitochondrial stress
response promotes longevity. Cell Rep. 28, 1050–1062.e6 (2019).

15. S. Gerber, L. Pospisil, M. Navandar, I. Horenko, Low-cost scalable discretization,
prediction, and feature selection for complex systems. Sci. Adv. 6, eaaw0961 (2020).

16. I. Horenko, On a scalable entropic breaching of the overfitting barrier for small data
problems in machine learning. Neural Comput. 32, 1563–1579 (2020).

17. S. Gerber et al., Co-inference of data mislabelings reveals improved models in
genomics and breast cancer diagnostics. Front. Artif. Intell. 4, 739432 (2022).

Horenko
Cheap robust learning of data anomalies with analytically solvable
entropic outlier sparsification

PNAS 3 of 3
https://doi.org/10.1073/pnas.2119659119

https://github.com/horenkoi/EOS
https://github.com/horenkoi/EOS
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119659119/-/DCSupplemental
https://github.com/horenkoi/EOS
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
https://doi.org/10.1073/pnas.2119659119

