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Simple Summary: Adopting deficit irrigation (DI) to improve crop production and safeguard ground-
water resources is of great importance in water scarce regions, e.g., the North China Plain (NCP).
Under the background of global warming, it is worth investigating whether DI continues to play
such a key role under future climate change scenarios. Thus, we studied the effect of DI on wheat
yield and water use efficiency under future climate change scenarios. We found that moderate deficit
irrigation (DI3, ≤0.4 PAWC at sowing to flowering stage) under the N3 (150 kg N ha−1) condition
was identified as the optimum irrigation schedule for the study site under future climate change
scenarios. However, the compensation effect of DI3 on yield and water use efficiency (WUE) became
weak in the future. To conclude, in water scarce regions of NCP, DI remains an effective strategy to
maintain higher yield and enhance water use under future climate scenarios.

Abstract: Background. Deficit irrigation (DI) is a feasible strategy to enhance crop WUE and also has
significant compensation effects on yield. Previous studies have found that DI has great potential
to maintain crop production as full irrigation (FI) does. Therefore, adopting DI to improve crop
production and safeguard groundwater resources is of great importance in water scarce regions, e.g.,
the North China Plain (NCP). Under the background of global warming, it is worth investigating
whether DI continues to play such a key role under future climate scenarios. Methods. We studied
the response of winter wheat yield and WUE to different DI levels at pre-anthesis under two Shared
Socioeconomic Pathways (SSPs) scenarios (SSP245 and SSP585) using the Agricultural Production
Systems Simulator (APSIM) model driven by 21 general circulation models (GCMs) from the Coupled
Model Inter-Comparison Project phase 6 (CMIP6). Additionally, we explored the effects of different
nitrogen (N) fertilizer application rates on DI. Results. We found that simulated wheat yield would
increase by 3.5–45.0%, with WUE increasing by 8.8–46.4% across all treatments under future climate
change. Moderate deficit irrigation (DI3, ≤0.4 PAWC at the sowing to flowering stage) under the N3
(150 kg N ha−1) condition was identified as the optimum irrigation schedule for the study site under
future climate change. However, compensation effects of DI3 on yield and WUE became weak in the
future, which was mainly due to increased growing season rainfall projected by GCMs. In addition,
we found that N fertilizer application could mitigate the effect of DI3. Conclusions. We highlight that
in water scarce regions of NCP, DI remains an effective strategy to maintain higher yield and enhance
water use under future climate scenarios. Results strongly suggest that moderate deficit irrigation
under a 150 kg N ha−1 condition could mitigate the contradiction between production and water
consumption and ensure food safety in the NCP.
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1. Introduction

Cereal crops are key stable food sources worldwide, which provide over 50% of hu-
man calorie intake directly [1]. Among them, wheat occupies a prominent position in
maintaining food security [2], requiring a 60% increase by 2050 with global population
growth [3]. However, wheat productivity is facing challenges from cultivated land reduc-
tion and water shortage [4,5]. To meet these challenges and ensure global food security, an
integrated, multifaceted, and sustainable approach is needed to increase production per
unit area and optimize resource use efficiency [6]. Furthermore, global wheat yield will be
largely affected by climate change [7,8]. For example, several studies documented that each
degree-Celsius increase in global mean temperature would lead to a 6–7% yield decline
in many wheat growing regions of the world [9–11]. Therefore, it is urgent to explore the
capability of different adaptation strategies to increase crop production to cope with the
adverse effects of climate change, land degradation, and population explosion [12–15].

The North China Plain (NCP) is one of the main wheat growing regions in China,
providing more than half of the wheat production in China. However, in this region,
long-term overexploitation of groundwater has led to a decline in groundwater levels and a
shortage of water resources in recent years, which has had negative impacts on sustainable
development of regional agriculture [16–18]. Moreover, due to loss of around one-third of
the water by soil evaporation, water use efficiency (WUE) in winter wheat in the region is
very low. Thus, there is an urgent need to promote feasible water management strategies to
maintain a high wheat productivity level in this region.

Deficit irrigation (DI) scheduling is an effective irrigation water management scheme
and has been extensively applied in winter wheat in the NCP [19,20]. This is because
the full irrigation (FI) approach is considered as a water luxury and is not sustainable
in water scarce environments [21]. However, there are large variations in the magnitude
of water use among different DI strategies. These mainly are due to the impact of the
amount, duration, and timing of the imposed DI on soil water [22–25]. For example, Meena
et al. [22] evaluated the water use when DI was imposed at critical wheat growth stages
in 2015–2018. They reported that 75% irrigation application (45 mm irrigation amount) at
all critical growth stages can save 25% of water use compared to control treatment. Xu
et al. [23] reported that the highest WUE (22.7 kg ha−1 mm−1) was achieved when irrigation
(60 mm) was applied only at the elongation stage in the Wuqiao experiment station of NCP
in 2013–2015. Yu et al. [25] used the meta-analysis of 41 peer-reviewed publications all over
the world containing over 381 observations to quantify effects of DI on wheat water use
and productivity. They found that DI can improve wheat WUE by 6.6% but decreases yield
by 16.2%. In addition, nitrogen (N) fertilizer application has considerable impacts on the
contribution of DI to water use. For example, under DI (60% of crop evapotranspiration),
N fertilizer application rates with 0.3 and 0.6 g N kg−1 soil greatly increased WUE by
45% and 59% compared to no-N application, respectively [2]. Thus, more comprehensive
experimental designs are needed to thoroughly investigate the combined effects of DI and
N application on water use and yield.

Process-based biophysical models are useful tools to simulate the interactive effects
of management practices (e.g., irrigation scheduling and fertilizer application) on crop
yield and water use. There are several studies using different crop models to simulate the
impacts of DI on water use and yield at different sites. For example, Zhou et al. [26] applied
the CERES-Wheat model to predict the winter wheat grain yield and WUE under different
DI strategies using historical weather data from 33 years (1981–2014) in China. Balwinder
et al. [27] used the agricultural Production Systems Simulator (APSIM) model and 40 years
(1970–2010) of weather data to evaluate the interaction effects of DI, sowing data, and
mulch on wheat grain yield in India. In addition, previous studies explored the potential



Biology 2022, 11, 692 3 of 18

of different DI management options under future climate change. Rashid et al. [13] used
10 general circulation models (GCM) for four representative concentration pathway (RCP)
scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) to assess DI impacts on wheat yield and
water use with the AquaCrop model under future climate change in NCP. Ma et al. [28]
simulated yield and biomass response of maize to climate change and DI with the DSSAT
model under RCP8.5 with 37 GCMs in the USA. In Hale County, Texas, Kothari et al. [29]
projected climate change impacts on grain sorghum yield and irrigation water use under FI
and DI for RCP4.5 and RCP8.5 with nine GCMs.

However, the majority of previous studies used future climate projections from a
limited number of GCMs based on the World Climate Research Program (WCRP) of
the Coupled Model Inter-Comparison Project phase 5 (CMIP5). Conversely, the latest
CMIP6 provides multi-model climate projections based on alternative scenarios that are
directly relevant to societal concerns regarding climate change mitigation, adaptation, or
impacts [30]. CMIP6 provides less biased simulations for use in regional dynamical and
statistical downscaling efforts compared to CMIP5 [31]. Notably, in CMIP6, the projected
duration and intensity of drought are more robust [32]. However, no study has used
the latest CMIP6 data to assess the coupled impact of climate change, different irrigation
treatments, and N fertilization application on wheat yield in China.

The major objectives of this study were to (1) calibrate and validate the APSIM model
to simulate wheat yield and WUE under different management options in the NCP; (2) sim-
ulate the impacts of future climate change on wheat yield and WUE under the different
combinations of representative DI and nitrogen application rates based on 21 GCMs from
CMIP6 under two Shared Socioeconomic Pathways (SSPs) (SSP245 and SSP585); (3) quan-
tify the compensation effect of DI on wheat yield and WUE under future climate change;
and (4) identify optimum DI treatments under different N fertilizer rates to cope with future
climate change in NCP. This study will provide insights on using promising irrigation
strategies in the future to balance water use and wheat yield in the NCP.

2. Materials and Methods
2.1. Study Site, Soil Data, and Historical Climate Data

All experiments were conducted at the Qiliying Experimental Station (35◦08′ N,
113◦45′ E; 80.77 m), located in Xinxiang, Henan province, the center of NCP. The soil
texture of the experimental station is a sandy loam, and the soil type is Haplustalf accord-
ing to USDA (United States Department of Agriculture) classification, which is also the
dominant soil type in the NCP. Hydrological and fertility characteristics of the soil are
shown in Table 1. The study site has a continental monsoon climate with the warm season
from April to September and the cool season from October to March. The winter wheat is
usually sown in the middle of October and harvested in early June.

Table 1. The soil hydrological and fertility parameters used in the study site.

Depth
(cm)

Bulk Density
(g cm−3)

Air Dry
(mm/mm)

LL15
(mm/mm)

DUL
(mm/mm)

SAT
(mm/mm)

0–20 1.300 0.080 0.090 0.310 0.360
20–40 1.320 0.108 0.120 0.270 0.310
40–60 1.350 0.120 0.150 0.260 0.300
60–80 1.350 0.130 0.160 0.250 0.300

80−100 1.350 0.150 0.180 0.250 0.290
100–120 1.350 0.150 0.180 0.240 0.290
120–160 1.350 0.160 0.180 0.240 0.290
160–200 1.400 0.160 0.190 0.220 0.386

Note: LL15, lower limit water content at 15 bar; DUL, drained upper limit; SAT, saturated water content.

Daily values of maximum and minimum temperature (◦C), sunshine duration (h),
and precipitation (mm) in the study site from 1961 to 2018 were collected from a local
experimental station. Daily solar radiation (MJ m−2) was calculated from sunshine duration
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according to the Angstrom formula [33]. The long-term (1961–2018) seasonal (October–
June) mean temperature (Tmean), the average total rainfall, and the average total solar
radiation for winter wheat were found to be 11 ◦C, 227 mm, and 3499 MJ m−2, respectively
(Table 2).

Table 2. Average climatic characteristics of the study area.

Month Tmin (◦C) Tmax (◦C) Tmean (◦C) Rainfall (mm) Radiation (MJ m−2)

October 10.4 21.4 15.9 31.6 349.6
November 3.4 13.9 8.7 19.8 268.0
December −2.5 7.3 2.4 5.5 225.5

January −4.3 5.4 0.5 4.3 238.7
February −1.8 8.4 3.3 8.6 299.2

March 3.5 14.7 9.1 16.2 410.7
April 9.9 21.4 15.7 32.4 514.5
May 15.5 27.2 21.4 42.9 593.8
June 20.2 31.8 26.0 65.6 599.1

Note: Tmin, Tmax, and Tmean indicate mean monthly minimum, maximum, and mean temperature from
1961 to 2018, respectively. Rainfall and radiation indicate total monthly rainfall and radiation from 1961 to
2018, respectively.

2.2. Field Experiment Data
2.2.1. Auto-Rain-Shelter Experiment in 2017–2018

In the auto-rain-shelter (three-sided rain-shelter, height of 3 m, a width of 7 m, and a
length of 10 m) experiment, rainfall was blocked to remove the impact of rainfall on irriga-
tion treatment. The experiment was conducted using sheet iron lysimeters (depth 70 cm,
outer diameter 100 cm, thick plexiglass walls 1 cm) for monitoring total lysimeter weight
from 2nd November 2017 to 8th June 2018. Lysimeters were held in place by stainless-steel
supports. Each lysimeter bottom contained uniformly distributed holes (5 mm diameter)
and was lined with filter paper. In order to keep the same surroundings as the field for the
wheat, the surfaces of the lysimeters were placed flush with the ground. The soil was filled
up to a height of 50 cm with a blank of 20 cm depth on the top for keeping standing water
without surface runoff occurring. The local winter wheat (Triticum aestivum L.) cultivar
“Aikang58” in the lysimeter was sown at 18 g with a row-to-row dimension of 20 cm and
plant-to-plant of 6 cm. The experiment consisted of nine combinations of irrigation and N
fertilizer treatments (A1–A9), and one no-N fertilizer treatment (A0) to study phenology,
biomass, yield, and WUE. WUE was calculated as follows:

WUE
(

kg ha−1 mm−1
)
=

yield
(

kg ha−1
)

ET (mm)
(1)

where seasonal evapotranspiration (ET) was calculated with the water balance equation
described by Yan et al. [18].

The detailed irrigation treatment is shown in Table 3. Additionally, before sowing,
basal fertilizers including N (50% of total N), P (90 kg ha−1), and K (90 kg ha−1) were
applied in the top soil (0–40 cm). The remaining 50% of the total N was applied by surface
irrigation in the returning green stage.

Table 3. Detailed irrigation and fertilization treatments for the auto-rain-shelter experiment.

Treatments
Irrigation Treatments under Controlled Deficit Irrigation N Fertilizer

Rates
(kg N ha−1)

Sowing to
Flowering Stage

Flowering to
Grain Filling Stage

Grain Filling Stage to
Maturity

A0 60–75% 75–100% 65–100% 0
A1 80–95% 75–100% 65–100% 240
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Table 3. Cont.

Treatments
Irrigation Treatments under Controlled Deficit Irrigation N Fertilizer

Rates
(kg N ha−1)

Sowing to
Flowering Stage

Flowering to
Grain Filling Stage

Grain Filling Stage to
Maturity

A2 80–95% 75–100% 65–100% 300
A3 80–95% 75–100% 65–100% 360
A4 60–75% 75–100% 65–100% 240
A5 60–75% 75–100% 65–100% 300
A6 60–75% 75–100% 65–100% 360
A7 50–65% 75–100% 65–100% 240
A8 50–65% 75–100% 65–100% 300
A9 50–65% 75–100% 65–100% 360

Note: 60–75% indicates that when soil water is less than 60%, irrigation was applied until soil water content
reached 75%. Other values have the same mean as 60–75% in the table.

2.2.2. Field Experiment in 2014–2018

Another independent field experiment was conducted from 17 October 2016 to
10 June 2017 (Table 4). We used a split-plot design based on a randomized complete
block designed with three replicates. The main plots consisted of two irrigation amounts
(0 mm and 90 mm in the whole experiment period). The sub-plots had four N fertilizer
rates (0 kg N ha−1, 90 kg N ha−1, 180 kg N ha−1, and 240 kg N ha−1). Irrigation was
applied on 18th March 2017 (45 mm) and on 29th April 2017 (45 mm). N fertilizer was
applied before sowing (50%) and on 15 April 2017 (50%) without irrigation, because we
had some rainfall on 16th April 2017. Basal phosphorus (P2O5, 120 kg ha−1) and potassium
(K2O, 105 kg ha−1) fertilizers were added in all treatments. The sowing density of winter
wheat “Aikang58” with 20 cm row spacing was 195 kg ha−1.

Table 4. Detailed experimental and literature information about wheat cultivar “Aikang58” for model
calibration and validation.

Subset Data Source Sowing Date Harvest Date Treatments Observed Data

Calibration Auto-rain-shelter
experiment (2017–2018) 2 November 2017 8 June 2018 A0–A9 (see Table 3)

Phenology,
biomass, yield,

WUE

Validation

Field experiment 1
(2016–2017) 17 October 2016 10 June 2017

N1: 240 kg N ha−1, 90 mm IA

Phenology,
biomass, yield,

WUE

N2: 180 kg N ha−1, 90 mm IA
N3: 90 kg N ha−1, 90 mm IA
N4: 0 kg N ha−1, 90 mm IA
N5: 240 kg N ha−1, 0 mm IA
N6: 180 kg N ha−1, 0 mm IA
N7: 90 kg N ha−1, 0 mm IA
N8: 0 kg N ha−1, 0 mm IA

Field experiment2
(2014−2016)

(Kumar Jha et al., 2019)

18 October 2014 6 June 2015
F1: FI: 50% of FC; TIA: 120 mm

Biomass, yield,
WUE

F2: FI: 60% of FC;
TIA: 180 mm

F3: FI: 70% of FC;
TIA: 240 mm

15 October 2015 3 June 2016

F1: FI: 50% of FC;
TIA: 120 mm

F2: FI: 60% of FC;
TIA: 180 mm

F3: FI: 70% of FC;
TIA: 240 mm

Field experiment 3
(2017–2018)

(Zhao et al., 2020)
15 October 2017 10 October 2018

N0: 0 kg N ha−1; N100: 100 kg N ha−1;
N200: 200 kg N ha−1; Yield
N300: 300 kg N ha−1

Note: IA: irrigation amounts; FI: flooding irrigation lower limit; FC: field capacity; TIA: total irrigation amount.
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Additional field experimental datasets (2014–2018) were collected from independent
studies conducted in the same site under different irrigation and N fertilizer treatments [34,35].
Wheat biomass, yield, and WUE were collected based on their work for different irrigation
scheduling and N fertilizer rates (Table 4)

2.3. APSIM-Wheat Model

Here, we used APSIM version 7.7 to simulate wheat yield and water use. A detailed de-
scription of the APSIM model can be seen from http://www.apsim.info (25 January 2020).
We used winter wheat “Aikang58” to calibrate the APSIM-wheat model with observed
phenology, biomass, yield, and WUE data obtained from 2017–2018 (Table 4) using the trial-
and-error method. The performance of the calibrated APSIM model was validated using
the independent field experimental data from 2014–2018 at the same site (Table 4). The coef-
ficient of determination (R2), root mean square error (RMSE), normalized root mean square
error (nRMSE), and model efficiency (E) were used to assess the model performance [36].

R2 =
−[∑n

i=1
(
Oi − O

)(
Si − S

)
]
2

∑n
i=1
(
Oi − O

)2
∑n

i=1
(
Si − S

)2 (2)

RMSE =
√

∑n
i=1(Si −Oi)

2/n (3)

nRMSE(%) = 100× RMSE/O (4)

E = 1− ∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi − O

)2 (5)

where Oi and Si are observed and simulated values, respectively, O and S are the mean
of observed and simulated values, respectively, and n is the number of observed and
simulated values. Generally, the smaller the RMSE, the smaller the deviation between
simulated and observed values. If E is closer to 1, the model is more accurate.

2.4. Model Simulations
2.4.1. Future Climate Data

Future climate data based on 21 GCMs (Table 5) from the CMIP6 were downloaded
from https://esgf-node.llnl.gov/search/cmip6/ (20 April 2020). Monthly gridded climate
data from 21 GCMs were downscaled to daily and site scale using a statistical downscaling
model (NWAI-WG) [37], which has been widely used in numerous climate change impact
assessment studies [12,15]. In the present study, we considered two SSPs (SSP245 and
SSP585). SSP245 and SSP585 represent an intermediate “middle of the road” scenario and a
high emissions “fossil-fueled development” scenario, respectively [30]. SSP585 combines
the fossil-fueled development socioeconomic pathway and 8.5 Wm−2 forcing pathway,
while SSP245 combines the moderate development socioeconomic pathway and 4.5 Wm−2

forcing pathway. Previous studies have already shown that atmospheric CO2 concentration
in the APSIM-wheat model affects wheat growth by influencing RUE, TE, and leaf nitrogen
concentration [12,38]. Therefore, atmospheric CO2 concentration is also an important
variable in the wheat growth model. We used the following empirical equations to calculate
the yearly atmospheric CO2 concentration for SSP245 and SSP585:

CO2,SSP245 = 62.044 + 34.002−3.8702Y
0.24423−1.1542Y2.4901 + 0.028057(Y− 1900)2

+0.00026827(Y− 1960)3 − 9.2751× 10−7(Y− 1910)4

−2.2448(Y− 2030)

(6)

CO2,SSP585 = 757.44 + 84.938−1.537Y
2.2011−3.8289Y−0.45242 + 2.4712× 10−4(Y + 15)2

+1.9299× 10−5(Y− 1937)3 + 5.1137× 10−7(Y− 1910)4
(7)

http://www.apsim.info
https://esgf-node.llnl.gov/search/cmip6/
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where Y is the calendar year from 2030 to 2100 (Y = 2030, 2031, . . . , 2100). A constant CO2
concentration with 350 ppm was used for the baseline (1961–2000) simulation. We used
two future time periods, namely 2030–2059 (2040s) and 2070–2099 (2080s).

Table 5. List of 21 general circulation models (GCMs) under SSP245 and SSP585 future climate
scenarios used in the study for statistical downscaling outputs of the Qiliying experimental station in
Xinxiang City, Henan Province, China.

Model ID Name of GCM Abbr. of GCM Institute ID Country

01 ACCESS–CM2 ACM CSIRO–BOM Australia
02 ACCESS–ESM1–5 AE5 CSIRO–BOM Australia
03 BCC–CSM2–MR BCM BCC China
04 CanESM5 Ca5 CCCMA Canada
05 CanESM5–CanOE CaC CCCMA Canada
06 CNRM–CM CCM CNRM France
07 CNRM–ESM CES CNRM France
08 EC–Earth3 EE3 EC–EARTH Europe
09 EC–Earth3–Veg EEV EC–EARTH Europe
10 FGOALS–g3 FG3 FGOALS China
11 GFDL–ESM4 GE4 NOAA GFDL USA
12 GISS–E2–1–G GEG NASA GISS USA
13 INM–CM5–0 IC0 INM Russia
14 INM–CM4–8 IC8 INM Russia
15 IPSL–CM ICM IPSL France
16 MIROC6 MC6 MIROC Japan
17 MIROC–ES2L ME2 MIROC Japan
18 MPI–ESM1–2–HR MEH MPI–M Germany
19 MPI–ESM1–2–LR MEL MPI–M Germany
20 MRI–ESM MEM MPI–M Germany
21 UKESM1–0–LL U0L NCAS UK

2.4.2. Settings for Different DI and N Fertilizer Rates

Wheat was sown at a depth of 50 mm every year once the rainfall on the 277th–293th
day of the year exceeded 20 mm and harvested at physiological maturity for long-term
simulations. The sowing density was set with 395 plants m−2. To eliminate the effect from
previous seasons, simulations were reset on the sowing date of every year, including soil
water, soil nitrogen content, and soil surface matter.

Nine irrigation treatments (including seven DI treatments, FI, and rain-fed) associated
with seven N fertilizer rates, a total of 63 management options, were selected to simulate
the response of wheat yield and WUE to future climate change. Detailed management
options can be found in Table S1. In total, 7938 (9 irrigation treatments × 7 N fertilizer
rates × 21 GCMs × 2 SSPs × 3 time periods) simulations were run based on multiple
high-performance workstation computers.

2.5. Calculation of Future Changes in Yield, WUE Changes, and DI Compensation Effect

The equation for calculating yield and WUE changes is

∆Y/∆WUE(%) =
YGCM_F/WUEGCM_F − YGCM_BL/WUEGCM_BL

YBL/WUEBL
× 100 (8)

where ∆Y/∆WUE(%) is defined as the difference for simulated yield/WUE between
the future (2040s and 2080s) and the baseline (1961–2000) periods according to GCM
climate data. YGCM_F/WUEGCM_F represents simulated yield/WUE for the future periods
according to GCM climate data. YGCM_BL/WUEGCM_BL indicates simulated yield/WUE for
the baseline period according to GCM climate data. YBL/WUEBL represents the simulated
yield/WUE according to observed historical climate data.
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We also calculated for the compensation for both yield and WUE:

YCE_DI(%) =
YDI − YRN

YFI
× 100 (9)

WUECE_DI(%) =
WUEDI −WUERN

WUEFI
(10)

∆YCE_DI/∆WUECE_DI = YCE_DI_F/WUECE_DI_F − YCE_DI_BL/WUECE_DI_BL (11)

where YCE_DI and WUECE_DI are the compensation effect for yield and WUE under DI,
respectively. YDI is the simulated yield, and WUEDI is the simulated WUE for DI. YRN and
WUERN represent simulated yield and WUE under RN. YFI and WUEFI are simulated yield
and WUE under FI. ∆YCE_DI/∆WUECE_DI is the change of compensation effect of yield and
WUE under DI between the future (2040s and 2080s) and the baseline (1961–2000) periods.
YCE_DI_F/WUECE_DI_F is the future compensation effect for yield and WUE under DI for
the future, and YCE_DI_BL/WUECE_DI_BL is the compensation effect for the baseline.

3. Results
3.1. Performance of the APSIM-Wheat Model and Its Parameterization

In general, the APSIM model was able to adequately simulate crop growth status
of winter wheat for all ten treatments (A0–A9) (Figure 1). During the calibration phase,
the model could well simulate the dynamics of phenology with an R2 of 0.98, an RMSE
of 3.7 days, an nRMSE of 3.1%, and an E of 0.98. Moreover, the correlation coefficients
(R2) between simulated and observed biomass, yield, and WUE were all above 0.9. The
calibrated cultivar parameters for “Aikang58” are shown in Table 6.

Additionally, during the validation phase, the ASPIM model was able to explain more
than 90% of the variations in phenology, biomass, and yield as well as WUE. The E for each
treatment was close to 1.0 (0.91–0.96) and the simulation errors (RMSE and nRMSE) were
also at a low level. All these results indicated a high degree of proficiency of the APSIM
model in accurately simulating the impacts of different irrigation regimes on crop growth
status of winter wheat in the study site.

Table 6. Genetic parameters for winter wheat cultivar “Aikang58” in this study.

Name Definition Unit Aikang58

photop_sens Photoperiod sensitivity − 3.5
vern_sens Vernalization sensitivity − 2

tt_end_of_juvenile Thermal time from sowing to
end of the juvenile

◦C day 570

startgf_to_mat Thermal time from beginning
of grain-filling to maturity

◦C day 580

tt_floral_initiation Thermal time from floral
initiation to flowering

◦C day 570

tt_start_grain_fill Thermal time from the start of
grain filling to maturity

◦C day 700

max_grain_size Maximum grain size g 0.047
potential_grain_filling rate Potential daily grain filling rate g grain−1 day−1 0.004

grains_per_gram_stem Grain number per stem weight
at the start of grain filling g 25

y_frac_leaf Fraction of remaining dry
matter allocated to leaves − 0.3

x_stem_wt Stem weight per plant g/plant 6
y__height Plant canopy height mm 1500



Biology 2022, 11, 692 9 of 18

Biology 2022, 11, x  9 of 19 
 

 

 

Phenology Biomass Yield WUE

C
a

lib
ra

tio
n

V
a

lid
a

tio
n

0 50 100 150 200 250

S
im

u
la

te
d

 d
a
y
s 

a
ft

er
 s

o
w

in
g
 (

d
)

0

50

100

150

200

250

y=0.99x+0.60

R
2
=0.98

RMSE=3.7 d

nRMSE=3.1%

E=0.98

S
im

u
la

te
d

 b
io

m
a
ss

 (
k

g
 h

a
—

1
)

y=0.80x+2244.9

R
2
=0.96

RMSE=1030 kg ha
—1

nRMSE=8.7%

E=0.96

S
im

u
la

te
d

 y
ie

ld
 (

k
g
 h

a
—

1
)

y=1.02x+71.3

R
2
=0.96

RMSE=420 kg ha
—1

nRMSE=7.6%

E=0.96

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

0 2 4 6 8 10 12 14 16

S
im

u
la

te
d

 W
U

E
 (

k
g
 h

a
—

1
 m

m
—

1
)

0

2

4

6

8

10

12

14

16

y=0.88x+1.30

R
2
=0.97

RMSE=0.6 kg ha
—1

 mm
—1

nRMSE=6.4%

E=0.96

Observed days after sowing (d)
0 50 100 150 200 250

S
im

u
la

te
d

 d
a
y
s 

a
ft

er
 s

o
w

in
g
 (

d
)

0

50

100

150

200

250

y=0.98x+2.2

R
2
=0.98

RMSE=3.6 d

nRMSE=2.8%

E=0.96

Observed biomass (kg ha
-1

)

S
im

u
la

te
d

 b
io

m
a
ss

 (
k

g
 h

a
—

1
)

y=0.89x+2015

R
2
=0.94

RMSE=790 kg ha
—1

nRMSE=5.6%

E=0.91

Field experiment

Literature 1

Observed yield (kg ha
—1

)

S
im

u
la

te
d

 y
ie

ld
 (

k
g
 h

a
—

1
)

y=0.92x+576

R
2
=0.95

RMSE=390 kg ha
—1

nRMSE=5.9%

E=0.95

Field experiment

Literature 1

Literature 2

Observed WUE (kg ha
—1

 mm
—1

)
0 5 10 15 20 25

S
im

u
la

te
d

 W
U

E
 (

k
g
 h

a
—

1
 m

m
—

1
)

0

5

10

15

20

25

y=0.95x+1.24

R
2
=0.95

RMSE=0.83 kg ha
—1

 mm
—1

nRMSE=4.5%

E=0.94

Field experiment 

Literature 1

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

5,000

10,000

15,000

20,000

5,000

10,000

15,000

20,000

5,000

5,000 10,000

10,000

15,000 20,000

15,000 20,000

0

0

2,000

4,000

6,000

8,000

10,000

2,000

4,000

6,000

8,000

10,000

2,000 4,000 6,000 8,000 10,0000

2,000 4,000 6,000 8,000 10,0000

Figure 1. Comparison of simulated and observed values of phenology, biomass, yield, and WUE for model calibration and validation. Figure 1. Comparison of simulated and observed values of phenology, biomass, yield, and WUE for model calibration and validation.
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3.2. Future Climate Projections

Figure 2 shows the projected changes in growing season Tmean, rainfall, and solar
radiation in the 2040s and 2080s relative to the baseline (1961–2000) under SSP245 and
SSP585 based on 21 GCMs. All GCMs indicated a warming trend for both scenarios.
Specifically, the increase in Tmean under SSP585 was much greater than that under SSP245
in the 2040s and 2080s, with 1.1 ◦C and 2.3 ◦C under SSP585 and 0.9 ◦C and 1.4 ◦C under
SSP245, respectively. For the growing season rainfall, SSP585 also projected a greater
increase than SSP245. The ensemble-mean rainfall under SSP245 increased by 14.2% and
26.7% in the 2040s and 2080s, respectively, while the respective values for SSP585 were
17.0% and 31.9%. In addition, growing season radiation had a decrease (−1.9% and −1.2%)
in the 2040s but an increase by 2.5% and 0.6% in the subsequent period under SSP245 and
SSP585, respectively.
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Figure 2. Projected changes in growing season average temperature (Tmean) (a), total rainfall (b), and
total solar radiation (c) in 2030–2059 (2040s) and 2070–2099 (2080s) relative to the baseline (1961–2000)
under SSP245 and SSP585 based on 21 GCMs. Box boundaries indicate the 25th and 75th percentiles
across GCMs, and whiskers below and above the box denote the 10th and 90th percentiles. The black
lines and dots inside the box indicate the multi-model median and mean, respectively.

3.3. Projected Winter Wheat Phenology Change

Our simulation results showed that in the historical period, the days to flowering
(DTF), days to maturity (DTM), and reproduction growth period (RGP) were 197.4 days,
237.8 days, and 76.4 days, respectively (Supplementary Figure S1). Due to temperature
increase (Figure 2), DTF and DTM were both shortened in future periods and both were
shortened more under SSP585 (Figure 3). For example, DTF was reduced by 26.4 days in
2080s under SSP585 compared to 15.0 days under SSP245. On the other hand, RGP was
expected to extend in the future and also was likely to extend more under SSP585 1.9 days
and 8.5 days (2040s and 2080s, respectively) in comparison with 1.2 days and 3.2 days,
respectively, under SSP245.
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Figure 3. Projected changes in days to flowering (DTF) (a), days to maturity (DTM) (b), and repro-
duction growth period (RGP) (c) in 2030–2059 (2040s) and 2070–2099 (2080s) relative to the baseline
(1961–2000) under SSP245 and SSP585 based on 21 GCMs. Box boundaries indicate the 25th and 75th
percentiles across GCMs, and whiskers below and above the box denote the 10th and 90th percentiles.
The black lines and dots inside the box indicate the multi-model median and mean, respectively.

3.4. Projected Changes in Yield and WUE

Yield changes in 2040s and 2080s under SSP245 and SSP585 based on 21 GCMs are
shown in Figure 4. Overall, for all treatments, the ensemble mean yield was projected to
increase by 3.5–16.7% in the 2040s and 6.4–27.3% in the 2080s under SSP245 and 4.4–22.5%
in the 2040s and 8.4–45.0% in the 2080s under SSP585. SSP585 had more promotion on
yield compared to SSP245. The largest increase in yield was found in the 2080s under the
SSP585 scenario.

From Figure 4, we found that there was large variation of the amplitude of the projected
increase in yield among different treatments. It is noteworthy that under SSP585, RN had
the largest increase in yield in the 2080s compared to other irrigation treatments, especially
when the N fertilizer rates were N0 and N1. We suspect that this might be due to the
greater increases in rainfall under SSP585 in the 2080s (Figure 2b). In addition, we found
that regardless of N application levels, there was slight difference in projected yield among
DI3–DI7 and FI (Figure 4). However, in the historical period, the variation of yield was
dependent on N application levels. For example, under N0–N2, DI3–DI6 had lower yield
than DI7 and FI. By contrast, under N3–N6, no significant differences were found among
DI3–DI7 and FI, and we suggest that DI3–DI7 can maintain a similar yield to FI with high
N application in the future.

Generally, the projected WUE change was identical to yield (Figure 5). Overall, WUE
was projected to increase by 8.8–15.4% in the 2040s and 12.8–32.4% in the 2080s under
SSP245 and 11.5–20% in the 2040s and 25.9–46.4% in the 2080s under SSP585. The WUE
increased more for SSP585 than SSP245, especially in the 2080s. Additionally, for all
irrigation treatments, the increases in WUE under N3–N6 were much greater than under
N0–N2, and we suggest that an appropriate N-supply could improve WUE. When the
N fertilizer rate was N3–N6, the magnitude of WUE increase under DI3–DI7 was nearly
the same as FI. Based on the highest WUE value in the historical period (Supplementary
Figure S3) and similar increase to FI in the future period (Figure 5), DI3 would have much
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greater WUE values than FI. Thus, it can be identified that DI3 (≤0.4 PAWC at the sowing
to flowering stage) under the N3 (150 kg N ha−1) condition was the optimum irrigation
and N fertilizer scheduling under future climate change.

Biology 2022, 11, x  12 of 19 
 

 

to the greater increases in rainfall under SSP585 in the 2080s (Figure 2b). In addition, we 

found that regardless of N application levels, there was slight difference in projected yield 

among DI3−DI7 and FI (Figure 4). However, in the historical period, the variation of yield 

was dependent on N application levels. For example, under N0−N2, DI3−DI6 had lower 

yield than DI7 and FI. By contrast, under N3−N6, no significant differences were found 

among DI3−DI7 and FI, and we suggest that DI3−DI7 can maintain a similar yield to FI 

with high N application in the future. 

 

Figure 4. Yield change for nine irrigation treatments under N fertilizer rates in the 2040s and 2080s 

relative to the baseline (1961−2000) under SSP245 and SSP585 based on 21 GCMs. Box boundaries 

indicate the 25th and 75th percentiles across GCMs, and whiskers below and above the box denote 

the 10th and 90th percentiles. The black lines and white dots inside the box indicate the multi-model 

median and mean, respectively. 

Generally, the projected WUE change was identical to yield (Figure 5). Overall, WUE 

was projected to increase by 8.8−15.4% in the 2040s and 12.8−32.4% in the 2080s under 

SSP245 and 11.5−20% in the 2040s and 25.9−46.4% in the 2080s under SSP585. The WUE 

increased more for SSP585 than SSP245, especially in the 2080s. Additionally, for all irri-

gation treatments, the increases in WUE under N3−N6 were much greater than under 

N0−N2, and we suggest that an appropriate N-supply could improve WUE. When the N 

fertilizer rate was N3−N6, the magnitude of WUE increase under DI3−DI7 was nearly the 

same as FI. Based on the highest WUE value in the historical period (Supplementary Fig-

ure S3) and similar increase to FI in the future period (Figure 5), DI3 would have much 

greater WUE values than FI. Thus, it can be identified that DI3 (≤0.4 PAWC at the sowing 

to flowering stage) under the N3 (150 kg N ha−1) condition was the optimum irrigation 

and N fertilizer scheduling under future climate change. 

Figure 4. Yield change for nine irrigation treatments under N fertilizer rates in the 2040s and 2080s
relative to the baseline (1961–2000) under SSP245 and SSP585 based on 21 GCMs. Box boundaries
indicate the 25th and 75th percentiles across GCMs, and whiskers below and above the box denote
the 10th and 90th percentiles. The black lines and white dots inside the box indicate the multi-model
median and mean, respectively.

Biology 2022, 11, x  13 of 19 
 

 

 

Figure 5. WUE change for nine irrigation treatments under N fertilizer rates in the 2040s and 2080s 

relative to the baseline (1961−2000) under SSP245 and SSP585 based on 21 GCMs. Box boundaries 

indicate the 25th and 75th percentiles across GCMs, and whiskers below and above the box denote 

the 10th and 90th percentiles. The black lines and white dots inside the box indicate the multi-model 

median and mean, respectively. 

3.5. Wheat Yield and WUE Relationships with Future Climate 

Additionally, we conducted a multiple linear regression analysis to study the impact 

of various climate factors on wheat yield and WUE under RN and irrigation (Table 7). 

Results show that under RN, Tmean and radiation have significant negative effects on 

yield and WUE, while rainfall, CO2, and soil N content have positive effects (p < 0.01). The 

R2 values of regression analysis were 0.81 and 0.82, respectively; therefore we think that 

the four climate factors and soil N content could adequately explain the wheat yield and 

WUE changes under RN in the future. Under irrigation, the effects of Tmean, radiation, 

CO2, and soil N content on yield and WUE were consistent with that under RN. Moreover, 

yield and WUE were significantly positively correlated with irrigation amount (p < 0.001). 

The R2 values of regression analysis were 0.77 and 0.80, respectively. 

Table 7. The coefficients of the regression analysis (a, b, c, d, e, f, F0) for assessing the impact of 

climate change on wheat yield and WUE under rain-fed (RN) and irrigation. ΔY/ΔWUE = aΔT + 

bΔP + cΔR + dΔCO2 + eΔI +fΔSN +F0. 

Treatment Output Indicator a b c d e f F0 R2 

RN 
ΔY −217.6 *** 18.5 *** −62.8 *** 357.7 *** − 0.84 *** −5050 *** 0.81 

ΔWUE −0.70 *** 0.01 ** −0.20 *** 1.10 *** − 0.02 *** −13.2 *** 0.82 

Irrigation 
ΔY −53.7 ** − −16.9 *** 177.6 *** 6.77 *** 22.7 *** 320.2 *** 0.77 

ΔWUE −0.46 *** − −0.10 *** 0.58 *** 0.002 *** 0.03 *** 0.46 *** 0.80 

Note: The change in simulated yield (ΔY, kg ha−1) and WUE (ΔWUE, kg ha−1 mm−1) as functions of 

the change in growth period mean temperature (ΔT, °C), rainfall (ΔP, %), solar radiation (ΔR, %), 

CO2 concentration (ΔCO2, 100 ppm), irrigation amount (ΔI, mm), and soil N content (ΔSN, kg ha−1) 

are shown in the multiple linear regression model. ** and *** indicate the significant at the level of p 

< 0.01 and p < 0.001, respectively 

Figure 5. WUE change for nine irrigation treatments under N fertilizer rates in the 2040s and 2080s
relative to the baseline (1961–2000) under SSP245 and SSP585 based on 21 GCMs. Box boundaries
indicate the 25th and 75th percentiles across GCMs, and whiskers below and above the box denote
the 10th and 90th percentiles. The black lines and white dots inside the box indicate the multi-model
median and mean, respectively.
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3.5. Wheat Yield and WUE Relationships with Future Climate

Additionally, we conducted a multiple linear regression analysis to study the impact
of various climate factors on wheat yield and WUE under RN and irrigation (Table 7).
Results show that under RN, Tmean and radiation have significant negative effects on yield
and WUE, while rainfall, CO2, and soil N content have positive effects (p < 0.01). The R2

values of regression analysis were 0.81 and 0.82, respectively; therefore we think that the
four climate factors and soil N content could adequately explain the wheat yield and WUE
changes under RN in the future. Under irrigation, the effects of Tmean, radiation, CO2, and
soil N content on yield and WUE were consistent with that under RN. Moreover, yield and
WUE were significantly positively correlated with irrigation amount (p < 0.001). The R2

values of regression analysis were 0.77 and 0.80, respectively.

3.6. Projected Compensation Change of DI3 on Yield and WUE

Overall, the compensation change of DI3 on yield was similar to WUE under future
climate change (Figure 6). Moreover, SSP585 had more reduction in compensation effects
compared with SSP245. The yield compensation effect was decreased by 4.4% in the 2040s
and 5.8% in the 2080s under SSP245 and 6.7% in the 2040s and 25.0% in the 2080s under
SSP585. The WUE compensation effect was decreased by 4.3% in the 2040s and 6.1% in
the 2080s under SSP245 and 7.0% in the 2040s and 27.3% in the 2080s under SSP585. In
addition, the reduction of the yield compensation effect for DI3 under N3–N6 was less
than under N0–N2 (except under N0 under SSP585 in the 2080s, Supplementary Figure S4).
Moreover, compared to N1 and N2, N3–N6 also had less reduction of WUE compensation
effect for DI3 (except under N1 under SSP585 in the 2080s, Supplementary Figure S5), and
we feel that the mitigation effect of N fertilizer application on water deficit will still exist in
the future.
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above the box denote as the 10th and 90th percentiles. The black lines and white dots inside the box
indicate the multi-model median and mean, respectively.
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Table 7. The coefficients of the regression analysis (a, b, c, d, e, f, F0) for assessing the impact of
climate change on wheat yield and WUE under rain-fed (RN) and irrigation. ∆Y/∆WUE = a∆T +
b∆P + c∆R + d∆CO2 + e∆I + f∆SN + F0.

Treatment Output Indicator a b c d e f F0 R2

RN
∆Y −217.6 *** 18.5 *** −62.8 *** 357.7 *** − 0.84 *** −5050 *** 0.81

∆WUE −0.70 *** 0.01 ** −0.20 *** 1.10 *** − 0.02 *** −13.2 *** 0.82

Irrigation ∆Y −53.7 ** − −16.9 *** 177.6 *** 6.77 *** 22.7 *** 320.2 *** 0.77
∆WUE −0.46 *** − −0.10 *** 0.58 *** 0.002 *** 0.03 *** 0.46 *** 0.80

Note: The change in simulated yield (∆Y, kg ha−1) and WUE (∆WUE, kg ha−1 mm−1) as functions of the change
in growth period mean temperature (∆T, ◦C), rainfall (∆P, %), solar radiation (∆R, %), CO2 concentration (∆CO2,
100 ppm), irrigation amount (∆I, mm), and soil N content (∆SN, kg ha−1) are shown in the multiple linear
regression model. ** and *** indicate the significant at the level of p < 0.01 and p < 0.001, respectively.

4. Discussion

Overall, APSIM performed well to simulate wheat phenology, biomass, yield, and
WUE, with the R2 ranging from 0.94 to 0.98, nRMSE from 2.8 to 8.7%, and E from 0.91
to 0.98 for both calibration and validation under different irrigation and N treatments
(Figure 1). Previously, Sun et al. (2019) applied APSIM in NCP, and their results indicated
that the model could well simulate the effects of different cropping systems under four
different irrigation schedules on crop WUE and yield [39]. Our results here have confirmed
the findings of Sun et al. (2019) [39] and further found that APSIM could well simulate the
combined effect of control DI and N fertilizer rate on crop yield and WUE.

Based on the simulation results, we suggest that projected climate change has positive
impacts on wheat yield and WUE under rain-fed conditions (Figure 4). This can be
explained as follows: GCMs project that the future temperature will increase by 0.1–0.9 ◦C
for SSP245 and 1.4–2.3 ◦C for SSP585 (Figure 2), which tends to accelerate wheat growth
and development leading to a shorter growth period [9]. It is interesting to note that
although climate warming greatly shortens DTF and DTM (Figure 3), there is a longer RGP
(0.3–12.4 day) under future climate scenarios. The prolonged grain filling period may be
responsible for the yield increase. This is consistent with Xiao et al. [40] and Yan et al. [18],
who reported a similar longer reproductive growth period for wheat in NCP. In addition,
the increased growing season rainfall increase can partly explain the projected increase in
winter wheat yield, because the total rainfall during the wheat growth period has positive
impacts on yield (Table 7). Lastly, elevated CO2 concentration can improve wheat yield
through positive impacts on wheat growth, development, and net assimilation rate [41].
This has been verified in our multiple linear regression analysis with positive correlation
coefficients from CO2 (Table 7). Overall, increased growing season rainfall, prolonged
reproductive growth period, and elevated atmospheric CO2 concentration counteract the
negative effects of climate warming on wheat yield in our study.

DI is a promising irrigation strategy to enhance WUE for many crops without causing
a great loss of grain yield. Moreover, under drought conditions, an appropriate N supply
will help crops to tolerate water deficit [2]. Therefore, it is important to explore the effects
of future climate change in combination with irrigation treatments and N fertilizer rates
on yield and water use. Our simulation results showed that there are interacting effects of
temperature, rainfall, radiation, CO2, irrigation amount, and soil N content on winter wheat
yield and WUE (Table 7). We identified that DI3 (≤0.4 PAWC at sowing to flowering stage)
under the N3 (150 kg N ha−1) condition is the optimum irrigation schedule under future
climate change because it obtained similar yield with high WUE as FI did (Figures 4 and 5,
Supplementary Figures S2 and S3). Crops subjected to water deficit can compensate for
some reduction in shoot growth and yield during subsequent rewatering and even maintain
a similar yield under FI [42–44]. The physiological mechanism of the compensation effect
for water deficit has already been proven by our previous study [43]. However, winter
wheat has a different response to DI imposed at different growing stages [45]. Tari [46]
found that the stem elongation and booting stage is more sensitive to water deficit, followed
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by anthesis. We found that DI3 imposed at pre-anthesis was more sensitive to increased
yield and WUE under future climate change. This is possibly due to interactive effects of
soil moisture, elevated CO2, and soil N content under future climate change (Table 7).

Particularly, we found that the magnitude of increase in yield and WUE for DI3 under
N3–N6 was greater than that under N0–N2 under future climate scenarios (Figures 4 and 5).
This result is consistent with the previous research that the nitrogen supplement compen-
sates the yield loss of wheat and the deteriorative effect of water deficit conditions [47].
Physiologically, N nutrition has the potential to alleviate the drought damages by maintain-
ing the metabolic activities even at low tissue water potential [2]. For example, under N3,
the increases of yield and WUE in DI1 and DI2 were greater than RN for the majority of
future climate scenarios (Figures 4 and 5). Conversely, under N0, RN had slightly higher
yield and WUE (Figure 5). Therefore, we propose that an appropriate N supply could
stimulate crop growth, improve WUE, and alleviate the effects of drought stress [2,48], and
even lead to higher increases in yield and WUE.

However, under all N fertilizer rates, the compensation effect of DI3 on yield and
WUE was largely reduced under future climate change compared to the baseline period
(Figures S3 and S4). The simulated compensation effects in yield and WUE were decreased
by 21.5–29.5% and 9.7–31.2% under SSP585 in the 2080s. Furthermore, we suspect that the
compensation effect of DI3 on wheat will be weakening under future climate scenarios. The
reason is likely due to higher temperature and more rainfall under climate change [7,18].
Climate warming will shorten the growth period, which might lead to a reduction of
accumulated ET in the growth period [12]. However, due to higher seasonal rainfall
in the future (Figure 2b), a substantial increase in yield under rain-fed conditions will
increase WUE. Higher yield and WUE under rain-fed conditions will lead to lower value of
compensation effect of supplementary irrigation, because we calculated the compensation
effect by using the benchmark of rain-fed yield and WUE. Furthermore, the compensation
effect of DI3 on yield and WUE would increase with the increase of N fertilizer rates.
Therefore, the mitigation effect of N fertilizer application on DI would still exist under
future climate scenarios.

Long-term climate change impacts on crop yield have been widely studied using the
process-based models in China [13,49–51] and many other countries [7,14,52,53]. Crop
models are effective tools to investigate the interactive effects of climate change and dif-
ferent agronomic management options. Inevitably, there are some limitations involved
in these simulated result. Firstly, we only considered one site (Qiliying Experimental
Station) in the NCP. The growing conditions for winter wheat may change in different
parts of the NCP [54]. Thus, more representative sites should be used in future studies
to cover a wide range of environmental conditions including different climate and soils
across the NCP. Secondly, we only used one single crop model (APSIM). The simulated
yield might be overestimated because the model does not fully take into account the yield
reduction resulting from diseases, pests, weeds, and extreme climate events (e.g., drought
and heat stress) [15]. Furthermore, under severe deficit irrigation, the APSIM could pos-
sibly underestimate the wheat yield due to the limitations of carbohydrate mobilization
mechanisms in the model [8]. Lastly, our studies only assessed the impacts of the irrigation
scheduling and N fertilizer rates on wheat yield and water use under future climate change.
However, other agronomic management (e.g., cultivar shift, changing sowing date, plant
density, and agricultural machinery) could also play an important role in mitigating climate
change [15,55–57]. For example, Wang et al. [15] found that breeding new cultivars and
adopting earlier sowing strategies could increase yield by 20–24% under future climate
change and may be particularly beneficial under dry scenarios. Even so, this study can
provide useful information for future work using multiple crop models, covering different
parts of the NCP, and incorporating different cultivars with changing sowing date and
plant density to assess the compensation effect of deficit irrigation at a regional scale.
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5. Conclusions

Our simulated results showed that the wheat yield and WUE are expected to increase
at the study sites in the NCP under SSP245 and SSP585. We identified that moderate DI
(DI3, ≤0.4 PAWC) at pre-anthesis remains a promising strategy to enhance yield and WUE
under future climate scenarios. Therefore, quantification of the impacts of different DI
treatments at critical growth stages on winter wheat yield and water use will assist in
the development of efficient DI strategies under projected climate scenarios in the region.
Furthermore, we found that the compensation effect of DI3 on yield and WUE is largely
reduced under future climate change mainly due to increased growing season rainfall
projected by GCMs. Therefore, it is likely that the capability of DI to cope with the adverse
effects of climate change will be decreased under future climate scenarios in the NCP. In
addition, our research highlights that moderate N application (N3, 150 kg Nha−1) could
mitigate the effect of DI3. This study will provide new insights into using promising deficit
irrigation and N application strategies in the future to balance water use and wheat yield
in the NCP.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11050692/s1, Table S1: Detailed agronomic management
options used in this study; Figure S1: Simulated days from sowing to flowering (DTF), days from
sowing to maturity (DTM), and reproduction growth period (RGP) in the baseline (1961–2000);
Figure S2: Simulated average yield under nine irrigation treatments across seven N fertilizer rates in
the baseline (1961–2000); Figure S3: Simulated average WUE under nine irrigation treatments across
seven N fertilizer rates in the baseline (1961–2000); Figure S4: The change of compensation effect on
yield under DI3 in the 2040s and 2080s under SSP245 and SSP585 based on 21 GCMs across seven N
fertilizer rates relative to baseline; Figure S5: The change of compensation effect on WUE under DI3
in the 2040s and 2080s under SSP245 and SSP585 based on 21 GCMs across seven N fertilizer rates
relative to baseline.
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