### Article

Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst



Zhenda Tan, Zhongxin Fu, Jian Yang, ..., Huanfeng Jiang, Juan Li, Min Zhang

tchjli@jnu.edu.cn (J.L.) minzhang@scut.edu.cn (M.Z.)

HIGHLIGHTS

Use of abundant ammonia and alcohols

Good substrate and functional group compatibility

New naphthyridine-based Ir catalyst

Strategy merging hydrogen transfer and annulation

Tan et al., iScience 23, 101003 April 24, 2020 © 2020 The Authors. https://doi.org/10.1016/ j.isci.2020.101003

Check for

### Article

# Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst

Zhenda Tan,<sup>1</sup> Zhongxin Fu,<sup>2</sup> Jian Yang,<sup>1</sup> Yang Wu,<sup>1</sup> Liang Cao,<sup>1</sup> Huanfeng Jiang,<sup>1</sup> Juan Li,<sup>2,\*</sup> and Min Zhang<sup>1,3,\*</sup>

#### **SUMMARY**

Selective linkage of renewable alcohols and ammonia into functional products would not only eliminate the prepreparation steps to generate active amino agents but also help in the conservation of our finite fossil carbon resources and contribute to the reduction of  $CO_2$  emission. Herein the development of a novel 2-(4-methoxyphenyl)-1,8-naphthyridine-based iridium (III) complex is reported, which exhibits excellent catalytic performance toward a new hydrogen transfer-mediated annulation reaction of 2-nitrobenzylic alcohols with alcohols and ammonia. The catalytic transformation proceeds with the striking features of good substrate and functional group compatibility, high step and atom efficiency, no need for additional reductants, and liberation of H<sub>2</sub>O as the sole by-product, which endows a new platform for direct access to valuable quinazolines. Mechanistic investigations suggest that the non-coordinated N-atom in the ligand serves as a side arm to significantly promote the condensation process by hydrogen bonding.

#### INTRODUCTION

Mass mining and consumption of fossil resources have resulted in a call for the development of new catalytic transformations, enabling production of functional chemicals from renewable resources with high step and atom efficiency (Goldemberg, 2007; Michlik and Kempe, 2013a, 2013b; Kozlowski and Davis, 2013). Among various alternative feedstocks, alcohols are a category of oxidized hydrocarbons that can be extensively derived from biomass including abundantly available lignocellulose via degradation (Zakzeski et al., 2010; Sun et al., 2018; Vispute et al., 2010). N-heteroarenes represent a class of highly important compounds, and they have been extensively employed for the development of valuable products, such as bioactive molecules, pharmaceuticals, agrochemicals, dyes, ligands, sensors, and materials (Boyarskiy et al., 2016; Preshlock et al., 2016; Bandini, 2011). Consequently, the linkage of alcohols into N-heteroaromatic frameworks is of high importance, as it not only helps in the conservation of our finite fossil carbon resources but also contributes to the reduction of CO<sub>2</sub> emission.

Over the past decade, the strategy of acceptorless dehydrogenative coupling (ADC) proceeded to renew the construction of N-heteroarenes. In this strategy, dehydrogenation is involved in the activation of alcohols via *in situ* formation of carbonyl intermediates, and H<sub>2</sub> and/or H<sub>2</sub>O are generally generated as the byproducts. Since 2013, significant progress has been made in this regard by the groups of Milstein (Srimani et al., 2013a, 2013b; Daw et al., 2016, 2017), Kempe (Michlik et al., 2013a, 2013b; Deibl et al., 2015; Hille et al., 2014, 2017; Deibl and Kempe, 2017; Kallmeier et al., 2017), Beller (Zhang et al., 2013a, 2013b), Kirchner (Mastalir et al., 2016), and others (Pan et al., 2016; Xu et al., 2017; Elangovan et al., 2015; Chen et al., 2014). However, it is important to note that these transformations mainly rely on the utilization of specific amines, whereas the synthesis of N-heteroarenes by combining alcohols with ammonia, an abundant and renewable nitrogen source, has been rarely explored, although the related transformations would eliminate prepreparation steps to generate active amino agents, and result in high step and atom efficiency. For instance, the Beller group has reported a Ru-catalyzed synthesis of pyrroles from ammonia, vicinal diols, and ketones (Scheme 1, Equation 1) (Zhang et al., 2013a, 2013b). Milstein and the co-workers have presented a synthesis of pyrroles and pyrazines from alcohols and ammonia (Scheme 1, Equation 2) (Daw et al., 2018).

In recent years, the so-called hydrogen-borrowing reaction has emerged as an appealing tool in achieving the alkylation of amines (Wang et al., 2014; Xiao et al., 2019; Kaloglu et al., 2016; Elangovan et al., 2016) and activated carbon nucleophiles (Blank and Kempe, 2010; Elangovan et al., 2015; Deibl and Kempe,

<sup>1</sup>Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China

CelPress

<sup>2</sup>Department of Chemistry, Jinan University, Huangpu Road West 601, Guangzhou, Guangdong 510632, P. R. China

<sup>3</sup>Lead Contact

\*Correspondence: tchjli@jnu.edu.cn (J.L.), minzhang@scut.edu.cn (M.Z.) https://doi.org/10.1016/j.isci. 2020.101003





Scheme 1. Alcohols and Ammonia Utilized for the Synthesis of N-Heteroarene and Amine

2016; Peña-López et al., 2016). Interestingly, the synthesis of various alkylamines from alcohols and ammonia has also been nicely demonstrated (Scheme 1, Equation 3) (Ye et al., 2014; Pingen et al., 2010; Imm et al., 2010, 2011; Gunanathan and Milstein, 2008; Yamaguchi et al., 2008; Kawahara et al., 2010). In such transformations, the alcohols serve as both the hydrogen suppliers and coupling agents. So, there is no need for external reductants such as high-press H<sub>2</sub> gas. Despite these significant advances, the construction of functional N-heteroarenes involving alcohols and ammonia feedstocks through hydrogen autotransfer as a substrate-activating strategy remains a new subject to be explored. However, such a concept would encounter the challenges of difficult proton exchanges and selectivity control, as well as catalyst deactivation by the lone pair of electrons on the nitrogen of excess ammonia (Klinkenberg and Hartwig, 2011).

Among various N-heteroarenes, quinazolines constitute a class of structurally unique compounds, which have been found to exhibit diverse biological and therapeutic activities (Parhi et al., 2013; Ugale and Bari, 2014; Juvale et al., 2013; Ple et al., 2004), and have been extensively applied for the discovery of various functional products (Zhao et al., 2013; Zhang et al., 2011). However, the existing approaches for accessing such compounds generally require preinstalled reactants (Lin et al., 2014; Malakar et al., 2012; Portela-Cubillo et al., 2008; Yan et al., 2012; Zhang et al., 2010). In this context, the search for direct synthesis of quinazolines from easily available substrates, preferably abundant and sustainable ones, would be of great significance. Enlightened by our recent work on the synthesis and functionalization of N-heterocycles (C. Chen et al., 2017; Chen et al., 2018a, 2018b; X.-W. Chen et al., 2017; Liang et al., 2018, 2019; Xie et al., 2017, 2018, 2019), we wish herein to present, for the first time, a synthesis of quinazolines from 2-nitrobenzyl alcohols (Rajendran et al., 2015; Pasnoori et al., 2014), alcohols, and ammonia by a new iridium complex featuring a 2-(4-methoxyphenyl)-1,8-naphthyridyl ligand. In such a transformation, the hydrogen generated from dehydrogenation of alcohols and dehydroaromatization process is utilized for substrate activation through transfer hydrogenation (TH) of the nitro group, and there is no need for addition of external reductants.

#### **RESULTS AND DISCUSSION**

We initiated our investigations by choosing the synthesis of quinazoline **3aa** from *o*-nitrobenzene methanol **1a**, alcohol **2a**, and ammonia as a model reaction. First, we tested the combinations of several metal

catalysts (i.e., Ru, Mn, Co, Fe, and Ni) with various phosphine ligands such as Xantphos, DPPE, DPPP, DPPP, Binap-dp, DPEphos, and Xphos (see Table S1), the privileged catalyst systems employed for the ADC and hydrogen-borrowing reactions. However, the low yields of product (<10%) disclosed that they were not suitable systems for the current synthetic purpose. When complex [IrCp\*Cl<sub>2</sub>]<sub>2</sub> was employed, 15% yield of 3aa was obtained. A further optimization of other reaction parameters involving solvents, bases, and temperatures (Table S2) slightly improved the yield to 18% by using t-BuONa as the base at 140°C. Enlightened by our recent synthesis of naphthyridines (Chen et al., 2017a, 2017b, 2018a, 2018b; Xiong et al., 2016), we believed that such compounds might serve as a class of useful N-ligands with tunable coordination modes, and the preparation of a suitable naphthyridyl Ir-complex might offer a solution to obtain the desirable catalytic efficiency. Thus, we prepared 9-cyclometalated iridium complexes, involving 8-naphthyridyl (Ir-1-Ir-8) and 1,2-phenylpyridyl (Ir-9) ones. Then, their catalytic performance toward the model reaction was evaluated (Table 1, entries 1–9). In comparison, complexes bearing a 1,8-naphthyridyl ligand (entries 1-7) exhibited appealing activity, and Ir-3 (as confirmed by single-crystal X-ray diffraction, CCDC: 1848110, for detail, see Figure S101 and Tables S5-S10) was shown to be a preferred candidate, whereas complex with a 1,5-naphthyridyl or 2-pheynlpyridyl ligand only resulted in low product yield (entries 8-9). The results imply that the N-atom at position 8 in 1,8-naphthyridyl ligands plays a crucial role in affording a satisfactory product yield. Further optimization showed that the presence of iridium is essential in affording the product (entry 10), and the gaseous ammonia is relatively superior to other nitrogen sources (entries 11-15). A decrease of base amount to 30% resulted in a diminished yield (entry 16), and 40% t-BuONa was sufficient for the reaction (entry 17). The time-conversion profile at 2, 4, 8, and 16 h showed that the satisfactory product yield is due to the catalyst robustness (entry 18). Based on the results, the optimal (standard) conditions are as indicated in entry 17 of Table 1.

With the optimal reaction conditions established, we then examined the generality of the synthetic protocol. (2-nitrophenyl)methanol 1a was further employed to couple with various primary alcohols (2a-2t, Scheme S1) and ammonia. As illustrated in Scheme 2, all the reactions proceeded smoothly and furnished the desired quinazolines in moderate to excellent yields upon isolation (Scheme 2, 3ab-3at). Apart from the alkyl-substituted benzyl alcohols, other functional groups such as -OMe, -OH, -NH<sub>2</sub>, -Cl, -Br, -CF<sub>3</sub>, -CO<sub>2</sub>Me, -COPh, -CN, and -C=C- are well tolerated in the transformation. The retention of these functionalities offers the potential for the elaboration of complex molecules via further chemical transformations. Moreover, except for the strong electron-withdrawing group  $-CF_3$ , the electronic property of these substituents has little influence on the reaction, whereas the relatively lower product yields using ortho-substituted benzyl alcohols might relate to the steric hindrance (3ac and 3ae). Furthermore, heteroaryl methanols (2o and 2p) were also amenable to the transformation and resulted in the 2-heteroaryl-substituted guinazolines (3ao and 3ap) in good yields, and the obtained products have the potential to be applied as hemilabile bidentate ligands in organometallic chemistry and catalysis. Interestingly, cinnamyl alcohol 2q underwent smooth hydrogen transfer-mediated annulation, affording the 2-alkenyl quinazoline 3aq in 46% yield. The relatively low product yield is due to partial formation of 2-alkyl quinazoline via reduction of the alkenyl group. The relatively low product yield of 3aq is due to the partial formation of 2-alkyl quinazoline via reduction of the alkenyl group. Aliphatic alcohols, such as methanol (2r), heptan-1-ol (2s), and cyclopropyl carbinol (2t), were efficiently transformed into the 2-non-substituted and 2-alkyl quinazolines (3ar, 3as, and 3at) in moderate yields.

Subsequently, we turned our attention to the transformation of different 2-nitrobenzyl alcohols 1. First, various related substrates (1b-1i) in combination with different primary alcohols 2 and NH<sub>3</sub> were tested. As shown in Scheme 3, all the reactions smoothly delivered the multi-substituted quinazolines in moderate to excellent isolated yields. The electronic property of the substituents on the aryl ring of substrates 1 significantly influenced the product yields. In general, 2-nitrobenzyl alcohols 1 with electron-donating groups afforded the products in higher yields (3ba-3ca and 3ea-3fi) than with electron-deficient ones (3ga-3ia). This phenomenon is rationalized as the catalyst has better stability toward the electron-rich aniline intermediates, arising from the TH of nitro group of substrates 1. Gratifyingly, secondary alcohols, such as 1j and 1k, also underwent smooth annulation to give the 2,4-disubstituted quinazolines in good yields (3ja, 3jl, and 3ka). Similar to the results described in Scheme 2, a wide array of functionalities such as -Me, -OMe, -F, -CI, -Br, -CN, -Ph, and ester are well tolerated in the transformation (Schemes 2 and 3). Noteworthy, the halogen groups did not undergo hydrodehalogenation, showing that the developed catalytic system exhibits unique chemoselectivity.



### **CellPress**



| Entry | Catalyst | NH <sub>3</sub> Source                          | Yields of 3aa <sup>a,b</sup>  |
|-------|----------|-------------------------------------------------|-------------------------------|
| 1     | lr-1     | NH <sub>4</sub> OAc                             | 72                            |
| 2     | lr-2     | NH <sub>4</sub> OAc                             | 75                            |
| 3     | lr-3     | NH <sub>4</sub> OAc                             | 82                            |
| 4     | lr-4     | NH <sub>4</sub> OAc                             | 61                            |
| 5     | lr-5     | NH <sub>4</sub> OAc                             | 67                            |
| 6     | lr-6     | NH <sub>4</sub> OAc                             | 71                            |
| 7     | lr-7     | NH <sub>4</sub> OAc                             | 68                            |
| 8     | lr-8     | NH <sub>4</sub> OAc                             | 15                            |
| 9     | lr-9     | NH <sub>4</sub> OAc                             | 21                            |
| 10    | -        | NH <sub>4</sub> OAc                             | -                             |
| 11    | lr-3     | NH <sub>4</sub> Cl                              | 5                             |
| 12    | lr-3     | HCOONH <sub>4</sub>                             | Trace                         |
| 13    | lr-3     | NH <sub>3</sub> •H <sub>2</sub> O               | Trace                         |
| 14    | lr-3     | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | 22                            |
| 15    | lr-3     | NH <sub>3</sub> (g)                             | 88 <sup>-</sup>               |
| 16    | lr-3     | NH <sub>3</sub> (g)                             | 81 <sup>c,d</sup>             |
| 17    | lr-3     | NH <sub>3</sub> (g)                             | 88 <sup>c,e</sup>             |
| 18    | lr-3     | NH <sub>3</sub> (g)                             | (12, 40, 65, 84) <sup>f</sup> |

#### Table 1. Screening of Optimal Reaction Conditions

Also see Figure S101, Tables S5–S10 and Data S3.

<sup>a</sup>Unless otherwise stated, the reaction was performed with 1a (0.5 mmol), 2a (0.5 mmol), Ir (1 mol %), t-BuONa (50 mol %), NH<sub>3</sub> sources (1.0 mmol) in toluene (1.5 mL) for 24 h under Ar protection.

 $^{\mathrm{b}}\mathrm{Gas}$  chromatography yields with the use of hexadecane as an internal standard.

<sup>c</sup>4 bar of NH<sub>3</sub>.

<sup>d</sup>t-BuONa (30 mol %).

<sup>e</sup>t-BuONa (40 mol %).

<sup>f</sup>Conversions for 2, 4, 8, and 16 h.

### CelPress



Scheme 2. Variation of Alcohols Also see Scheme S1, Figures S1–S60 and Data S3.

To demonstrate the significance and practicality of the developed synthetic methodology, a gramscale synthesis of compound **3aa** could be achieved by performing the reaction with 8 mmol of **1a** and 9 mmol of benzyl alcohol **2a**, which still afforded a good isolated product yield (78%) even with lower catalyst loading (Scheme 4, Equation a, 0.2 mol%). Furthermore, compound **3la**, a key ingredient used as a herbicide with the activity on Toll-like receptors, **20** could be prepared through the reduction of commercially available acifluorfen acid to 2-nitrobenzyl alcohol **1I** (Scheme S3) followed by the annulation reaction of **1I** with alcohol **2a** and amonia (Equation b), and such a synthesis is far superior to the reported multi-step synthetic protocol (Mc Gowan et al., 2012; Munro and Bit, 1987; Sumida et al., 1995). Moreover, the extended  $\pi$ -conjugated system like compound **5ja** was successfully prepared by the halocyclization (Tan et al., 2016) of compound **3ja** and further Sonogashira coupling (Equation c), which offers a valuable basis for further development of optoelectronic materials.

To gain mechanistic insights into the catalytic transformation, a time-concentration profile of the model reaction is depicted in Figure 1 (also see Data S1). Substrates 1a and 2a with ammonia were converted into 3aa in maximum yield within 24 h. 2-Aminobenzaldehyde 1a-4 and 1,2-dihydroquinazoline 3aa-1 were observed during the reaction, but they were consumed up after completion of the reaction (Figure 1). The subjection of compound 1a-4 with benzaldehyde 2a-1 and NH<sub>3</sub> or direct treatment of 3aa-1 under the standard conditions afforded product 3aa in almost quantitative yields (see Equations 1 and 2 of Scheme S2, also see Data S1). These results support the fact that compounds 1a-4, 2a-1, and 3aa-1 are



Also see Scheme S1, Figures S61–S91 and Data S3.

the reaction intermediates. Furthermore, both the iridium catalyst and base play crucial roles in the dehydrogenation of **3aa-1** to product **3aa** (Equation 2). An iridium hydride complex (**Ir-H**) was obtained from the reaction of equimolar **Ir-3** and benzyl alcohol, which can efficiently catalyze the reaction to afford **3aa**, showing that **Ir-H** as a catalytic species is involved in the reaction (Equations 3 and 4, Scheme S2, also see Data S2 and Figure S98).

With the above-mentioned preliminary experimental evidence in hand, the mechanism was further scrutinized by density functional theory calculations (geometry optimizations using B3LYP and single-point energy calculations using M06). For details, see Figures S99 and S100, Tables S3 and S4, Schemes S4-S8, and Data S4. The calculated free energy profile for the first TH (first TH) of 1a to 2-nitrosobenzaldehyde 1a-2 is shown in Figure 2. Initially, the anion exchange between Ir-3 and t-BuONa generates the alkoxy complex Ir-O1. One of the arms in 1,8-naphthyridyl ligand of Ir-O1 dissociates, allowing the Ir center to coordinate with the hydroxyl group of 1a. O-H bond cleavage occurs via transition state TS1 with an energy barrier of 21.4 kcal/mol to give Ir-alkoxide complex IN2, which then undergoes  $\beta$ -hydride elimination by overcoming an energy barrier of 28.0 kcal/mol (TS2) relative to IN2, and generates complex Ir-H and o-nitrobenzaldehyde 1a-1. The nitro group of 1a-1 further acts as a sacrificial hydrogen acceptor of Ir-H through two transition states TS3 and TS4. Finally, 2-nitrosobenzaldehyde 1a-2 is generated with the regeneration of Ir-O1. In addition, the base-promoted intramolecular Meerwein-Ponndorf-Verley-Oppenauer-type transfer hydrogenation (MPV-O TH) is calculated to have an energy barrier of 33.1 kcal/mol (see Scheme S4), which is 3.5 kcal/mol higher than the overall barrier of the pathway shown in Figure 2. Thus, the MPV-O TH pathway is kinetically unfavorable.

The calculated free energy profiles for the second TH of 2-nitrosobenzaldehyde **1a-2** to 2-(hydroxyamino) benzaldehyde **1a-3** and the third TH of **1a-3** to 2-aminobenzaldehyde **1a-4** are shown in Figures S99 and



Scheme 4. The Synthetic Utility of the Developed Chemistry Also see Scheme S1 and S3, Figures S92–S97 and Data S3.

S100 (also see Tables S3 and S4, Schemes S5–S8 and Data S4). In consideration that both 2-aminobenzaldehyde 1a-4 and benzaldehyde 2a-1 can condense with ammonia, two plausible pathways toward the formation of imines were investigated. For the reaction of 2a-1 and ammonia (black line in Figure 3), ammonia approaches benzaldehyde through the C–N bond linkage (TS14) giving IN18. The TH of the ammonia using other ammonia as the proton-transferring shuttle then takes place via TS15 and leads to IN20. The calculated free energy barrier of transition state TS15 is 22.8 kcal/mol relative to IN16. After rearranging to more stable IN21 featuring two hydrogen bonds, the dehydration occurs via TS16, giving the imine complex IN22. Meanwhile, we performed calculations for the dehydration without the hydrogen-bonding between the OH group and the non-coordinated N-atom in the ligand (green line in Figure 3). The calculated free



Figure 1. Time-Concentration Profile of the Model Reaction



#### Figure 2. Calculated Energy Profiles for First TH

o-Nitrobenzene methanol  $1a \rightarrow 2$ -nitrosobenzaldehyde 1a-2. Values shown are relative free energies in kcal/mol. Also see Tables S3 and S4 and Data S4.

energy of transition state TS16'' is -58.4 kcal/mol, which is higher than that of TS16. Therefore, the noncoordinated N-atom in the 1,8-naphthyridyl ligand plays a crucial role in the reaction, as it serves as a side-arm to significantly promote the dehydration by hydrogen bonding. An alkoxyl anion ligand rebounds to Ir center to give imine 2a-2 with regeneration of the Ir-O2 catalyst. The reaction of 1a-4 and ammonia (purple line in Figure 3) follows similar mechanisms to those for 2a-1. The relevant mechanistic details are therefore not discussed again, for simplicity. The highest energy point for the reaction of 1a-4 and ammonia is TS16', which is energetically less favorable by 1.8 kcal/mol compared with that of TS16 for the reaction of 2a-1 and ammonia. Therefore, from a kinetic point of view, the reaction of 1a-4 and ammonia is less kinetically favorable.

Based on all the above-mentioned findings, a plausible reaction pathway for the formation of product **3aa** is illustrated in Scheme 5. In the first TH process, the Ir-catalyzed dehydrogenation of **1a** via alkoxy anion exchange of **Ir-O1** with **1a** gives **IN2**, which is followed by  $\beta$ -H elimination to form the 2-nitrobenzaldehye **1a-1** and the **Ir-H** species. The successive TH to the nitro group of **1a-1** and t-BuOH-assisted dehydration forms 2-nitrosobenzaldehyde **1a-2** and regenerates the **Ir-O1** species. In the second TH process, the anion exchange of **Ir-O1** with **2a** gives a benzyloxy complex **Ir-O2**. The subsequent  $\beta$ -H elimination of **Ir-O2** followed by TH to the nitroso group and alcoholysis with **2a** delivers 2-(hydroxyamino)benzaldehyde **1a-3** and regenerates complex **Ir-O2**, respectively. In the



#### Figure 3. Calculated Energy Profiles for Coupling of Alcohol with Ammonia

Black line for benzaldehyde **2a-1** and purple line for 2-aminobenzaldehyde **1a-4**. The dehydration without the assistance of the non-coordinated N-atom in the ligand is shown in green line. Values shown are relative free energies in kcal/mol. Also see Tables S3 and S4 and Data S4.



Scheme 5. Plausible Reaction Pathway Also see Data S1 and S2 and Figure S98.

third TH process, the **Ir-H** and benzaldehyde **2a-1** are generated via  $\beta$ -H elimination of **Ir-O2**. Subsequently, the Ir-promoted dehydration of **1a-3** forms a nitrene complex **IN13**, and the TH using **2a** as the proton-transferring shuttle generates 2-aminobenzaldehyde **1a-4** (Qu et al., 2014; Hou et al., 2017). Next, the successive formation of imine **2a-2** via the condensation of benzaldehyde **2a-1** with NH<sub>3</sub> and the cyclization between **2a-2** and **1a-4** affords the dihydroquinazoline **3aa-1**. Finally, the iridium alkoxy complex-catalyzed dehydroaromatization of **3aa-1** gives rise to product **3aa**, and the *in situ*-generated **Ir-H** and alcohol further take part in the TH of the nitro group.

#### Conclusion

In summary, we have prepared a series of cyclometalated iridium complexes. Among them, **Ir-3** featuring a 2-(4-methoxyphenyl)-1,8-naphthyridyl ligand exhibits the best catalytic performance toward the hydrogen transfer-mediated annulation of 2-nitrobenzyl alcohols with readily available alcohols and ammonia, which allows direct synthesis of a wide array of valuable quinazolines. Mechanistic investigation suggests that the non-coordinated N-atom in the ligand serves as a side arm to significantly promote the condensation step by hydrogen bonding. The catalytic transformation proceeds with the striking features of good substrate and functional group compatibility, liberation of  $H_2O$  as the sole by-product, high atom and step efficiency, and no need for additional reductants. The developed chemistry paves the avenues for further development of hydrogen transfer-mediated coupling reactions by design of catalysts bearing N-side arm ligands.

#### **METHODS**

All methods can be found in the accompanying Transparent Methods supplemental file.

#### DATA AND SOFTWARE AVAILABILITY

The crystallography data have been deposited at the Cambridge Crystallographic Data Center (CCDC) under accession number CCDC: 1848110 (Ir-3) and can be obtained free of charge from www.ccdc.cam.ac.uk/getstructures.

#### SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101003.

### **Cell**Press

#### **ACKNOWLEDGMENTS**

We thank the National Key Research and Development Program of China (2016YFA0602900), National Natural Science Foundation of China (21971071), and the foundation of the Department of Education of Guangdong Province (2017KZDXM085) for financial support.

#### **AUTHOR CONTRIBUTIONS**

Z.T. and M.Z. conceived and designed the study. Z.T., J.Y., Y.W., and L.C. performed the experiments and mechanism study and analyzed the data. Z.F. and J.L. performed DFT calculations and analyzed the data. Z.T., Z.F., H.J., J.L., and M.Z. co-wrote the paper. Z.T. and Z.F. contributed equally to this work.

#### **DECLARATION OF INTERESTS**

The authors declare no competing financial interests.

Received: February 10, 2020 Revised: March 9, 2020 Accepted: March 17, 2020 Published: April 24, 2020

#### REFERENCES

Bandini, M. (2011). Heteroarenes as high performance organic semiconductors. Chem. Soc. Rev. 40, 1358–1367.

Blank, B., and Kempe, R. (2010). Catalytic alkylation of methyl-N-heteroaromatics with alcohols. J. Am. Chem. Soc. *132*, 924–925.

Boyarskiy, V.P., Ryabukhin, D.S., Bokach, N.A., and Vasilyev, A.V. (2016). Alkenylation of arenes and heteroarenes with alkynes. Chem. Rev. *116*, 5894–5986.

Chen, M., Zhang, M., Xiong, B., Tan, Z., Lv, W., and Jiang, H. (2014). A novel ruthenium-catalyzed dehydrogenative synthesis of 2-arylquinazolines from 2-aminoaryl methanols and benzonitriles. Org. Lett. 16, 6028–6031.

Chen, X.-W., Zhao, H., Chen, C.-L., Jiang, H.-F., and Zhang, M. (2017a). Hydrogen-transfermediated alpha-functionalization of 1,8naphthyridines by a strategy overcoming the over-hydrogenation barrier. Angew. Chem. Int. Ed. 56, 14232.

Chen, C., Chen, X., Zhao, H., Jiang, H., and Zhang, M. (2017b). Direct access to nitrogen Biheteroarenes via iridium-catalyzed hydrogenevolution cross-coupling reaction. Org. Lett. 19, 3390–3393.

Chen, X., Zhao, H., Chen, C., Jiang, H., and Zhang, M. (2018a). Transfer hydrogenative paraselective aminoalkylation of aniline derivatives with N-heteroarenes via ruthenium/acid dual catalysis. Chem. Commun. *54*, 9087–9090.

Chen, X., Zhao, H., Chen, C., Jiang, H., and Zhang, M. (2018b). Iridium-catalyzed dehydrogenative alpha-functionalization of (Hetero)aryl-Fused cyclic secondary amines with indoles. Org. Lett. *20*, 1171.

Daw, P., Chakraborty, S., Garg, J.A., Ben-David, Y., and Milstein, D. (2016). Direct synthesis of pyrroles by dehydrogenative coupling of diols and amines catalyzed by cobalt pincer complexes. Angew. Chem. Int. Ed. 55, 14373– 14377. Daw, P., Ben-David, Y., and Milstein, D. (2017). Direct synthesis of benzimidazoles by dehydrogenative coupling of aromatic diamines and alcohols catalyzed by cobalt. ACS Catal. 7, 7456–7460.

Daw, P., Ben-David, Y., and Milstein, D. (2018). Acceptorless dehydrogenative coupling using ammonia: direct synthesis of N-heteroaromatics from diols catalyzed by ruthenium. J. Am. Chem. Soc. 140, 11931–11934.

Deibl, N., and Kempe, R. (2016). General and mild cobalt-catalyzed C-alkylation of unactivated amides and esters with alcohols. J. Am. Chem. Soc. 138, 10786–10789.

Deibl, N., and Kempe, R. (2017). Manganesecatalyzed multicomponent synthesis of pyrimidines from alcohols and amidines. Angew. Chem. Int. Ed. *56*, 1663–1666.

Deibl, N., Ament, K., and Kempe, R. (2015). A sustainable multicomponent pyrimidine synthesis. J. Am. Chem. Soc. 137, 12804–12807.

Elangovan, S., Sortais, J.-B., Beller, M., and Darcel, C. (2015). Iron-catalyzed alpha-alkylation of ketones with alcohols. Angew. Chem. Int. Ed. 54, 14483–14486.

Elangovan, S., Neumann, J., Sortais, J.-B., Junge, K., Darcel, C., and Beller, M. (2016). Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nat. Commun. 7, 12641.

Goldemberg, J. (2007). Ethanol for a sustainable energy future. Science *315*, 808–810.

Gunanathan, C., and Milstein, D. (2008). Selective synthesis of primary amines directly from alcohols and ammonia. Angew. Chem. Int. Ed. 47, 8661–8664.

Hille, T., Irrgang, T., and Kempe, R. (2014). The synthesis of benzimidazoles and quinoxalines from aromatic diamines and alcohols by iridiumcatalyzed acceptorless dehydrogenative alkylation. Chem. Eur. J. 20, 5569–5572. Hille, T., Irrgang, T., and Kempe, R. (2017). Synthesis of meta-functionalized pyridines by selective dehydrogenative heterocondensation of beta- and gamma-amino alcohols. Angew. Chem. Int. Ed. 56, 371–374.

Hou, C., Jiang, J., Li, Y., Zhao, C., and Ke, Z. (2017). When bifunctional catalyst encounters dual MLC modes: DFT study on the mechanistic preference in Ru-PNNH pincer complex catalyzed dehydrogenative coupling reaction. ACS Catal. 7, 786–795.

Imm, S., Baehn, S., Neubert, L., Neumann, H., and Beller, M. (2010). An efficient and general synthesis of primary amines by rutheniumcatalyzed amination of secondary alcohols with ammonia. Angew. Chem. Int. Ed. 49, 8126–8129.

Imm, S., Baehn, S., Zhang, M., Neubert, L., Neumann, H., Klasovsky, F., Pfeffer, J., Haas, T., and Beller, M. (2011). Improved rutheniumcatalyzed amination of alcohols with ammonia: synthesis of diamines and amino esters. Angew. Chem. Int. Ed. 50, 7599–7603.

Juvale, K., Gallus, J., and Wiese, W. (2013). Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). Bioorg. Med. Chem. *21*, 7858.

Kallmeier, F., Dudziec, B., Irrgang, T., and Kempe, R. (2017). Manganese-catalyzed sustainable synthesis of pyrroles from alcohols and amino alcohols. Angew. Chem. Int. Ed. *56*, 7261–7265.

Kaloglu, N., Özdemir, I., Gürbüz, N., Achard, M., and Bruneau, C. (2016). Benzimidazolium sulfonate ligand precursors and application in ruthenium-catalyzed aromatic amine alkylation with alcohols. Catal. Commun. 74, 33–38.

Kawahara, R., Fujita, K., and Yamaguchi, R. (2010). Multialkylation of aqueous ammonia with alcohols catalyzed by water-soluble Cp\*Irammine complexes. J. Am. Chem. Soc. *132*, 15108–15111.

Klinkenberg, J.L., and Hartwig, J.F. (2011). Catalytic organometallic reactions of ammonia. Angew. Chem. Int. Ed. 50, 86–95.

Kozlowski, J.T., and Davis, R.J. (2013). Heterogeneous catalysts for the guerbet coupling of alcohols. ACS Catal. 3, 1588–1600.

Liang, T., Tan, Z., Zhao, H., Chen, X., Jiang, H., and Zhang, M. (2018). Aerobic copper-catalyzed synthesis of benzimidazoles from diaryl- and alkylamines via tandem triple C-H aminations. ACS Catal. *8*, 2242.

Liang, T.Y., Zhao, H., Gong, L.Z., Jiang, H.F., and Zhang, M. (2019). Synthesis of multisubstituted benzimidazolones via copper-catalyzed oxidative tandem C–H aminations and alkyl deconstructive carbofunctionalization. iScience 15, 127–135.

Lin, J.P., Zhang, F.H., and Long, Y.Q. (2014). Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines. Org. Lett. 16, 2822.

Malakar, C.C., Baskakova, A., Conrad, J., and Beifuss, U. (2012). Copper-catalyzed synthesis of quinazolines in water starting from obromobenzylbromides and benzamidines. Chem. Eur. J. 18, 8882.

Mastalir, M., Glatz, M., Pittenauer, E., Allmaier, G., and Kirchner, K. (2016). Sustainable synthesis of quinolines and pyrimidines catalyzed by manganese PNP pincer complexes. J. Am. Chem. Soc. *138*, 15543–15546.

Mc Gowan, D., Raboisson, P.J.-M.B., Jonckers, T.H.M., Last, S.J., Embrechts, W. and Pieters, S.M.A. (2012). Quinazoline derivatives as TLR modulators for the treatment of viral infections and further diseases and their preparation. PCT Int. WO2012156498.

Michlik, S., and Kempe, R. (2013a). A sustainable catalytic pyrrole synthesis. Nat. Chem. 5, 140–144.

Michlik, S., and Kempe, R. (2013b). Regioselectively functionalized pyridines from sustainable resources. Angew. Chem. Int. Ed. 52, 6326–6329.

Munro, D. and Bit, R. (1987). Antonio Preparation of Phenoxy-Substituted Nitrogen Heterocycles as Herbicides. UK. Patent GB2189238.

Pan, B., Liu, B., Yue, E., Liu, Q., Yang, X., Wang, Z., and Sun, W.-H. (2016). A ruthenium catalyst with unprecedented effectiveness for the coupling cyclization of γ-amino alcohols and secondary alcohols. ACS Catal. 6, 1247–1253.

Parhi, A.K., Zhang, Y., Saionz, K.W., Pradhan, P., Kaul, M., Trivedi, K., Pilch, D.S., and LaVoie, E.J. (2013). Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphtyridines. Bioorg. Med. Chem. Lett. 23, 4968.

Pasnoori, S., Kamatala, C.R., Mukka, S.K., and Kancharla, R.R. (2014). Prussian blue as an ecofriendly catalyst for selective nitration of organic compounds under conventional and nonconventional conditions. Synth. Reactivity Inorg. Metal-Organic Nano-Metal Chem. 44, 364–370.

Peña-López, M., Piehl, P., Elangovan, S., Neumann, H., and Beller, M. (2016). Manganesecatalyzed hydrogen-autotransfer C-C bond formation: alpha-alkylation of ketones with primary alcohols. Angew. Chem. Int. Ed. 55, 14967–14971.

Pingen, D., Muller, C., and Vogt, D. (2010). Direct amination of secondary alcohols using ammonia. Angew. Chem. Int. Ed. *49*, 8130–8133.

Ple, P.A., Green, T.P., Hennequin, L.F., Curwen, J., Fennell, M., Allen, J., Lambertvan der Brempt, C., and Costello, G. (2004). Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src. J. Med. Chem. 47, 871.

Portela-Cubillo, F., Scott, J.S., and Walton, J.C. (2008). 2-(Aminoaryl)alkanone O-phenyl oximes: versatile reagents for syntheses of quinazolines. Chem. Commun. 2935–2937.

Preshlock, S., Tredwell, M., and Gouverneur, V. (2016). F-18-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev. 116, 719–766.

Qu, S., Dang, Y., Song, C., Wen, M., Huang, K.-W., and Wang, Z.-X. (2014). Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: crucial role of proton-transfer shuttles in the PNP-Ir system. J. Am. Chem. Soc. 136, 4974–4991.

Rajendran, S., Raghunathan, R., Hevus, I., Krishnan, R., Ugrinov, A., Sibi, M.P., Webster, D.C., and Sivaguru, J. (2015). Programmed photodegradation of polymeric/oligomeric materials derived from renewable bioresources. Angew. Chem. Int. Ed. 54, 1159–1163.

Srimani, D., Ben-David, Y., and Milstein, D. (2013a). Direct synthesis of pyrroles by dehydrogenative coupling of  $\beta$ -aminoalcohols with secondary alcohols catalyzed by ruthenium pincer complexe. Angew. Chem. Int. Ed. 52, 4012–4015.

Srimani, D., Ben-David, Y., and Milstein, D. (2013b). Direct synthesis of pyridines and quinolines by coupling of gamma-aminoalcohols with secondary alcohols liberating H-2 catalyzed by ruthenium pincer complexes. Chem. Commun. 49, 6632–6634.

Sumida, M., Niwata, S., Fukami, H., Tanaka, T., Wakabayashi, K., and Boger, P. (1995). Synthesis of novel diphenyl ether herbicides. J. Agric. Food Chem. 43, 1929–1934.

Sun, Z.-H., Fridrich, B., Santi, A., Elangovan, S., and Barta, K. (2018). Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. *118*, 614–678.

Tan, Z., Zhao, H., Zhou, C., Jiang, H., and Zhang, M. (2016). Aerobic copper-catalyzed halocyclization of methyl N-heteroaromatics with aliphatic amines: access to functionalized imidazo-fused N-heterocycles. J. Org. Chem. *81*, 9939–9946.

Ugale, V.G., and Bari, S.B. (2014). Quinazolines: new horizons in anticonvulsant therapy. Eur. J. Med. Chem. *80*, 447.

Vispute, T.P., Zhang, H., Sanna, A., Xiao, R., and Huber, G.W. (2010). Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330, 1222–1227.

Wang, D., Zhao, K., Xu, C., Miao, H., and Ding, Y. (2014). Synthesis, structures of benzoxazolyl iridium(III) complexes, and applications on C–C and C–N bond formation reactions under solvent-free conditions: catalytic activity enhanced by noncoordinating anion without silver effect. ACS Catal. *4*, 3910– 3918.

Xiao, M., Yue, X., Xu, R., Tang, W., Xue, D., Li, C., Lei, M., Xiao, J., and Wang, C. (2019). Transitionmetal-free hydrogen autotransfer: diastereoselective N-alkylation of amines with racemic alcohols. Angew. Chem. Int. Ed. *58*, 10528–10536.

Xie, F., Xie, R., Zhang, J.-X., Jiang, H.-F., Du, L., and Zhang, M. (2017). Direct reductive quinolyl beta-C-H alkylation by multispherical cavity carbon-supported cobalt oxide nanocatalysts. ACS Catal. 7, 4780.

Xie, F., Chen, Q.-H., Xie, R., Jiang, H.-F., and Zhang, M. (2018). MOF-derived nanocobalt for oxidative functionalization of cyclic amines to quinazolinones with 2-aminoarylmethanols. ACS Catal. *8*, 5869.

Xie, R., Xie, F., Zhou, C.J., Jiang, H., and Zhang, M. (2019). Hydrogen transfer-mediated selective dual C–H alkylations of 2-alkylquinolines by doped TiO2-supported nanocobalt oxides. J. Catal. 377, 449.

Xiong, B., Zhang, S.D., Jiang, H.F., and Zhang, M. (2016). Hydrogen-transfer-mediated direct betaalkylation of aryl-1,8-naphthyridines with alcohols under transition metal catalyst free conditions. Org. Lett. 18, 724–727.

Xu, Z., Wang, D.-S., Yu, X., Yang, Y., and Wang, D. (2017). Tunable triazole-phosphine-copper catalysts for the synthesis of 2-aryl-1H-benzo[d] imidazoles from benzyl alcohols and diamines by acceptorless dehydrogenation and borrowing hydrogen reactions. Adv. Syn. Catal. 359, 3332– 3340.

Yamaguchi, R., Kawagoe, S., Asai, C., and Fujita, K. (2008). Selective synthesis of secondary and tertiary amines by Cp\*Iridium-catalyzed multialkylation of ammonium salts with alcohols. Org. Lett. 10, 181–184.

Yan, Y.Z., Zhang, Y.H., Feng, C.T., Zha, Z.G., and Wang, Z.Y. (2012). Selective iodine-catalyzed intermolecular oxidative amination of C(sp(3))-H bonds with ortho-carbonyl-substituted anilines to give quinazolines. Angew. Chem. Int. Ed. 51, 8077.

Ye, X., Plessow, P.N., Brinks, M.K., Schelwies, M., Schaub, T., Rominger, F., Paciello, R., Limbach, M., and Hofmann, P. (2014). Alcohol amination with ammonia catalyzed by an acridine-based ruthenium pincer complex: a mechanistic study. J. Am. Chem. Soc. *136*, 5923– 5929.

Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., and Weckhuysen, B.M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552– 3599.





Zhang, J.T., Yu, C.M., Wang, S.J., Wan, C.F., and Wang, Z.Y. (2010). A novel and efficient methodology for the construction of quinazolines based on supported copper oxide nanoparticles. Chem. Commun. 46, 5244.

Zhang, Y.L., Sheets, M.R., Raja, E.K., Boblak, K.N., and Klumpp, D.A. (2011). Superacid-promoted additions involving vinyl-substituted pyrimidines, quinoxalines, and quinazolines: mechanisms correlated to charge distributions. J. Am. Chem. Soc. 133, 8467.

Zhang, M., Neumann, H., and Beller, M. (2013a). Selective ruthenium-catalyzed three-component synthesis of pyrroles. Angew. Chem. Int. Ed. 52, 597–601.

Zhang, M., Fang, X., Neumann, H., and Beller, M. (2013b). General and regioselective synthesis of pyrroles via ruthenium-catalyzed multicomponent reactions. J. Am. Chem. Soc. 135, 11384–11388.

Zhao, D., Shen, Q., Zhou, Y.R., and Li, J.X. (2013). KOtBu-mediated stereoselective addition of quinazolines to alkynes under mild conditions. Org. Biomol. Chem. *11*, 5908. iScience, Volume 23

### **Supplemental Information**

### Hydrogen Transfer-Mediated Multicomponent

### Reaction for Direct Synthesis of Quinazolines by a

### Naphthyridine-Based Iridium Catalyst

Zhenda Tan, Zhongxin Fu, Jian Yang, Yang Wu, Liang Cao, Huanfeng Jiang, Juan Li, and Min Zhang

#### Copies of product NMR spectra

Figure S1. <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) spectrum of Ir-1, related to Table 1.









Figure S3. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Ir-2, related to Table 1.







Figure S5. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Ir-3, related to Table 1.







Figure S7. <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) spectrum of Ir-4, related to Table 1.







Figure S9. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Ir-5, related to Table 1.







Figure S11. <sup>19</sup>F-NMR (400 MHz, CDCI<sub>3</sub>) spectrum of Ir-5, related to Table 1.







Figure S13. <sup>13</sup>C-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Ir-6, related to Table 1.

Figure S14. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of Ir-7, related to Table 1.



<sup>13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 6.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5</sup> fl (ppm)



Figure S15. <sup>13</sup>C-NMR (100 MHz, CDCI<sub>3</sub>) spectrum of Ir-7, related to Table 1.







Figure S17. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of Ir-8, related to Table 1.







Figure S19. <sup>13</sup>C-NMR (100 MHz, CDCI<sub>3</sub>) spectrum of Ir-9, related to Table 1.







Figure S21. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of **3aa**, related to **Scheme 2**.







Figure S23. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ab, related to Scheme 2.







Figure S25. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of **3ac**, related to **Scheme 2**.





3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 fl (ppm)



Figure S27. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ad, related to Scheme 2.







Figure S29. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ae, related to Scheme 2.







Figure S31. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3af, related to Scheme 2.







Figure S33. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ag, related to Scheme 2.







Figure S35. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ah, related to Scheme 2.







Figure S37. <sup>13</sup>C-NMR (100 MHz, CDCI<sub>3</sub>) spectrum of 3ai, related to Scheme 2.







Figure S40. <sup>19</sup>F-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3aj, related to Scheme 2.



Figure S39. <sup>13</sup>C-NMR (100 MHz, CDCI<sub>3</sub>) spectrum of 3aj, related to Scheme 2.



Figure S41. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **3ak**, related to **Scheme 2**.











Figure S43. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3al, related to Scheme 2.


Figure S45. <sup>1</sup>H-NMR (400 MHz, CDCI<sub>3</sub>) spectrum of 3am, related to Scheme 2.







Figure S47. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3an, related to Scheme 2.







Figure S49. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3ao, related to Scheme 2.















Figure S53. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **3aq**, related to **Scheme 2**.







Figure S55. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **3ar**, related to **Scheme 2**.







Figure S57. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3as, related to Scheme 2.

Figure S58. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3as, related to Scheme 2.





Figure S59. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3at, related to Scheme 2.







Figure S61. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **3ba**, related to **Scheme 3**.

Figure S62. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ba, related to Scheme 3.





Figure S64. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3bd, related to Scheme 3.



Figure S63. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3bd, related to Scheme 3.





Figure S66. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ca, related to Scheme 3.





Figure S67. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3da, related to Scheme 3.

Figure S68. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3da, related to Scheme 3.





Figure S69. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3ea, related to Scheme 3.

Figure S70. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ea, related to Scheme 3.





Figure S71. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3eg, related to Scheme 3.

Figure S72. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3eg, related to Scheme 3.







Figure S74. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3fa, related to Scheme 3.













Figure S77. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **3ga**, related to **Scheme 3**.







Figure S79. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3gk, related to Scheme 3.







Figure S82. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3ha, related to Scheme 3.



Figure S81. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **3ha**, related to **Scheme 3**.



Figure S83. <sup>19</sup>F-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **3ha**, related to **Scheme 3**.







Figure S86. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3ja, related to Scheme 3.



12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

Figure S85. <sup>13</sup>C-NMR (100 MHz, CDCI<sub>3</sub>) spectrum of **3ia**, related to **Scheme 3**.



Figure S87. <sup>13</sup>C-NMR (100 MHz, CDCI<sub>3</sub>) spectrum of 3ja, related to Scheme 3.







Figure S89. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3jl, related to Scheme 3.









Figure S92. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3la, related to Scheme 2.



2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.( f1 (ppm)



Figure S93. <sup>13</sup>C-NMR (100 MHz, CDCI<sub>3</sub>) spectrum of **3Ia**, related to **Scheme 3**.







Figure S94. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 4ja, related to Scheme 4.







Figure S96. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 5ja, related to Scheme 4.





#### Transparent Methods.

All the obtained products were characterized by melting points (m.p), <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and infrared spectra (IR). Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected; IR spectra were recorded on a FTLA2000 spectrometer; <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectra were obtained on Bruker-400 and referenced to 7.26 ppm for chloroform solvent with TMS as internal standard (0 ppm). Chemical shifts were reported in parts per million (ppm,  $\delta$ ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm; Unless otherwise stated, all the reagents were purchased from commercial sources (Energy Chemical, J&K Chemic, TCI, Fluka, Acros, SCRC), used without further purification. 1,8-naphthyridines were prepared by the condensation cyclization of 2-aminonicotinaldehyde with ketones in the presence of t-BuOK (Chen et al., 2017). 2-Nitrobenzyl alcohol **1I** was prepared by the reduction of Acifluorfen Acid (Rajendran et al., 2015). All calculations were performed for reactants in solution using the solvent model density (SMD) (Marenich et al., 2009) method (solvent = toluene) and employing the Gaussian 09 package (Frisch, M. J. Gaussian 09, Revision C.01; Gaussian, Inc: Wallingford, CT, 2010.). All stationary points were optimized without any constraints at the B3LYP level of theory. (Becke, 1993; Lee et al., 1988; Stephens et al., 1994) Frequency calculations at the same level of theory were also performed to identify all stationary points as minima (zero imaginary frequencies) or transition states (one imaginary frequency), and to calculate the free energies. Intrinsic reaction coordinate calculations were performed to verify the transition-state structures. (Fukui, 1970; Fukui, 1981) The LANL2DZ effective core potential method (Hay et al., 1985; Wadt et al., 1985) with an extra f-polarization function ( $\Box_f = 0.938$ ) (Ehlers et al., 1993) was used as the basis set for Ir, while the 6-31G(d) (Krishnan et al., 1980; McLean et al., 1980) basis set was used for all other atoms (C, H, N, O, Na and Cl). To obtain better accuracy, energies of the optimized geometries were recalculated using M06 (Zhao et al., 2005; Zhao et al., 2008; Zhao et al., 2008; Zhao et al., 2009) single point calculations with a larger basis set, employing the LANL2TZ(f) (Roy et al., 2008) basis set for Ir and the 6-311++G\*\* basis set for all other atoms. Empirical D3 dispersion corrections were included for the M06 functional. (Grimme et al., 2010) The final Gibbs free energies reported herein ( $\Delta G_{sol}$ ) represent the M06 single point energies with Gibbs free energy corrections.

### Optimization of reaction conditions.

**Table S1.** Screening of different metal catalysts and ligands. Related to **Table 1**. Related to the first paragraph of "RESULTS AND DISCUSSION" in the main text.



| Entry | Catalyst | Ligand | Additive        | Solvent                | Temperature | N source            | Yields<br>of <b>3aa</b><br><sub>a, b</sub> |
|-------|----------|--------|-----------------|------------------------|-------------|---------------------|--------------------------------------------|
| 1     | Cat 3    | L1     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | 5%                                         |
| 2     | Cat 3    | L2     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 3     | Cat 3    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | trace                                      |
| 4     | Cat 3    | L4     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | <5%                                        |
| 5     | Cat 3    | L5     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 6     | Cat 3    | L6     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | <5%                                        |
| 7     | Cat 3    | L7     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 8     | Cat 1    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | trace                                      |
| 9     | Cat 2    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | trace                                      |
| 10    | Cat 4    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | <5%                                        |
| 11    | Cat 5    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | trace                                      |
| 12    | Cat 6    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 13    | Cat 7    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 14    | Cat 8    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 15    | Cat 9    | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 16    | Cat 10   | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 17    | Cat 11   | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 18    | Cat 12   | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 19    | Cat 13   | L3     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | -                                          |
| 20    | Cat 4    | L6     | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | <5%                                        |
| 21    | Cat 4    | -      | <i>t</i> -BuOK  | toluene                | 130         | NH₄OAc              | trace                                      |
| 22    | Cat 3    | L1     | <i>t</i> -BuONa | toluene                | 130         | NH₄OAc              | 5%                                         |
| 23    | Cat 3    | L1     | NaOH            | toluene                | 130         | NH₄OAc              | <5%                                        |
| 24    | Cat 3    | L1     | KOH             | toluene                | 130         | NH₄OAc              | <5%                                        |
| 25    | Cat 3    | L1     | NaOCH₃          | toluene                | 130         | NH₄OAc              | <5%                                        |
| 26    | Cat 3    | L1     | <i>t</i> -BuOK  | <i>p</i> -xylene       | 130         | NH₄OAc              | <5%                                        |
| 27    | Cat 3    | L1     | <i>t</i> -BuOK  | chlorobenzene          | 130         | NH₄OAc              | <5%                                        |
| 28    | Cat 3    | L1     | <i>t</i> -BuOK  | <i>t</i> -amyl alcohol | 130         | NH₄OAc              | <5%                                        |
| 29    | Cat 3    | L1     | <i>t</i> -BuOK  | DMF                    | 130         | NH₄OAc              | <5%                                        |
| 30    | Cat 3    | L1     | <i>t</i> -BuOK  | toluene                | 130         | NH₄CI               | <5%                                        |
| 31    | Cat 3    | L1     | <i>t</i> -BuOK  | toluene                | 130         | HCOONH <sub>4</sub> | trace                                      |

| 32 | Cat 3 | L1 | <i>t</i> -BuOK | toluene | 130 | NH₃·H₂O | trace |
|----|-------|----|----------------|---------|-----|---------|-------|
|    |       |    |                |         |     |         |       |

<sup>a</sup> The reaction was performed with **1a** (0.5 mmol), **2a** (0.5 mmol), catalyst (1 mol%), ligand (3 mol%), additive (50 mol%), NH<sub>3</sub> sources (1.0 mmol) in solvent (1.5 mL) for 24 h under Ar protection. <sup>b</sup> GC yield by using hexadecane as an internal standard.

**Table S2.** Optimization of reaction conditions with Ir catalysts. Related to **Table 1**. Related to the first paragraph of "RESULTS AND DISCUSSION" in the main text.



| Entry | Catalyst                                          | Additive        | Solvent          | Temperature | N source            | Yields<br>of<br><b>3aa</b> <sup>a, b</sup> |
|-------|---------------------------------------------------|-----------------|------------------|-------------|---------------------|--------------------------------------------|
| 1     | [lrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | <i>t</i> -BuOK  | toluene          | 130         | NH₄OAc              | 15                                         |
| 2     | [lrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | <i>t</i> -BuOK  | <i>p</i> -xylene | 130         | NH₄OAc              | trace                                      |
| 3     | [lrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | <i>t</i> -BuOK  | chlorobenzene    | 130         | NH₄OAc              | -                                          |
| 4     | [lrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | <i>t</i> -BuOK  | t-amyl alcohol   | 130         | NH₄OAc              | 14                                         |
| 5     |                                                   | t-BuOK          | DMSO             | 130         | NH₄OAc              | 10                                         |
| 6     |                                                   | t-BuOK          |                  | 130         | NH4OAC              | 15                                         |
| /     |                                                   |                 | 1,4-dioxane      | 130         |                     | trace                                      |
| 8     |                                                   | t-BuONa         | toluene          | 130         | NH4OAC              | 16                                         |
| 9     | [lrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | NaOH            | toluene          | 130         | NH₄OAc              | 15                                         |
| 10    | [lrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | NaOAc           | toluene          | 130         | NH₄OAc              | 11                                         |
| 11    | [IrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | $Cs_2CO_3$      | toluene          | 130         | NH₄OAc              | 12                                         |
| 12    | [IrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | NaOMe           | toluene          | 130         | NH <sub>4</sub> OAc | 9                                          |
| 13    | [IrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | -               | toluene          | 130         | NH <sub>4</sub> OAc | 10                                         |
| 14    | [IrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | <i>t</i> -BuONa | toluene          | 120         | NH₄OAc              | 11                                         |
| 15    | [IrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | <i>t</i> -BuONa | toluene          | 140         | NH <sub>4</sub> OAc | 18                                         |
| 16    | [IrCp <sup>*</sup> Cl <sub>2</sub> ] <sub>2</sub> | <i>t</i> -BuONa | toluene          | 150         | NH <sub>4</sub> OAc | 15                                         |
| 17    | lr-1                                              | <i>t</i> -BuONa | toluene          | 140         | NH <sub>4</sub> OAc | 72                                         |
| 18    | lr-2                                              | <i>t</i> -BuONa | toluene          | 140         | NH <sub>4</sub> OAc | 75                                         |
| 19    | lr-3                                              | <i>t</i> -BuONa | toluene          | 140         | NH₄OAc              | 82                                         |
| 20    | lr-4                                              | <i>t</i> -BuONa | toluene          | 140         | NH <sub>4</sub> OAc | 61                                         |
| 21    | lr-5                                              | <i>t</i> -BuONa | toluene          | 140         | NH₄OAc              | 67                                         |
| 22    | lr-6                                              | <i>t</i> -BuONa | toluene          | 140         | NH₄OAc              | 71                                         |
| 23    | lr-7                                              | <i>t</i> -BuONa | toluene          | 140         | NH₄OAc              | 68                                         |

| 24 | lr-8 | <i>t</i> -BuONa | toluene | 140 | NH₄OAc                            | 15                 |
|----|------|-----------------|---------|-----|-----------------------------------|--------------------|
| 25 | lr-9 | <i>t</i> -BuONa | toluene | 140 | NH₄OAc                            | 21                 |
| 26 | -    | <i>t</i> -BuONa | toluene | 140 | NH₄OAc                            | -                  |
| 27 | lr-3 | <i>t</i> -BuONa | toluene | 140 | NH₄CI                             | 5                  |
| 28 | lr-3 | <i>t</i> -BuONa | toluene | 140 | HCOONH <sub>4</sub>               | trace              |
| 29 | lr-3 | <i>t</i> -BuONa | toluene | 140 | NH <sub>3</sub> ·H <sub>2</sub> O | trace              |
| 30 | lr-3 | <i>t</i> -BuONa | toluene | 140 | (NH4)2SO4                         | 22                 |
| 31 | lr-3 | <i>t</i> -BuONa | toluene | 140 | NH₃                               | 88 <sup>c</sup>    |
| 32 | lr-3 | <i>t</i> -BuONa | toluene | 140 | NH <sub>3</sub>                   | 81 <sup>c, d</sup> |
| 33 | lr-3 | <i>t</i> -BuONa | toluene | 140 | NH <sub>3</sub>                   | 88 <sup>c, e</sup> |

<sup>a</sup> The reaction was performed with **1a** (0.5 mmol), **2a** (0.5 mmol), Ir (1 mol%), additive (50 mol%), N sources (1.0 mmol) in solvent (1.5 mL) for 24 h under Ar protection. <sup>b</sup> GC yield by using hexadecane as an internal standard. <sup>c</sup> 4 bar of NH<sub>3</sub>. <sup>d</sup> With additive (30 mol%)). <sup>e</sup> With additive (40 mol%).

## Typical procedure for the synthesis of complexes Ir-1 – Ir-5, Ir-7, Ir-8 and Ir-9.

Under N<sub>2</sub> atmosphere,  $[Cp^{+}IrCl_2]_2$  (0.2 mmol), NaOAc (0.6 mmol) and 2-substituted 1,8-naphthyridine (0.4 mmol, Chen et al., 2017) and dichloromethane (5 mL) were introduced in a Schlenk tube, successively. Then the Schlenk tube was closed and the resulting mixture was stirred at 60 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered through celite, eluting with CH<sub>2</sub>Cl<sub>2</sub>, dried over MgSO<sub>4</sub> and filtered. The solvent was evaporated to give a crude solid followed by the addition of 1 mL of diethyl ether with washing for three times.

### Typical procedure for the synthesis of complex Ir-6.

Under N<sub>2</sub> atmosphere, [Cp<sup>\*</sup>IrCl<sub>2</sub>]<sub>2</sub> (0.2 mmol), and 2-(pyridin-2-yl)-1,8-naphthyridine (0.4 mmol) and dichloromethane (5 mL) were introduced in a Schlenk tube, successively. Then the Schlenk tube was closed and the resulting mixture was stirred at 60 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered through celite, eluting with CH<sub>2</sub>Cl<sub>2</sub>, dried over MgSO<sub>4</sub> and filtered. The solvent was evaporated to give a crude solid followed by the addition of 1 mL of diethyl ether with washing for three times.

# Typical procedure for the synthesis of 3aa.

A vial was charged with (2-nitrophenyl)methanol **1a** (0.5 mmol), **Ir-3** (1 mol %), *t*-BuONa (40 mol %) in succession. The vial was transferred into the autoclave. Once sealed, the autoclave was purged with argon gas, and then was injected with phenylmethanol **2a** (0.5 mmol) in toluene (1.5 mL) under Ar atmosphere. Then the autoclave was aerated with NH<sub>3</sub>, pressurized to 4 bar, heated up and kept at 140 °C for 24 h under thorough stirring. After the reaction, the autoclave was cooled to room temperature, depressurized, and the resulting mixture was purified by preparative TCL on silica to get 2-phenylquinazoline **3aa**.

Scheme S1. Substrates employed for the synthesis of quinazolines. Related to Scheme 2, 3 &4. Related to the second and third paragraph of "RESULTS AND DISCUSSION" in the main text.



**The Control Experiments.** Related to the fifth paragraph of "RESULTS AND DISCUSSION" in the main text.

**Scheme S2**. Control experiments. Related to **Scheme 5**. Related to the fifth paragraph of "RESULTS AND DISCUSSION" in the main text.



Data S1. The Experimental Procedure for the Time-Concentration Profile. Related to Scheme5. Related to the fifth paragraph of "RESULTS AND DISCUSSION" in the main text.

A vial was charged with (2-nitrophenyl)methanol **1a** (0.5 mmol), **Ir-3** (1 mol %), *t*-BuONa (40 mol %) in succession, which was then transferred into the autoclave. Once sealed, the autoclave was purged with argon gas, and then was injected with phenylmethanol **2a** (0.5 mmol) in toluene (1.5 mL) under Ar atmosphere. Then the autoclave was aerated with NH<sub>3</sub>, pressurized to 4 bar, heated up and kept at 140 °C for 0–24 h (1, 2, 4, 8, 12, 16, 20 h) under thorough stirring. After the reaction, the autoclave was cooled to room temperature, depressurized, and added hexadecane (25 mg) as an internal standard. The yield was determined by the GC-MS. For **1a-4**, MS (EI, m/z): 121.08 [M]<sup>+</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.85 (s, 1H), 7.46 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.29 (t, *J* = 8.3 Hz, 1H), 6.73 (t, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 8.2 Hz, 1H), 6.05 (s, 2H). For **3aa-1**, MS (EI, m/z): 208.12 [M]<sup>+</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (s, 1H), 7.50-7.53 (m, 2H), 7.31-7.45 (m, 3H), 7.14-7.21 (m, 2H), 6.70 (s, 1H), 6.56-6.63 (m, 2H), 5.97 (s, 1H).

**Data S2.** Preparation of Cyclometalated Iridium Hydride **Ir-H.** Related to **Scheme 5**. Related to the fifth paragraph of "RESULTS AND DISCUSSION" in the main text.

According to Xiao's reference method, (Wang et al., 2013) under N<sub>2</sub> atmosphere, **Ir-3** (1 equiv.) and HCOOH/Et<sub>3</sub>N (F/T) azeotrope (4 equiv.) in methanol were introduced in a Schlenk tube, successively. The solution was left overnight; Crystals of **Ir-H** were collected after removing the liquid with syringe and washed with MeOH. 42% yield as red crystals; <sup>1</sup>H NMR (400 MHz, Tol)  $\delta$  7.20 (s, 1H), 7.05 (s, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.56 (d, *J* = 15.5 Hz, 2H), 6.34 (d, *J* = 7.8 Hz, 1H), 6.29 (d, *J* = 9.1 Hz, 1H), 6.05 (d, *J* = 7.8 Hz, 1H), 3.22 (s, 3H), 1.30 (s, 15H), -15.19 (s, 1H).

**Figure S98.** <sup>1</sup>H NMR spectrum of complex **Ir-H** in toluene-d<sup>8</sup>. Related to **Scheme 5**. Related to the fifth paragraph of "RESULTS AND DISCUSSION" in the main text.



**The details of the synthetic utility.** Related to the fourth paragraph of "RESULTS AND DISCUSSION" in the main text.



Scheme S3. The synthetic utility of the developed chemistry. Related to Scheme 4.

(1) **Preparation of 11:** To a solution of 5-(2-chloro-4-(trifluoromethyl)phenoxy)-2-nitrobenzoic acid (Acifluorfen Acid, 2 mmol) in THF under N<sub>2</sub> atmosphere, BH<sub>3</sub>-THF (1.0 M in THF. 2 mmol, 2 mL) was added at 0 °C over 1 hour. The resulting mixture was allowed to warm to room temperature over 32 hours. After reaction, THF was removed under vacuum; the reaction mixture was quenched with water, and extracted with EtOAc. The combined organic layer was dried with anhydrous sodium sulfate and solvent were removed under reduced pressure to give crude product. Crude product was purified by column chromatography to get **1**.

### (2) Synthesis of a herbicide 3la

A vial was charged with **1I** (0.5 mmol), **Ir-3** (1 mol %), *t*-BuONa (40 mol %) in succession. The vial was transferred into the autoclave. Once sealed, the autoclave was purged with argon gas, and then was injected with phenylmethanol **2a** (0.5 mmol) in toluene (1.5 mL) under Ar atmosphere. Then the autoclave was aerated with NH<sub>3</sub>, pressurized to 4 bar, heated up and kept at 140 °C for 24 h under thorough stirring. After the reaction, the autoclave was cooled to room temperature, depressurized, and the resulting mixture was purified by preparative TCL on silica to get the product **3Ia**.

# (3) Synthesis of herbicide 4ja

The mixture of **3ja** (0.5 mmol), benzylamine (1 mmol), lithium bromide (3 mmol), and CuBr<sub>2</sub> (0.1 mmol) in chlorobenzene (3 mL) was stirred at 120 °C for 32 h using an O<sub>2</sub> balloon. After being cooled to room temperature, the resulting mixture was extracted with chloroform, washed with 5% Na<sub>2</sub>CO<sub>3</sub> solution, dried with anhydrous sodium sulfate, and then concentrated by removing the solvent under vacuum. Finally, the residue was purified by preparative TLC on silica to give the product **4ja**.

## (4) Synthesis of functionalized multi conjugate N-heteroaromatic 5ja

Under N<sub>2</sub> atmosphere, **4ja** (0.5 mmol), ethynylbenzene (0.65 mmol), PdCl<sub>2</sub> (5 mol %), Cul (20 mol %), PPh<sub>3</sub> (10 mol %), N(C<sub>2</sub>H5)<sub>3</sub> (1.5 mmol), and DMF (1.0 mL) were introduced in a Schlenk tube, successively. Then the Schlenk tube was closed, and the resulting mixture was stirred at 90 °C for 12 h. After being cooled to room temperature, the resulting mixture was extracted with chloroform, washed with 5% Na<sub>2</sub>CO<sub>3</sub> solution, dried with anhydrous sodium

sulfate, and then concentrated by removing the solvent under vacuum. Finally, the residue was purified by preparative TLC on silica to give the product **5***ja*.

**Scheme S4**. MPV-O TH pathway. Related to **Figure 2**. (Values shown are relative free energies in kcal/mol.) Related to the sixth paragraph of "RESULTS AND DISCUSSION" in the main text.



The calculated free-energy profile for the 2<sup>nd</sup> TH of **1a-2** to **1a-3** is shown in Figure S99. The reaction begins with coordination of 2a to the Ir center of Ir-O1 to form intermediate IN8, which is an endergonic process. Subsequent O-H deprotonation via four-centered transition-state **TS6** with an energy barrier of 23.3 kcal/mol relative to Ir-O1 gives Ir-alkoxide intermediate Ir-O2 and t-BuOH. From Ir-O2, C-H cleavage via transition state TS7 gives Irbenzaldehyde IN9 with an energy barrier of 27.0 kcal/mol relative to Ir-O2. Intermediate IN9 would then dissociate to give Ir-H together with the benzaldehyde. The next step is the TH from Ir-H to 1a-2. We calculated two possible pathways: hydrogen migration to N atom via TS8' (blue line) and hydrogen migration to O atom via TS8" (red line). The results show that the barrier (24.7 kcal/mol) for hydrogen migration to O atom is higher than that (19.6 kcal/mol) for hydrogen migration to N atom, therefore the hydrogen migration to N atom is kinetically favorable. Previously, it has been shown that such a H-transfer could be facilitated by a transferring shuttle such as water or alcohol proton shuttle. We performed calculations for hydrogen migration to N atom when using benzyl alcohol 2a as the proton transferring shuttle (black line). The calculated free energy of transition state TS8 for the hydrogenation assisted by 2a is -12.2 kcal/mol, which is lower than that of TS8'. Therefore, the hydrogen migration to the N atom using 2a as the proton transferring shuttle constitutes a preferred mode. The relative instability of TS8 compared with TS8' can be attributed to the ring strain associated with the four-membered ring in TS8'. IN10 then isomerizes to the less stable intermediate IN11 by coordination of **2a** to the Ir center and dissociation of one of the arms of the 1,8-naphthyridyl ligand. The TH is accomplished via transition state **TS9** with an energy barrier of 23.0 kcal/mol relative to IN10, which generates the 2-(hydroxyamino)benzaldehyde 1a-3 and complex Ir-O2.

Figure S99. Calculated energy profiles for transformation of 2-nitrosobenzaldehyde **1a-2** to 2-(hydroxyamino)benzaldehyde **1a-3**. Values shown are relative free energies in kcal/mol. Related to Figure 2 & Figure 3. Related to the seventh paragraph of "RESULTS AND DISCUSSION" in the main text.



Figure S100. Calculated energy profiles for transformation of 2-(hydroxyamino)benzaldehyde 1a-3 to 2-aminobenzaldehyde. Values shown are relative free energies in kcal/mol. Related to Figure 2 & Figure 3. Related to the seventh paragraph of "RESULTS AND DISCUSSION" in the main text.



As shown in Figure S100 (3<sup>rd</sup> TH), **Ir-O2** is transformed to **IN9** through  $\beta$ -H elimination. The identified transition state is denoted as **TS10** and the calculated energy barrier is 25.8 kcal/mol. A molecule of **1a-3** enters and then the benzaldehyde dissociates to yield intermediate **IN12**. Subsequently, **IN12** undergoes dehydration by passing transition state **TS11**, affording an Ir-nitrene intermediate **IN13**. Binding of **IN13** with benzyl alcohol **2a** via a hydrogen bond affords intermediate **IN14**. From **IN14**, the TH using **2a** as the proton transferring shuttle takes place via **TS12** to give complex **IN15**, in which **2a** is bound to Ir. The hydrogen of **2a** is transferred to the nitrogen atom via **TS13** with a very small barrier of 1.8 kcal/mol. The iridium 2-aminobenzaldehyde **IN16** is generated with the formation of alcohol anion, which is stabilized by the hydrogen bonding by alcohol **2a**.

**Scheme S5**. Hydrogen migration to N atom using *t*-BuOH as the proton transferring shuttle. Values shown are relative free energies in kcal/mol. Related to **Figure 2** & **Figure 3**. Related to the seventh paragraph of "RESULTS AND DISCUSSION" in the main text.


Scheme S6. Other possible pathway started from IN12. Values shown are relative free energies in kcal/mol. Related to Figure 2 & Figure 3. Related to the seventh paragraph of "RESULTS AND DISCUSSION" in the main text.



**Scheme S7**. Other possible pathway started from **IN19**. Values shown are relative free energies in kcal/mol. Related to **Figure 3**. Related to the seventh paragraph of "RESULTS AND DISCUSSION" in the main text.



**Scheme S8.** Other possible pathway started from **IN21**. Values shown are relative free energies in kcal/mol. Related to **Figure 3**. Related to the seventh paragraph of "RESULTS AND DISCUSSION" in the main text.



Table S3. Energies (in Hartree) for all TS and intermediates. Related to Figure 2, Figure 3,Figure S99, Figure S100 and Scheme S4, Scheme S5, Scheme S6, Scheme S7 & Scheme S8.

| Geometry | Eo           | E            | H <sub>413.15</sub> | <b>G</b> 413.15 | E <sub>(sol,M06)</sub> |
|----------|--------------|--------------|---------------------|-----------------|------------------------|
| lr-01    | -1490.293732 | -1490.229403 | -1490.228095        | -1490.402536    | -1489.75506            |
| 1a       | -551.134366  | -551.117956  | -551.116647         | -551.187508     | -551.0114631           |
| IN1      | -2041.416957 | -2041.333032 | -2041.331723        | -2041.557112    | -2040.745557           |

| TS1              | -2041.408804 | -2041.326030 | -2041.324722 | -2041.544271 | -2040.732445 |
|------------------|--------------|--------------|--------------|--------------|--------------|
| IN2              | -1807.908586 | -1807.839290 | -1807.837982 | -1808.028124 | -1807.287753 |
| TS2              | -1807.855907 | -1807.786936 | -1807.785627 | -1807.974158 | -1807.243077 |
| IN3              | -1807.870208 | -1807.800571 | -1807.799263 | -1807.989963 | -1807.25635  |
| lr-H             | -1807.910263 | -1807.839392 | -1807.838084 | -1808.037770 | -1807.29225  |
| TS3              | -1807.877623 | -1807.807900 | -1807.806592 | -1807.997863 | -1807.261206 |
| IN4              | -1807.907399 | -1807.836988 | -1807.835680 | -1808.027498 | -1807.296366 |
| <i>t</i> -BuOH   | -233.536268  | -233.524255  | -233.522947  | -233.580384  | -233.4931922 |
| IN5              | -2041.458380 | -2041.374111 | -2041.372803 | -2041.595922 | -2040.781565 |
| TS4              | -2041.404858 | -2041.320656 | -2041.319347 | -2041.539368 | -2040.742495 |
| IN6              | -2041.417579 | -2041.331447 | -2041.330139 | -2041.555450 | -2040.759786 |
| 1a-2             | -474.748119  | -474.733612  | -474.732303  | -474.799019  | -474.619815  |
| H <sub>2</sub> O | -76.390125   | -76.386179   | -76.384871   | -76.416321   | -76.42743    |
| <i>t</i> -BuONa  | -395.263703  | -395.249546  | -395.248238  | -395.314796  | -395.2140859 |
| IN7              | -712.877431  | -712.858262  | -712.856954  | -712.936649  | -712.7460679 |
| TS5              | -712.826173  | -712.807984  | -712.806675  | -712.881912  | -712.6933673 |
| NaOH             | -238.108646  | -238.103584  | -238.102276  | -238.142390  | -238.1421522 |
| 2a               | -346.636496  | -346.623523  | -346.622215  | -346.686686  | -346.5400135 |
| IN8              | -1836.911027 | -1836.831642 | -1836.830334 | -1837.042138 | -1836.255335 |
| TS6              | -1836.913327 | -1836.834518 | -1836.833210 | -1837.043820 | -1836.257927 |
| lr-O2            | -1603.408090 | -1603.342829 | -1603.341521 | -1603.522468 | -1602.81245  |
| TS7              | -1603.362712 | -1603.297952 | -1603.296643 | -1603.474749 | -1602.769385 |
| IN9              | -1603.377738 | -1603.312241 | -1603.310933 | -1603.491010 | -1602.78172  |
| 2a-1             | -345.466000  | -345.454515  | -345.453207  | -345.511975  | -345.3587192 |
| TS8              | -2079.312101 | -2079.229325 | -2079.228017 | -2079.448190 | -2078.589596 |
| IN10             | -2079.384394 | -2079.300413 | -2079.299104 | -2079.524868 | -2078.654402 |
| TS8'             | -1732.657052 | -1732.588403 | -1732.587095 | -1732.777218 | -1732.045384 |
| IN10'            | -1732.735862 | -1732.667536 | -1732.666227 | -1732.851169 | -1732.126231 |
| TS8"             | -1732.641503 | -1732.573418 | -1732.572109 | -1732.757193 | -1732.037325 |
| IN10"            | -1732.728208 | -1732.660113 | -1732.658804 | -1732.842567 | -1732.129858 |
| TS8-1            | -1966.204210 | -1966.122334 | -1966.121026 | -1966.336549 | -1965.540029 |
| IN11             | -2079.347461 | -2079.263782 | -2079.262473 | -2079.487346 | -2078.621626 |
| TS9              | -2079.344560 | -2079.261430 | -2079.260122 | -2079.482288 | -2078.617761 |
| 1a-3             | -475.953316  | -475.937391  | -475.936082  | -476.005475  | -475.8397945 |
| TS10             | -1603.362712 | -1603.297952 | -1603.296643 | -1603.474749 | -1602.769385 |
| IN12             | -1733.873484 | -1733.803692 | -1733.802383 | -1733.991017 | -1733.272035 |
| TS11             | -1733.844795 | -1733.773839 | -1733.772530 | -1733.966068 | -1733.253426 |
| IN13             | -1733.909215 | -1733.837124 | -1733.835815 | -1734.033472 | -1733.317896 |
| TS11'            | -1733.810514 | -1733.740262 | -1733.738954 | -1733.929844 | -1733.203408 |
| IN13'            | -1733.894687 | -1733.824729 | -1733.823420 | -1734.012897 | -1733.301025 |
| IN14             | -2004.142375 | -2004.060198 | -2004.058890 | -2004.280108 | -2003.425822 |
| TS12             | -2004.126634 | -2004.045630 | -2004.044321 | -2004.261454 | -2003.398905 |
| IN15             | -2004.184670 | -2004.102997 | -2004.101689 | -2004.320682 | -2003.468364 |
| TS13             | -2004.182515 | -2004.101566 | -2004.100258 | -2004.317473 | -2003.46559  |

| IN16            | -2350.855816 | -2350.758697 | -2350.757388 | -2351.016560 | -2350.016557 |
|-----------------|--------------|--------------|--------------|--------------|--------------|
| IN17            | -2295.510124 | -2295.415682 | -2295.414374 | -2295.666119 | -2294.671788 |
| 1a-4            | -400.801794  | -400.787647  | -400.786339  | -400.850827  | -400.6899132 |
| NH <sub>3</sub> | -56.514029   | -56.509968   | -56.508659   | -56.540764   | -56.5317547  |
| TS14            | -1659.203233 | -1659.135024 | -1659.133716 | -1659.319764 | -1658.58771  |
| IN18            | -1659.201798 | -1659.133525 | -1659.132216 | -1659.318261 | -1658.58754  |
| TS14'           | -1714.532549 | -1714.463006 | -1714.461698 | -1714.648483 | -1713.91008  |
| IN18'           | -1714.542462 | -1714.473759 | -1714.472451 | -1714.656625 | -1713.918227 |
| IN19            | -1715.733012 | -1715.659948 | -1715.658640 | -1715.857467 | -1715.118292 |
| IN19'           | -1771.060274 | -1770.986486 | -1770.985177 | -1771.180845 | -1770.452496 |
| TS15            | -1715.723377 | -1715.652685 | -1715.651377 | -1715.840531 | -1715.107175 |
| IN20            | -1715.728350 | -1715.655572 | -1715.654264 | -1715.849553 | -1715.120182 |
| TS15'           | -1771.062498 | -1770.988987 | -1770.987679 | -1771.183810 | -1770.443594 |
| IN20'           | -1771.064440 | -1770.989750 | -1770.988441 | -1771.186668 | -1770.450352 |
| TS15-1          | -1659.167866 | -1659.100380 | -1659.099072 | -1659.284664 | -1658.557134 |
| TS15-2          | -1892.729659 | -1892.649609 | -1892.648301 | -1892.857627 | -1892.057864 |
| IN21            | -1715.747857 | -1715.675119 | -1715.673811 | -1715.868374 | -1715.139997 |
| IN21'           | -1771.083117 | -1771.008716 | -1771.007408 | -1771.204529 | -1770.468709 |
| TS16            | -1715.703685 | -1715.631683 | -1715.630375 | -1715.823540 | -1715.095749 |
| IN22            | -1715.747576 | -1715.673008 | -1715.671699 | -1715.873345 | -1715.139803 |
| TS16'           | -1771.042429 | -1770.968860 | -1770.967551 | -1771.161731 | -1770.424036 |
| IN22'           | -1771.091888 | -1771.015464 | -1771.014156 | -1771.217697 | -1770.476703 |
| IN21"           | -1715.744916 | -1715.672216 | -1715.670908 | -1715.866802 | -1715.13918  |
| TS16"           | -1715.701957 | -1715.630330 | -1715.629021 | -1715.820097 | -1715.087871 |
| IN22"           | -1715.749138 | -1715.673841 | -1715.672532 | -1715.877915 | -1715.143996 |
| TS16-1          | -1659.137223 | -1659.069786 | -1659.068478 | -1659.250792 | -1658.533044 |
| TS16-2          | -1892.704617 | -1892.624842 | -1892.623534 | -1892.832588 | -1892.038956 |
| TS16-3          | -1735.561694 | -1735.491091 | -1735.489783 | -1735.678620 | -1734.968226 |
| 2a-2            | -325.571476  | -325.559576  | -325.558268  | -325.618207  | -325.4553086 |
| 2a-3            | -380.907260  | -380.893214  | -380.891906  | -380.955684  | -380.7845477 |

E<sub>0</sub> = Sum of electronic and zero-point Energies by B3LYP in solvent

E = Sum of electronic and thermal Energies by B3LYP in solvent

H<sub>413.15</sub> = Sum of electronic and thermal Enthalpies by B3LYP in solvent

G<sub>413.15</sub> = Sum of electronic and thermal Free Energies by B3LYP in solvent

E(sol, M06) = Single point energies calculated by M06 in solvent

# Calculated imaginary frequencies of all transition states species

Table S4. Calculated imaginary frequencies of all transition states species for substrate.Related to Figure 2, Figure 3, Figure S99, Figure S100 and Scheme S4, Scheme S5,Scheme S6, Scheme S7 & Scheme S8.

| Species | Frequency |
|---------|-----------|
| TS1     | -584.09   |
| TS2     | -743.09   |
| TS3     | -425.57   |

| TS4    | -715.20  |
|--------|----------|
| TS5    | -1746.69 |
| TS6    | -737.34  |
| TS7    | -686.33  |
| TS8    | -901.67  |
| TS8'   | -860.06  |
| TS8"   | -679.02  |
| TS8-1  | -860.46  |
| TS9    | -757.76  |
| TS10   | -686.33  |
| TS11   | -593.96  |
| TS11'  | -627.49  |
| TS12   | -563.41  |
| TS13   | -1148.07 |
| TS14   | -144.35  |
| TS14'  | -140.97  |
| TS15   | -57.07   |
| TS15'  | -316.98  |
| TS15-1 | -1654.38 |
| TS15-2 | -829.31  |
| TS16   | -697.59  |
| TS16'  | -281.04  |
| TS16"  | -716.03  |
| TS16-1 | -1584.06 |
| TS16-2 | -832.94  |
| TS16-3 | -1062.09 |
|        |          |

# Crystallographic data of complex Ir-3.

\_\_\_\_

**Figure S101**. Molecular structure of **Ir-3** is displayed with thermal ellipsoids set at 50% probability (Hydrogen atoms are omitted for clarity. CCDC: 1848110). Related to **Table 1**.



 Table S5. Crystal data and structure refinement for Ir-3. Related to Table 1.

| Identification code | lr-3                                                 |
|---------------------|------------------------------------------------------|
| Empirical formula   | C <sub>25</sub> H <sub>26</sub> CIIrN <sub>2</sub> O |
| Formula weight      | 598.13                                               |

| Temperature/K                         | 100.00(10)                                    |
|---------------------------------------|-----------------------------------------------|
| Crystal system                        | orthorhombic                                  |
| Space group                           | P212121                                       |
| a/Å                                   | 9.0070(4)                                     |
| b/Å                                   | 14.7851(8)                                    |
| c/Å                                   | 16.1262(6)                                    |
| α/°                                   | 90                                            |
| β/°                                   | 90                                            |
| γ/°                                   | 90                                            |
| Volume/Å <sup>3</sup>                 | 2147.52(17)                                   |
| Z                                     | 4                                             |
| ρ <sub>calc</sub> g/cm <sup>3</sup>   | 1.850                                         |
| µ/mm <sup>-1</sup>                    | 6.361                                         |
| F(000)                                | 1168.0                                        |
| Crystal size/mm <sup>3</sup>          | 0.13 × 0.12 × 0.11                            |
| Radiation                             | ΜοΚα (λ = 0.71073)                            |
| $2\Theta$ range for data collection/° | 5.052 to 49.994                               |
| Index ranges                          | -10 ≤ h ≤ 9, -12 ≤ k ≤ 17, -19 ≤ l ≤ 15       |
| Reflections collected                 | 14026                                         |
| Independent reflections               | $3783 [R_{int} = 0.0488, R_{sigma} = 0.0487]$ |
| Data/restraints/parameters            | 3783/12/277                                   |
| Goodness-of-fit on F <sup>2</sup>     | 1.033                                         |
| Final R indexes [I>=2σ (I)]           | $R_1 = 0.0294, wR_2 = 0.0519$                 |
| Final R indexes [all data]            | $R_1 = 0.0356$ , $wR_2 = 0.0545$              |
| Largest diff. peak/hole / e Å-3       | 1.03/-0.77                                    |
| Flack parameter                       | -0.027(7)                                     |

**Table S6.** Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup> $\times 10^3$ ) for **Ir-3**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor. Related to **Table 1**.

| Atom  | x        | У       | Z       | U(eq)    |
|-------|----------|---------|---------|----------|
| C(1)  | 671(10)  | 6964(7) | 59(6)   | 25(2)    |
| C(2)  | 698(10)  | 7845(8) | -244(6) | 29(3)    |
| C(3)  | 1351(10) | 8496(7) | 223(6)  | 24(2)    |
| C(4)  | 2021(9)  | 8266(6) | 992(5)  | 18(2)    |
| C(5)  | 1950(8)  | 7340(6) | 1227(5) | 14(2)    |
| C(6)  | 2747(10) | 8882(6) | 1519(5) | 23(2)    |
| C(7)  | 3433(9)  | 8583(6) | 2212(5) | 20(2)    |
| C(8)  | 3393(7)  | 7652(5) | 2427(6) | 15.3(18) |
| C(9)  | 4163(9)  | 7236(6) | 3116(5) | 16(2)    |
| C(10) | 5133(9)  | 7695(7) | 3643(5) | 18(2)    |

| 20(2)     | 4236(5)    | 7244(7)    | 5935(9)   | C(11) |
|-----------|------------|------------|-----------|-------|
| 18(2)     | 4293(5)    | 6299(7)    | 5797(9)   | C(12) |
| 16(2)     | 3793(5)    | 5843(7)    | 4798(8)   | C(13) |
| 11.5(19)  | 3206(5)    | 6291(6)    | 3948(8)   | C(14) |
| 24(2)     | 5376(5)    | 6218(6)    | 7620(10)  | C(15) |
| 19(2)     | 2999(5)    | 5757(7)    | 192(9)    | C(16) |
| 20(2)     | 3447(6)    | 5157(7)    | 1123(9)   | C(17) |
| 20(2)     | 2885(5)    | 4445(6)    | 1600(10)  | C(18) |
| 20(2)     | 2111(6)    | 4601(6)    | 824(10)   | C(19) |
| 20(2)     | 2185(6)    | 5378(6)    | -36(9)    | C(20) |
| 30(3)     | 3324(6)    | 6583(7)    | -569(11)  | C(21) |
| 31(3)     | 4362(6)    | 5208(8)    | 1490(11)  | C(22) |
| 24(2)     | 3116(5)    | 3611(6)    | 2466(10)  | C(23) |
| 27(3)     | 1348(6)    | 4030(7)    | 994(11)   | C(24) |
| 25(2)     | 1591(6)    | 5728(7)    | -1211(9)  | C(25) |
| 18.9(5)   | 1547.5(13) | 5281.0(16) | 4379(2)   | CI(1) |
| 12.78(10) | 2458.3(2)  | 5739.5(2)  | 2385.5(3) | lr(1) |
| 17.2(18)  | 765(4)     | 6697(5)    | 1296(7)   | N(1)  |
| 12.4(15)  | 1966(4)    | 7057(4)    | 2595(7)   | N(2)  |
| 20.6(14)  | 4823(3)    | 5772(5)    | 6620(6)   | O(1)  |

**Table S7.** Anisotropic Displacement Parameters  $(Å^2 \times 10^3)$  for **Ir-3**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ . Related to **Table 1**.

| Atom  | <b>U</b> 11 | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | <b>U</b> <sub>12</sub> |
|-------|-------------|-----------------|-----------------|-----------------|-----------------|------------------------|
| C(1)  | 15(5)       | 35(7)           | 25(6)           | -4(5)           | -8(4)           | 6(4)                   |
| C(2)  | 31(6)       | 36(8)           | 20(6)           | 5(5)            | -10(4)          | 6(5)                   |
| C(3)  | 29(6)       | 21(7)           | 21(6)           | 10(5)           | -2(4)           | 3(5)                   |
| C(4)  | 15(5)       | 18(6)           | 21(5)           | 7(4)            | 5(3)            | 4(4)                   |
| C(5)  | 6(4)        | 25(6)           | 12(5)           | 3(4)            | 3(3)            | 3(4)                   |
| C(6)  | 22(5)       | 14(5)           | 31(5)           | 4(4)            | 2(4)            | -1(4)                  |
| C(7)  | 21(5)       | 9(5)            | 31(6)           | 1(4)            | -4(4)           | 1(4)                   |
| C(8)  | 15(4)       | 16(5)           | 16(5)           | -4(5)           | 1(4)            | -1(3)                  |
| C(9)  | 19(5)       | 13(6)           | 16(5)           | 0(4)            | 9(4)            | -3(4)                  |
| C(10) | 16(5)       | 18(6)           | 19(5)           | -5(4)           | 3(4)            | 2(4)                   |
| C(11) | 15(5)       | 29(7)           | 16(5)           | -7(5)           | -1(4)           | -6(4)                  |
| C(12) | 14(5)       | 29(7)           | 11(5)           | 3(4)            | 5(3)            | -1(4)                  |
| C(13) | 11(4)       | 18(6)           | 19(5)           | -5(4)           | 0(3)            | -4(4)                  |
| C(14) | 9(4)        | 14(5)           | 11(5)           | -4(4)           | 5(3)            | -1(4)                  |
| C(15) | 23(5)       | 28(6)           | 21(5)           | 1(4)            | -10(4)          | -4(5)                  |

| 9(3)      | 7(5)                                                                                                                                                                  | 20(5)                                                                                                                                                                                                                                                                                               | 25(6)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11(5)                                                 | C(16)                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 1.0(13)   | 0.7(13)                                                                                                                                                               | 20(2)                                                                                                                                                                                                                                                                                               | 20(2)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19(2)                                                 | C(17)                                                 |
| 0.2(13)   | 0.4(13)                                                                                                                                                               | 19(3)                                                                                                                                                                                                                                                                                               | 19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20(3)                                                 | C(18)                                                 |
| -6(4)     | 0(4)                                                                                                                                                                  | 24(5)                                                                                                                                                                                                                                                                                               | 15(6)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22(5)                                                 | C(19)                                                 |
| 1(3)      | 4(4)                                                                                                                                                                  | 27(6)                                                                                                                                                                                                                                                                                               | 23(6)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10(5)                                                 | C(20)                                                 |
| 4(4)      | -3(5)                                                                                                                                                                 | 23(6)                                                                                                                                                                                                                                                                                               | 33(7)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36(6)                                                 | C(21)                                                 |
| 4(4)      | 3(5)                                                                                                                                                                  | 14(5)                                                                                                                                                                                                                                                                                               | 42(7)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37(6)                                                 | C(22)                                                 |
| 0(5)      | 3(4)                                                                                                                                                                  | 20(5)                                                                                                                                                                                                                                                                                               | 19(5)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33(6)                                                 | C(23)                                                 |
| -16(4)    | -6(5)                                                                                                                                                                 | 30(6)                                                                                                                                                                                                                                                                                               | 19(7)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32(6)                                                 | C(24)                                                 |
| 0(4)      | 4(5)                                                                                                                                                                  | 32(6)                                                                                                                                                                                                                                                                                               | 26(6)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17(5)                                                 | C(25)                                                 |
| 1.6(9)    | 0.3(10)                                                                                                                                                               | 15.7(12)                                                                                                                                                                                                                                                                                            | 19.1(14)                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.8(12)                                              | CI(1)                                                 |
| -0.40(18) | -0.10(17)                                                                                                                                                             | 12.28(16)                                                                                                                                                                                                                                                                                           | 12.03(17)                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.04(16)                                             | lr(1)                                                 |
| -2(3)     | 1(4)                                                                                                                                                                  | 14(4)                                                                                                                                                                                                                                                                                               | 20(5)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18(4)                                                 | N(1)                                                  |
| 2(3)      | 2(3)                                                                                                                                                                  | 14(3)                                                                                                                                                                                                                                                                                               | 15(4)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8(4)                                                  | N(2)                                                  |
| -4(2)     | 4(3)                                                                                                                                                                  | 20(3)                                                                                                                                                                                                                                                                                               | 23(4)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19(3)                                                 | O(1)                                                  |
|           | $\begin{array}{c} 9(3) \\ 1.0(13) \\ 0.2(13) \\ -6(4) \\ 1(3) \\ 4(4) \\ 4(4) \\ 0(5) \\ -16(4) \\ 0(4) \\ 1.6(9) \\ -0.40(18) \\ -2(3) \\ 2(3) \\ -4(2) \end{array}$ | $\begin{array}{cccc} 7(5) & 9(3) \\ 0.7(13) & 1.0(13) \\ 0.4(13) & 0.2(13) \\ 0(4) & -6(4) \\ 4(4) & 1(3) \\ -3(5) & 4(4) \\ 3(5) & 4(4) \\ 3(5) & 4(4) \\ 3(5) & -16(4) \\ 4(5) & 0(4) \\ 0.3(10) & 1.6(9) \\ -0.10(17) & -0.40(18) \\ 1(4) & -2(3) \\ 2(3) & 2(3) \\ 4(3) & -4(2) \\ \end{array}$ | $\begin{array}{c cccccc} 20(5) & 7(5) & 9(3) \\ 20(2) & 0.7(13) & 1.0(13) \\ 19(3) & 0.4(13) & 0.2(13) \\ 24(5) & 0(4) & -6(4) \\ 27(6) & 4(4) & 1(3) \\ 23(6) & -3(5) & 4(4) \\ 14(5) & 3(5) & 4(4) \\ 20(5) & 3(4) & 0(5) \\ 30(6) & -6(5) & -16(4) \\ 32(6) & 4(5) & 0(4) \\ 15.7(12) & 0.3(10) & 1.6(9) \\ 12.28(16) & -0.10(17) & -0.40(18) \\ 14(4) & 1(4) & -2(3) \\ 14(3) & 2(3) & 2(3) \\ 20(3) & 4(3) & -4(2) \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Table S8. Bond Lengths for Ir-3. Related to Table 1.

| Atom Atom   | Length/Å  | Atom Atom   | Length/Å  |
|-------------|-----------|-------------|-----------|
| C(1) C(2)   | 1.391(14) | C(14) Ir(1) | 2.024(8)  |
| C(1) N(1)   | 1.331(11) | C(15) O(1)  | 1.429(9)  |
| C(2) C(3)   | 1.356(14) | C(16) C(17) | 1.418(12) |
| C(3) C(4)   | 1.420(12) | C(16) C(20) | 1.443(12) |
| C(4) C(5)   | 1.422(12) | C(16) C(21) | 1.494(13) |
| C(4) C(6)   | 1.406(12) | C(16) Ir(1) | 2.160(8)  |
| C(5) N(1)   | 1.343(11) | C(17) C(18) | 1.454(13) |
| C(5) N(2)   | 1.391(10) | C(17) C(22) | 1.514(13) |
| C(6) C(7)   | 1.352(12) | C(17) Ir(1) | 2.139(9)  |
| C(7) C(8)   | 1.420(12) | C(18) C(19) | 1.450(12) |
| C(8) C(9)   | 1.447(12) | C(18) C(23) | 1.505(12) |
| C(8) N(2)   | 1.357(10) | C(18) Ir(1) | 2.154(9)  |
| C(9) C(10)  | 1.396(12) | C(19) C(20) | 1.391(13) |
| C(9) C(14)  | 1.418(13) | C(19) C(24) | 1.499(12) |
| C(10) C(11) | 1.372(12) | C(19) Ir(1) | 2.263(9)  |
| C(11) C(12) | 1.406(13) | C(20) C(25) | 1.517(12) |
| C(12) C(13) | 1.383(12) | C(20) Ir(1) | 2.288(9)  |
| C(12) O(1)  | 1.373(10) | Cl(1) lr(1) | 2.417(2)  |
| C(13) C(14) | 1.386(12) | lr(1) N(2)  | 2.112(6)  |

Table S9. Bond Angles for Ir-3. Related to Table 1.

| Atom Atom Atom    | Angle/°   | Atom Atom Atom    | Angle/°   |
|-------------------|-----------|-------------------|-----------|
| N(1) C(1) C(2)    | 124.8(9)  | C(18) C(19) Ir(1) | 66.8(5)   |
| C(3) C(2) C(1)    | 118.5(9)  | C(20) C(19) C(18) | 109.1(8)  |
| C(2) C(3) C(4)    | 120.0(10) | C(20) C(19) C(24) | 126.3(8)  |
| C(3) C(4) C(5)    | 116.3(9)  | C(20) C(19) Ir(1) | 73.2(5)   |
| C(6) C(4) C(3)    | 124.8(9)  | C(24) C(19) Ir(1) | 123.9(6)  |
| C(6) C(4) C(5)    | 118.9(8)  | C(16) C(20) C(25) | 122.8(9)  |
| N(1) C(5) C(4)    | 123.6(8)  | C(16) C(20) Ir(1) | 66.3(5)   |
| N(1) C(5) N(2)    | 116.4(8)  | C(19) C(20) C(16) | 108.6(8)  |
| N(2) C(5) C(4)    | 119.9(8)  | C(19) C(20) C(25) | 128.0(9)  |
| C(7) C(6) C(4)    | 120.1(9)  | C(19) C(20) Ir(1) | 71.2(5)   |
| C(6) C(7) C(8)    | 120.4(9)  | C(25) C(20) Ir(1) | 135.0(6)  |
| C(7) C(8) C(9)    | 125.9(8)  | C(14) Ir(1) C(16) | 113.0(3)  |
| N(2) C(8) C(7)    | 120.6(8)  | C(14) Ir(1) C(17) | 95.0(3)   |
| N(2) C(8) C(9)    | 113.5(7)  | C(14) Ir(1) C(18) | 113.3(3)  |
| C(10) C(9) C(8)   | 124.1(8)  | C(14) Ir(1) C(19) | 151.5(3)  |
| C(10) C(9) C(14)  | 120.2(8)  | C(14) Ir(1) C(20) | 150.6(3)  |
| C(14) C(9) C(8)   | 115.6(8)  | C(14) Ir(1) CI(1) | 87.6(2)   |
| C(11) C(10) C(9)  | 121.2(9)  | C(14) Ir(1) N(2)  | 77.9(3)   |
| C(10) C(11) C(12) | 118.8(8)  | C(16) lr(1) C(19) | 62.7(4)   |
| C(13) C(12) C(11) | 120.2(8)  | C(16) Ir(1) C(20) | 37.7(3)   |
| O(1) C(12) C(11)  | 123.8(8)  | C(16) lr(1) Cl(1) | 158.2(3)  |
| O(1) C(12) C(13)  | 116.0(9)  | C(17) lr(1) C(16) | 38.5(3)   |
| C(12) C(13) C(14) | 121.7(9)  | C(17) Ir(1) C(18) | 39.6(3)   |
| C(9) C(14) Ir(1)  | 115.5(6)  | C(17) lr(1) C(19) | 63.6(3)   |
| C(13) C(14) C(9)  | 117.7(8)  | C(17) Ir(1) C(20) | 62.8(3)   |
| C(13) C(14) Ir(1) | 126.8(7)  | C(17) Ir(1) Cl(1) | 137.3(3)  |
| C(17) C(16) C(20) | 107.7(9)  | C(18) lr(1) C(16) | 65.3(4)   |
| C(17) C(16) C(21) | 127.2(8)  | C(18) Ir(1) C(19) | 38.2(3)   |
| C(17) C(16) Ir(1) | 69.9(5)   | C(18) Ir(1) C(20) | 62.7(3)   |
| C(20) C(16) C(21) | 124.8(8)  | C(18) Ir(1) CI(1) | 100.9(2)  |
| C(20) C(16) Ir(1) | 75.9(5)   | C(19) Ir(1) C(20) | 35.6(3)   |
| C(21) C(16) Ir(1) | 124.8(7)  | C(19) Ir(1) CI(1) | 95.9(2)   |
| C(16) C(17) C(18) | 108.2(8)  | C(20) Ir(1) CI(1) | 121.7(2)  |
| C(16) C(17) C(22) | 126.4(9)  | N(2) Ir(1) C(16)  | 102.8(3)  |
| C(16) C(17) lr(1) | 71.5(5)   | N(2) Ir(1) C(17)  | 134.3(3)  |
| C(18) C(17) C(22) | 125.4(9)  | N(2) Ir(1) C(18)  | 165.8(3)  |
| C(18) C(17) Ir(1) | 70.7(5)   | N(2) Ir(1) C(19)  | 130.4(3)  |
| C(22) C(17) Ir(1) | 126.1(6)  | N(2) Ir(1) C(20)  | 103.2(3)  |
| C(17) C(18) C(23) | 126.3(8)  | N(2) Ir(1) Cl(1)  | 87.94(18) |

| C(17) C(18) lr(1) | 69.7(5) C(1) N(1) C(5)    | 116.7(8) |
|-------------------|---------------------------|----------|
| C(19) C(18) C(17) | 106.1(8) C(5) N(2) Ir(1)  | 124.2(6) |
| C(19) C(18) C(23) | 126.4(8) C(8) N(2) C(5)   | 119.7(7) |
| C(19) C(18) Ir(1) | 75.0(5) C(8) N(2) Ir(1)   | 116.1(5) |
| C(23) C(18) Ir(1) | 129.6(6) C(12) O(1) C(15) | 117.9(7) |
| C(18) C(19) C(24) | 124.5(8)                  |          |

**Table S10.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **Ir-3**. Related to **Table 1**.

| Atom   | X        | У       | Z       | U(eq) |
|--------|----------|---------|---------|-------|
| H(1)   | 179.5    | 6529.69 | -255.38 | 30    |
| H(2)   | 278.59   | 7984.1  | -755.41 | 35    |
| H(3)   | 1360.63  | 9092.16 | 39.49   | 28    |
| H(6)   | 2754.63  | 9494.83 | 1390.15 | 27    |
| H(7)   | 3934.73  | 8990.1  | 2551.23 | 24    |
| H(10)  | 5238.41  | 8317.93 | 3591.53 | 21    |
| H(11)  | 6559.39  | 7557.2  | 4594.56 | 24    |
| H(13)  | 4694.44  | 5220.43 | 3851.87 | 19    |
| H(15A) | 8361.16  | 6534.5  | 5061.52 | 35    |
| H(15B) | 8091.64  | 5778.45 | 5726.26 | 35    |
| H(15C) | 7080.1   | 6641.16 | 5712.29 | 35    |
| H(21A) | -1582.4  | 6440.83 | 3453.81 | 46    |
| H(21B) | -540.4   | 7050.56 | 2911.77 | 46    |
| H(21C) | -70.98   | 6787.5  | 3816.27 | 46    |
| H(22A) | 1764.71  | 5816.42 | 4502.18 | 46    |
| H(22B) | 2300.14  | 4807.76 | 4482.86 | 46    |
| H(22C) | 636.42   | 5032.8  | 4680.29 | 46    |
| H(23A) | 3268.95  | 3775.21 | 3476.79 | 36    |
| H(23B) | 2856.32  | 3335.27 | 2622.84 | 36    |
| H(23C) | 1823.73  | 3191.27 | 3394.19 | 36    |
| H(24A) | 1987.92  | 3797.17 | 1322.17 | 41    |
| H(24B) | 800.31   | 4391.11 | 865.54  | 41    |
| H(24C) | 303      | 3536.37 | 1369.29 | 41    |
| H(25A) | -2173.78 | 5537.53 | 1777.93 | 37    |
| H(25B) | -1029.28 | 5489.81 | 1046.84 | 37    |
| H(25C) | -1173.12 | 6376.16 | 1574.28 | 37    |

Crystal structure determination of Ir-3. Related to Table 1.

**Crystal Data** for C<sub>25</sub>H<sub>26</sub>CllrN<sub>2</sub>O (*M*=598.13 g/mol): orthorhombic, space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (no. 19), a = 9.0070(4) Å, b = 14.7851(8) Å, c = 16.1262(6) Å, V = 2147.52(17) Å<sup>3</sup>, Z = 4, T = 100.00(10) K,  $\mu$ (MoK $\alpha$ ) = 6.361 mm<sup>-1</sup>, *Dcalc* = 1.850 g/cm<sup>3</sup>, 14026 reflections measured

 $(5.052^{\circ} \le 2\Theta \le 49.994^{\circ})$ , 3783 unique ( $R_{int} = 0.0488$ ,  $R_{sigma} = 0.0487$ ) which were used in all calculations. The final  $R_1$  was 0.0294 (I >  $2\sigma(I)$ ) and  $wR_2$  was 0.0545 (all data).

# Data S3. Analytic data of the obtained compounds. Related to Table 1, Scheme 2, Scheme 3 & Scheme 4.

**Complex Ir-1** 



Orange red solid (107.9 mg, 95% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.06 – 8.94 (m, 1H), 8.02 (t, *J* = 9.2 Hz, 2H), 7.90 (dd, *J* = 20.0, 8.6 Hz, 2H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.43 (dd, *J* = 7.8, 4.2 Hz, 1H), 7.25 (t, *J* = 7.1 Hz, 1H), 7.07 (t, *J* = 7.4 Hz, 1H), 1.68 (s, 15H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 170.77, 167.73, 154.67, 153.34, 145.43, 138.08, 136.92, 136.23, 131.76, 126.42, 121.91, 121.89, 121.74, 117.94, 89.78, 9.84. IR (KBr): 3055, 2966,

2907, 1604, 1533, 1507, 1467, 1427, 1323, 1283, 847 cm<sup>-1</sup>. HRMS (ESI): Calcd. for  $C_{24}H_{24}IrN_2$  [M-CI]<sup>+</sup>: 533.1563; found: 533.1559.

#### **Complex Ir-2**



Orange red solid (105.9 mg, 91% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.97 (d, *J* = 2.6 Hz, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.90 – 7.82 (m, 2H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.38 (dd, *J* = 7.8, 4.2 Hz, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 2.47 (s, 3H), 1.67 (s, 15H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.66, 167.83, 154.66, 153.15, 142.97, 141.79, 137.95, 136.89, 126.32, 123.00, 121.70, 121.63, 117.82, 89.61, 21.89, 9.82. IR (KBr):

3052, 2966, 2909, 2787, 1604, 1582, 1550, 1506, 1452, 1322, 1283, 846, 798 cm<sup>-1</sup>. HRMS (ESI): Calcd. for  $C_{25}H_{26}IrN_2$  [M-Cl]<sup>+</sup>: 547.1720; found: 547.1723.

# **Complex Ir-3**



Orange red solid (112.4 mg, 94% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\overline{0}$ 8.96 (dd, *J* = 4.1, 1.6 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 1H), 7.73 (dd, *J* = 13.8, 8.7 Hz, 2H), 7.57 (d, *J* = 2.4 Hz, 1H), 7.38 (dd, *J* = 7.9, 4.3 Hz, 1H), 6.65 (dd, *J* = 8.6, 2.4 Hz, 1H), 3.95 (s, 3H), 1.68 (s, 15H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\overline{0}$  170.21, 170.13, 162.02, 154.74, 153.04, 138.73, 137.76, 136.82, 128.13, 121.39, 121.37,

119.60, 117.79, 109.29, 89.68, 55.14, 9.85. IR (KBr): 3056, 2966, 2907, 2789, 1605, 1536, 1508, 1465, 1425, 1292, 1264, 1220, 842 cm<sup>-1</sup>. HRMS (ESI): Calcd. for  $C_{25}H_{26}IrN_2O$  [M-CI]<sup>+</sup>: 563.1669; found: 563.1677. Crystals suitable for a single-crystal X-ray diffraction study were grown from a concentrated solution of CHCl<sub>3</sub> layered with *n*-hexane in degassed NMR tube.

# **Complex Ir-4**



Red solid (105.9 mg, 88% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.01 (dd, J = 4.2, 1.9 Hz, 1H), 8.01 (dd, J = 8.0, 1.8 Hz, 1H), 7.96 (d, J = 2.0 Hz, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.72 (d, J = 8.7 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.44 (dd, J = 7.9, 4.2 Hz, 1H), 6.86 (dd, J = 8.3, 2.0 Hz, 1H), 1.66 (s, 15H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.58, 168.96, 154.40, 153.40, 144.14, 138.44, 137.40, 137.09, 135.33, 129.04, 127.48, 122.02, 121.97,

118.11, 89.93, 9.77. IR (KBr): 3056, 2966, 2910, 2788, 1603, 1531, 1508, 1451, 1318, 1275, 1087, 1028, 842, 734 cm<sup>-1</sup>. HRMS (ESI): Calcd. for  $C_{24}H_{23}CIIrN_2$  [M-CI]<sup>+</sup>: 567.1174; found: 567.1168.

# **Complex Ir-5**



Brown solid (115.7 mg, 91% Yield); <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  9.15 (d, *J* = 2.2 Hz, 1H), 8.30 (s, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 8.17 (d, *J* = 8.6 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.64 (dd, *J* = 7.8, 4.2 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 1.71 (s, 15H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  169.18, 167.52, 154.52, 153.78, 149.13, 138.76, 137.22, 132.26 (q, *J*<sub>C-F</sub> = 3.8 Hz), 131.58, 125.96, 122.75, 122.50,

118.27, 118.22, 90.28, 9.53. <sup>19</sup>F NMR (376 MHz,  $CD_2CI_2$ )  $\overline{o}$  -62.52. IR (KBr): 3076, 2964, 2915, 2790, 1603, 1510, 1453, 1428, 1318, 1109 cm<sup>-1</sup>. HRMS (ESI): Calcd. for  $C_{25}H_{23}F_3IrN_2$  [M-CI]<sup>+</sup>: 601.1437; found: 601.1437.

#### **Complex Ir-6**



Brownish red solid (115.0 mg, 95% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.21 (d, J = 6.7 Hz, 1H), 9.15 – 9.07 (m, 2H), 8.96 – 8.84 (m, 2H), 8.55 (d, J = 7.2 Hz, 1H), 8.26 (s, 1H), 7.86 (s, 1H), 7.72 (d, J = 3.4 Hz, 1H), 1.52 (s, 15H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.81, 156.01, 155.39, 152.29, 151.76, 143.60, 141.06, 138.98, 129.84, 127.75, 125.33, 125.08, 122.11, 89.97, 9.71. IR (KBr): 3049, 2964,

2923, 2792, 1602, 1547, 1515, 1470, 1427, 1262, 1030, 859, 799 cm<sup>-1</sup>. HRMS (ESI): Calcd. for C<sub>23</sub>H<sub>24</sub>ClIrN<sub>3</sub> [M-CI]<sup>+</sup>: 570.1283; found: 570.1272.

#### **Complex Ir-7**



Brownish red solid (104.5 mg, 88% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.85 (d, *J* = 2.8 Hz, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.61 (s, 1H), 7.32 (dd, *J* = 7.7, 4.2 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.74 (d, *J* = 7.2 Hz, 1H), 3.12 – 2.85 (m, 4H), 1.63 (s, 15H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.92, 166.66, 153.99, 152.17, 143.60, 139.66, 136.34, 134.93, 133.50, 132.09, 131.41, 122.39, 121.62, 120.85, 89.51, 28.45, 27.83, 9.93.

IR (KBr): 3060, 2966, 2914, 2794, 1509, 1466, 1427, 1316, 1270, 1026, 845, 753, 732 cm<sup>-1</sup>. HRMS (ESI): Calcd. for  $C_{26}H_{26}IrN_2$  [M-Cl]<sup>+</sup>: 559.1720; found: 559.1725.

#### Complex Ir-8



Yellow solid (96.6 mg, 85% Yield); <sup>1</sup>H NMR (400 MHz, CDCI<sub>3</sub>)  $\delta$  9.66 (s, 1H), 8.51 (d, *J* = 8.4 Hz, 1H), 8.18 (t, *J* = 8.0 Hz, 3H), 7.66 (dd, *J* = 8.4, 5.2 Hz, 1H), 7.59 - 7.45 (m, 3H), 1.51 (s, 15H). <sup>13</sup>C NMR (101 MHz, CDCI<sub>3</sub>)  $\delta$  158.56, 144.78, 143.90, 140.29, 139.31, 137.82, 130.36, 129.08, 127.68, 125.27, 122.56, 86.27, 8.89. IR (KBr): 3045, 2965, 2906, 2794, 1607, 1568, 1489, 1439, 1273, 1028, 731 cm<sup>-1</sup>. HRMS (ESI): Calcd.

for C<sub>24</sub>H<sub>24</sub>IrN<sub>2</sub> [M-CI]<sup>+</sup>: 533.1563; found: 533.1560.

#### **Complex Ir-9**



Yellow solid (91.0 mg, 88% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.71 (d, *J* = 5.5 Hz, 1H), 7.89 – 7.78 (m, 2H), 7.67 (dd, *J* = 15.1, 7.7 Hz, 2H), 7.22 (t, *J* =

7.3 Hz, 1H), 7.14 – 6.99 (m, 2H), 1.70 (s, 15H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.33, 163.36, 151.34, 144.16, 137.05, 135.81, 130.96, 123.86, 122.33, 122.07, 118.89, 88.54, 8.93. IR (KBr): 3039, 2967, 2916, 1620, 1600, 1543, 1371, 1024, 753, 734 cm<sup>-1</sup>. HRMS (ESI): Calcd. for C<sub>21</sub>H<sub>23</sub>IrN [M-Cl]<sup>+</sup>: 482.1454; found: 482.1456.

# (1) 2-phenylquinazoline (3aa)

Pale yellow solid (87.6 mg, 85% Yield), m.p.: 99-100°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.38 (s, 1H), 8.54 (d, J = 7.2 Hz, 2H), 8.01 (d, J = 8.4 Hz, 1H), 7.82 (t, J = 8.8 Hz, 2H), 7.58 – 7.38 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) ō 161.06, 160.52, 150.78, 138.02, 134.16, 130.66, 128.67, 128.62, 127.30, 127.15, 123.62. IR (KBr): 3063, 2963, 2928, 1616, 1549, 772, 704 cm<sup>-1</sup>. MS (EI, m/z): 206.15 [M]<sup>+</sup>.

(2) 2-(p-tolyl)quinazoline (3ab)

Pale yellow solid, (82.5 mg, 75% Yield), m.p.: 98-99°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.43 (s, 1H), 8.51 (d, *J* = 8.0 Hz, 2H), 8.06 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 7.9 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.33 (d, J

= 7.9 Hz, 2H), 2.44 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 161.17, 160.43, 150.83, 140.88, 135.35, 134.03, 129.42, 128.57, 127.12, 127.03, 123.54, 21.53. IR (KBr): 3028, 2919, 2795, 1619, 1550, 724 cm<sup>-1</sup>. MS (EI, m/z): 220.14 [M]<sup>+</sup>.

#### (3) 2-(o-tolyl)quinazoline (3ac)



Pale yellow solid, (63.8 mg, 58% Yield), m.p.: 45-46°C (Ma et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.50 (s, 1H), 8.10 (d, J = 8.2 Hz, 1H), 8.01 – 7.87 (m, 3H), 7.66 (dd, J = 10.8, 3.8 Hz, 1H), 7.35 (d, J = 5.1 Hz, 3H), 2.61 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.05, 160.09, 150.42, 138.59, 137.43, 134.15, 131.32, 130.68,

129.34, 128.60, 127.55, 127.09, 125.99, 122.94, 21.05. IR (KBr): 3058, 2964, 2924, 1619, 1553, 769, 727 cm<sup>-1</sup>. MS (EI, m/z): 220.16 [M]+.

## (4) 2-(4-methoxyphenyl)guinazoline (3ad)

Pale yellow solid, (84.9 mg, 72% Yield), m.p.: 96-97°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.38 (s, 1H), 8.57 (d, *J* = 8.0 Hz, 2H), 8.02 (d,  $_{0}$  J = 8.4 Hz, 1H), 7.84 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.03 (d, J

= 8.0 Hz, 2H), 3.87 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 161.87, 160.86, 160.38, 150.84, 134.00, 130.76, 130.25, 128.41, 127.12, 126.77, 123.32, 113.99, 55.38. IR (KBr): 3055, 2969, 2833, 1605, 1585, 1407, 1247, 1162, 1028, 836, 796, 733 cm<sup>-1</sup>. MS (EI, m/z): 236.15 [M]<sup>+</sup>.

# (5) 2-(quinazolin-2-yl)phenol (3ae)



White solid, (61.1 mg, 55% Yield), m.p.: 135-136°C (Gujjarappa et al., 2018); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.48 (s, 1H), 8.66 (d, *J* = 7.9 Hz, 1H), 8.07 – 7.87 (m, 3H), 7.64 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 8.1 Hz,

1H), 7.01 (t, J = 7.6 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 161.78, 160.89, 160.50, 148.10, 134.97, 133.24, 129.72, 127.56, 127.43, 127.04, 123.01, 119.19, 119.08, 117.87. IR (KBr): 3351, 3041, 1584, 1476, 1382, 1280, 1239, 759 cm<sup>-1</sup>. MS (EI, m/z): 222.12 [M]<sup>+</sup>.

# (6) 4-(quinazolin-2-yl)aniline (3af)



Pale yellow solid, (79.6 mg, 72% Yield), m.p.: 176-177°C (Saha et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.38 (s, 1H), 8.45 (d, J = 7.7 Hz, 2H), 8.00 (d, J = 8.3 Hz, 1H), 7.85 (t, J = 8.3 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 6.80 (d, J = 7.7 Hz, 2H), 3.96 (s, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.23, 160.32, 150.93, 149.03, 133.93, 130.22, 128.32, 128.28, 127.15, 126.41, 123.20, 114.80. IR (KBr): 3413, 3319, 1604, 1580, 1483, 1398, 1288, 1170, 836, 798, 734 cm<sup>-1</sup>. MS (EI, m/z): 221.14 [M]<sup>+</sup>.

#### (7) 2-(4-chlorophenyl)quinazoline (3ag)

Pale yellow solid, (108 mg, 90% Yield), m.p.: 137-138°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.38 (s, 1H), 8.53 (d, J = 8.0 Hz, 2H),
8.02 (d, J = 8.3 Hz, 1H), 7.85 (d, J = 7.5 Hz, 2H), 7.56 (t, J = 7.0 Hz, 1H),

7.46 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.48, 159.98, 150.66, 136.83, 136.52, 134.22, 129.92, 128.80, 128.59, 127.43, 127.13, 123.60. IR (KBr): 3052, 2968, 1619, 1551, 1487, 1409, 846, 796, 724 cm<sup>-1</sup>. MS (EI, m/z): 240.10 [M]<sup>+</sup>.

#### (8) 2-(3-chlorophenyl)quinazoline (3ah)



Pale yellow solid, (91.2 mg, 76% Yield), m.p.: 149-150°C (Han et al., 2012); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.44 (s, 1H), 8.62 (s, 1H), 8.50 (d, *J* = 6.6 Hz, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 7.7 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.50 – 7.40 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.56,

159.70, 150.66, 139.88, 134.80, 134.31, 130.55, 129.85, 128.68, 127.65, 127.15, 126.66, 123.77. IR (KBr): 3067, 2967, 1617, 1549, 780, 760, 716 cm<sup>-1</sup>. MS (EI, m/z): 240.10 [M]<sup>+</sup>.

# (9) 2-(4-bromophenyl)quinazoline (3ai)



Pale yellow solid, (106 mg, 75% Yield), m.p.: 121-122°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.42 (s, 1H), 8.49 (d, *J* = 8.3 Hz, 2H), 8.05 (d, *J* = 8.8 Hz, 1H), 7.89 (t, *J* = 7.2 Hz, 2H), 7.69 – 7.55 (m, 3H). <sup>13</sup>C

NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.52, 160.12, 150.70, 137.00, 134.25, 131.79, 130.17, 128.64, 127.48, 127.16, 125.42, 123.66. IR (KBr): 3066, 2926, 1618, 1549, 1407, 796, 724 cm<sup>-1</sup>. MS (EI, m/z): 284.03 [M]<sup>+</sup>.

(10) 2-(4-(trifluoromethyl)phenyl)quinazoline (3aj)

Pale yellow solid, (68.5 mg, 50% Yield), m.p.: 143-145°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.46 (s, 1H), 8.73 (d, *J* = 8.1 Hz, 2H), °CF<sub>3</sub> 8.10 (d, *J* = 8.8 Hz, 1H), 7.92 (t, *J* = 7.6 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 2H),

7.64 (t, J = 7.5 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.60, 159.60, 150.66, 141.32, 134.37, 132.29, 131.97, 128.84, 128.78, 127.86, 127.16, 125.59, 125.50 (q,  $J_{C-F} = 3.8$  Hz), 123.84. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.65. IR (KBr): 3067, 2967, 1616, 1550, 1326, 1109, 855 cm<sup>-1</sup>. MS (EI, m/z): 274.17 [M]<sup>+</sup>.

(11) methyl 4-(quinazolin-2-yl)benzoate (3ak)



White solid, (101 mg, 77% Yield), m.p.: 162-163°C (Yamaguchi et al., 2016); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.49 (s, 1H), 8.70 (d, *J* = 8.3 Hz, 2H), 8.20 (d, *J* = 8.3 Hz, 2H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.94 (t, *J* = 9.0 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 3.96 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 

166.95, 160.56, 160.01, 150.69, 142.15, 134.31, 131.72, 129.85, 128.78, 128.50, 127.79, 127.15, 123.77, 52.20. IR (KBr): 3062, 2968, 1720, 1619, 1549, 1286, 1113, 770, 711 cm<sup>-1</sup>. MS (EI, m/z): 264.16 [M]<sup>+</sup>.

(12) 4-(quinazolin-2-yl)benzonitrile (3al)



Pale yellow solid, (84.3 mg, 73% Yield), m.p.: 194-196°C (Yamaguchi et al., 2016); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.52 (s, 1H), 8.77 (d, *J* = 8.2 Hz, 2H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.98 (t, *J* = 8.2 Hz, 2H), 7.84 (d, *J* = 8.2 Hz,

2H), 7.71 (t, *J* = 7.5 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.68, 159.08, 150.62, 142.13, 134.54, 132.37, 129.02, 128.82, 128.18, 127.21, 123.89, 118.89, 113.81. IR (KBr): 3065, 2968, 2225, 1616, 1546, 1429, 852, 799 cm<sup>-1</sup>. MS (EI, m/z): 231.15 [M]<sup>+</sup>.

(13) phenyl(4-(quinazolin-2-yl)phenyl)methanone (3am)



Pale yellow solid, (106.1 mg, 68% Yield), m.p.: 167-168°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.51 (s, 1H), 8.76 (d, *J* = 8.1 Hz, 2H), 8.13 (d, *J* = 8.3 Hz, 1H), 7.96 (dd, *J* = 16.0, 8.5 Hz, 4H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.70 – 7.58 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 2H). <sup>13</sup>C NMR (101

MHz, CDCl<sub>3</sub>)  $\overline{0}$  196.55, 160.63, 160.04, 150.72, 141.65, 139.06, 137.62, 134.37, 132.58, 130.36, 130.13, 128.80, 128.44, 128.37, 127.85, 127.20, 123.80. IR (KBr): 3061, 1656, 1577, 1274, 926, 861, 751, 706 cm<sup>-1</sup>. MS (EI, m/z): 310.12 [M]<sup>+</sup>.

(14) 2-(naphthalen-1-yl)quinazoline (3an)

Pale N Pale

Pale yellow solid, (87.0 mg, 68% Yield), m.p.: 125-126°C (Ma et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.56 (s, 1H), 8.72 (d, *J* = 8.2 Hz, 1H), 8.17 (t, *J* = 8.0 Hz, 2H), 8.02 - 7.87 (m, 4H), 7.63 (dd, *J* = 17.6, 7.9 Hz, 2H), 7.58 -

7.47 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.49, 160.44, 150.60, 136.34, 134.35, 134.24, 131.28, 130.44, 129.71, 128.68, 128.54, 127.77, 127.17, 126.91, 125.99, 125.94, 125.35, 123.16. IR (KBr): 3053, 2967, 1618, 1551, 1467, 1429, 972, 760 cm<sup>-1</sup>. MS (EI, m/z): 256.13 [M]<sup>+</sup>.

(15) 2-(pyridin-3-yl)quinazoline (3ao)

White solid, (67.2 mg, 65% Yield), m.p.: 94-95°C (Ma et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.83 (s, 1H), 9.47 (s, 1H), 8.87 (d, *J* = 7.9 Hz, 1H), 8.75 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.93 (t, *J* = 8.1 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H),

7.46 (dd, J = 7.7, 4.4 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.65, 159.13, 151.12, 150.60, 150.20, 135.84, 134.40, 133.57, 128.64, 127.80, 127.19, 123.81, 123.43. IR (KBr): 3055, 2924, 2792, 1617, 1549, 1427, 1292, 759, 710 cm<sup>-1</sup>. MS (EI, m/z): 207.13 [M]<sup>+</sup>.

# (16) 2-(thiophen-2-yl)quinazoline (3ap)



Pale yellow solid, (60.4 mg, 57% Yield), m.p.: 133-134°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.34 (s, 1H), 8.15 (d, *J* = 3.6 Hz, 1H), 8.00 (d, *J* = 8.8 Hz, 1H), 7.86 (dd, *J* = 7.2, 5.1 Hz, 2H), 7.60 – 7.46 (m, 2H), 7.19 (t, *J* = 4.3

Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.56, 157.88, 150.64, 143.84, 134.39, 129.98, 129.28, 128.40, 128.21, 127.29, 127.03, 123.40. IR (KBr): 3065, 2966, 2789, 1616, 1551, 1425, 713 cm<sup>-1</sup>. MS (EI, m/z): 212.08 [M]<sup>+</sup>.

# (17) (E)-2-styrylquinazoline (3aq)

White solid, (53.3 mg, 46% Yield), m.p.: 120-121°C (Han et al., 2012); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.38 (s, 1H), 8.17 (d, *J* = 16.0 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.89 (t, *J* = 7.7 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.46 – 7.38 (m, 3H), 7.38 – 7.33 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.33, 160.25, 150.61, 138.60, 136.24, 134.22, 129.07, 128.83, 128.15, 127.94, 127.70, 127.23, 127.16, 123.39. IR (KBr): 3057, 2966, 1613, 1550, 1376, 1234, 980, 750 cm<sup>-1</sup>. MS (EI, m/z): 232.15 [M]<sup>+</sup>.

(18) quinazoline (3ar)

Brown solid, (31.2 mg, 48% Yield), m.p.: 45-46°C (Zhang et al., 2015); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.41 (s, 1H), 9.35 (s, 1H), 8.06 (d, *J* = 8.7 Hz, 1H), 7.93 (t, *J* = 7.0 Hz, 2H), 7.68 (t, *J* = 7.4 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.22, 155.24, 150.00, 134.19, 128.39, 127.95, 127.19, 125.09. IR (KBr): 3060, 2969, 1619, 1567, 1488, 1377, 754 cm<sup>-1</sup>. MS (EI, m/z): 130.05 [M]<sup>+</sup>.

(19) 2-hexylquinazoline (3as)



Pale yellow oil liquid (Zhang et al., 2015), (64.2 mg, 60% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.27 (s, 1H), 7.90 (d, *J* = 8.5 Hz, 1H), 7.80 (t, *J* = 7.5 Hz, 2H), 7.51 (t, *J* = 7.0 Hz, 1H), 3.04 (t, *J* = 7.7 Hz, 2H), 1.84

(dt, J = 15.0, 7.6 Hz, 2H), 1.40 – 1.22 (m, 6H), 0.81 (d, J = 6.3 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.96, 160.38, 150.38, 133.97, 127.89, 127.07, 126.89, 123.07, 40.04, 31.71, 29.23, 28.98, 22.56, 14.05. IR (KBr): 3063, 2959, 2927, 2858, 1619, 1529, 1466, 1428, 1232, 1141, 966, 753 cm<sup>-1</sup>. MS (EI, m/z): 214.15 [M]<sup>+</sup>.

(20) 2-cyclopropylquinazoline (3at)



Pale yellow oil liquid (Zhang et al., 2015), (52.7 mg, 62% Yield); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.20 (s, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.80 (t, *J* = 8.5 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 2.47 – 2.34 (m, 1H), 1.32 – 1.23 (m, 2H), 1.16 – 1.07

(m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.29, 160.22, 150.29, 133.86, 127.43, 127.00, 126.19, 123.14, 18.55, 10.60. IR (KBr): 3061, 3008, 1620, 1585, 1570, 1413, 1376, 758 cm<sup>-1</sup>. MS (EI, m/z): 170.10 [M]<sup>+</sup>.

(21) 6-methyl-2-phenylquinazoline (3ba)



Pale yellow solid (85.8 mg, 78% Yield), m.p.: 129-130°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.30 (s, 1H), 8.52 (d, *J* = 7.3 Hz, 2H), 7.90 (d, *J* = 8.6 Hz, 1H), 7.65 (d, *J* = 8.7 Hz, 1H), 7.59 (s, 1H), 7.50 – 7.35 (m, 3H), 2.48 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.40, 159.74, 149.36,

138.20, 137.43, 136.39, 130.41, 128.62, 128.46, 128.28, 125.79, 123.60, 21.64. IR (KBr): 3060, 2967, 2791, 1526, 1427, 831, 760 cm<sup>-1</sup>. MS (EI, m/z): 220.18 [M]<sup>+</sup>.

# (22) 2-(4-methoxyphenyl)-6-methylquinazoline (3bd)



Pale yellow solid (100 mg, 80% Yield), m.p.: 119-120°C (Han et al., 2012); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.27 (s, 1H), 8.54 (d, *J* = 8.8 Hz, 2H), 7.90 (d, *J* = 8.6 Hz, 1H), 7.65 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.57 (s, 1H), 7.02 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H), 2.50 (s, 3H). <sup>13</sup>C NMR (101

MHz, CDCl<sub>3</sub>)  $\delta$  161.69, 160.21, 159.64, 149.39, 136.85, 136.27, 130.90, 130.05, 128.05, 125.80, 123.30, 113.95, 55.35, 21.56. IR (KBr): 3047, 2962, 1602, 1552, 1514, 1425, 1244, 1026, 851, 827 cm<sup>-1</sup>. MS (EI, m/z): 250.15 [M]<sup>+</sup>.

# (23) 8-methyl-2-phenylquinazoline (3ca)



Pale yellow solid (69.3 mg, 63% Yield), m.p.: 59-60°C (Gopalaiah et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.41 (s, 1H), 8.67 (d, *J* = 6.7 Hz, 2H), 7.79 – 7.68 (m, 2H), 7.57 – 7.44 (m, 4H), 2.86 (s, 3H). <sup>13</sup>C NMR (101 MHz,

CDCl<sub>3</sub>)  $\delta$  160.58, 159.98, 149.76, 138.42, 137.17, 133.87, 130.47, 128.60, 128.55, 126.93, 124.82, 123.55, 16.94. IR (KBr): 3064, 2967, 2791, 1528, 1468, 1427, 953, 760 cm<sup>-1</sup>. MS (EI, m/z): 220.17 [M]<sup>+</sup>.

#### (24) 5-methyl-2-phenylquinazoline (3da)

Pale yellow solid (58.3 mg, 53% Yield), m.p.:  $115-117^{\circ}C$  (Cheng et al., 2016); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.66 (s, 1H), 8.62 (d, *J* = 7.6 Hz, 2H), 7.93 (d, *J* = 8.5 Hz, 1H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.58 - 7.47 (m, 3H), 7.38 (d, *J* = 7.0 Hz, 1H), 2.79 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.69, 157.54, 151.28,

138.07, 135.49, 133.98, 130.54, 128.63, 128.55, 127.85, 126.85, 122.76, 17.56. IR (KBr): 3059, 2966, 2796, 1525, 1467, 1427, 755, 703 cm<sup>-1</sup>. MS (EI, m/z): 220.16 [M]<sup>+</sup>.

# (25) 6-methoxy-2-phenylquinazoline (3ea)



Pale yellow solid (100 mg, 85% Yield), m.p.: 120-121°C (Ma et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.22 (s, 1H), 8.47 (d, *J* = 7.2 Hz, 2H), 7.87 (d, *J* = 9.1 Hz, 1H), 7.39 (dd, *J* = 17.8, 7.2 Hz, 4H), 6.99 (s, 1H), 3.81 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.39, 158.80, 158.25, 147.00,

138.23, 130.18, 130.13, 128.60, 128.22, 127.14, 124.47, 103.92, 55.69. IR (KBr): 3060, 2966, 2790, 1621, 1529, 1427, 1223, 1161, 1026, 834, 761 cm<sup>-1</sup>. MS (EI, m/z): 236.16 [M]<sup>+</sup>.

# (26) 2-(4-chlorophenyl)-6-methoxyquinazoline (3eg)



White solid (123 mg, 91% Yield), m.p.: 174-175°C (Cheng et al., 2016); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.29 (s, 1H), 8.50 (d, *J* = 8.6 Hz, 2H), 7.94 (d, *J* = 9.2 Hz, 1H), 7.53 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.47 (s, 1H), 7.45 (s, 1H), 7.10 (d, *J* = 2.7 Hz, 1H), 3.94 (s, 3H). <sup>13</sup>C NMR

(101 MHz, CDCl<sub>3</sub>)  $\delta$  158.78, 158.40, 158.33, 146.90, 136.69, 136.33, 130.08, 129.52, 128.74, 127.30, 124.51, 103.93, 55.72. IR (KBr): 3065, 2966, 2790, 1531, 1469, 1428, 1318, 1223, 948, 837 cm<sup>-1</sup>. MS (EI, m/z): 270.10 [M]<sup>+</sup>.

# (27) 6,7-dimethoxy-2-phenylquinazoline (3fa)



White solid (113 mg, 85% Yield), m.p.: 176-177°C (Gopalaiah et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.19 (s, 1H), 8.54 (d, *J* = 7.4 Hz, 2H), 7.57 – 7.42 (m, 3H), 7.35 (s, 1H), 7.06 (s, 1H), 4.06 (s, 3H), 4.01 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.92, 157.09, 156.22, 150.35, 148.61,

138.39, 130.12, 128.57, 128.14, 119.40, 106.87, 103.95, 56.44, 56.20. IR (KBr): 3061, 2966, 1619, 1500, 1412, 1229, 1155, 855, 759 cm<sup>-1</sup>. MS (EI, m/z): 266.13 [M]<sup>+</sup>.

# (28) 2-(4-bromophenyl)-6,7-dimethoxyquinazoline (3fi)



White solid, (129 mg, 75% Yield), m.p.: 157-159°C (unknown compound); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.07 (s, 1H), 8.32 (d, *J* = 8.5 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.24 (s, 1H), 6.98 (s, 1H), 3.98 (s,

3H), 3.94 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.90, 157.02, 156.37, 150.54, 148.53, 137.30, 131.67, 129.71, 124.78, 119.48, 106.79, 103.94, 56.46, 56.23. IR (KBr): 3071, 2965, 1615, 1498, 1421, 1230, 1154, 842 cm<sup>-1</sup>. MS (EI, m/z): 344.08 [M]<sup>+</sup>. HRMS (ESI): Calcd. for C<sub>16</sub>H<sub>14</sub>BrN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 345.0233; found: 345.0235.

#### (29) 6-chloro-2-phenylquinazoline (3ga)

Pale yellow solid (69.6 mg, 58% Yield), m.p.: 157-158°C (Chen et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.39 (s, 1H), 8.60 (dd, *J* = 7.4, 2.1 Hz, 2H), 8.03 (d, *J* = 9.0 Hz, 1H), 7.89 (d, *J* = 2.2 Hz, 1H), 7.82 (dd, *J* = 9.0, 2.3

Hz, 1H), 7.57 – 7.48 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.31, 159.50, 149.27, 137.61, 135.08, 132.81, 130.89, 130.41, 128.70, 128.62, 125.83, 124.00. IR (KBr): 3064, 2967, 1613, 1542, 1430, 837 cm<sup>-1</sup>. MS (EI, m/z): 240.10 [M]<sup>+</sup>.

(30) methyl 4-(6-chloroquinazolin-2-yl)benzoate (3gk)



<sup>CO<sub>2</sub>Me</sup>Pale yellow solid (81.9 mg, 55% Yield), m.p.: 198-199°C (unknown

compound); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.44 (s, 1H), 8.70 (d, *J* = 7.8 Hz, 2H), 8.22 (d, *J* = 7.9 Hz, 2H), 8.08 (d, *J* = 9.1 Hz, 1H), 7.96 (s, 1H), 7.88 (d, *J* = 8.9 Hz, 1H), 3.99 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.87, 160.26, 159.58, 149.17, 141.65, 135.32, 133.42, 131.96, 130.52, 129.88, 128.50, 125.86, 124.17, 52.25. IR (KBr): 3066, 2966, 1539, 1473, 1429, 1374, 1277, 1107, 832, 765, 715 cm<sup>-1</sup>. MS (EI, m/z): 298.12 [M]<sup>+</sup>. HRMS (ESI): Calcd. for C<sub>16</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 299.0582; found: 299.0579.

(31) 6-fluoro-2-phenylquinazoline (3ha)



Pale yellow solid (62.7 mg, 56% Yield), m.p.: 140-141°C (Malakar et al., 2012); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.42 (s, 1H), 8.59 (d, *J* = 7.3 Hz, 2H), 8.10 (dd, *J* = 9.2, 5.0 Hz, 1H), 7.67 (td, *J* = 8.9, 2.3 Hz, 1H), 7.58 – 7.48 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 160.44 (d, *J*<sub>C-F</sub> = 251.0 Hz), 160.77,

159.79 (d,  $J_{C-F} = 5.5$  Hz), 147.98, 137.76, 131.41 (d,  $J_{C-F} = 8.6$  Hz), 130.70, 128.68, 128.49, 124.51 (d,  $J_{C-F} = 25.8$  Hz), 123.94 (d,  $J_{C-F} = 9.3$  Hz), 110.14 (d,  $J_{C-F} = 21.8$  Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\overline{0}$  -110.69. IR (KBr): 3056, 2967, 1531, 1430, 1373, 1286, 837 cm<sup>-1</sup>. MS (EI, m/z): 224.14 [M]<sup>+</sup>.

(32) 7-bromo-2-phenylquinazoline (3ia)



Pale yellow solid (71 mg, 50% Yield), m.p.: 125-127°C (Wang et al., 2014); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.43 (s, 1H), 8.60 (dd, *J* = 7.3, 2.2 Hz, 2H), 8.29 (s, 1H), 7.79 (d, *J* = 8.6 Hz, 1H), 7.70 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.58 – 7.48 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 161.83, 160.31,

151.44, 137.58, 131.18, 131.01, 130.98, 128.95, 128.73, 128.70, 128.30, 122.17, 77.35, 77.03, 76.71. IR (KBr): 3066, 2966, 1540, 1428, 1379, 1319, 935, 759, 700 cm<sup>-1</sup>. MS (EI, m/z): 284.06 [M]<sup>+</sup>.

(33) 4-methyl-2-phenylquinazoline (3ja)



Pale yellow solid (84.7 mg, 77% Yield), m.p.: 89-90°C (Gopalaiah et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (d, *J* = 7.4 Hz, 2H), 8.10 (d, *J* = 8.3 Hz, 2H), 7.87 (t, *J* = 7.7 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.56 – 7.46 (m, 3H), 3.03 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.23, 160.21, 150.43, 138.34,

133.51, 130.39, 129.27, 128.57, 126.86, 124.98, 123.03, 22.02. IR (KBr): 3063, 2966, 1616, 1547, 1430, 1338, 757, 708 cm<sup>-1</sup>. MS (EI, m/z): 220.16 [M]<sup>+</sup>.

# (34) 4-(4-methylquinazolin-2-yl)benzonitrile (3jl)



Brown solid (67.3 mg, 55% Yield), m.p.: 195-197°C (Yu et al., 2017); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.69 (d, *J* = 7.7 Hz, 2H), 8.11 – 7.99 (m, 2H), 7.84 (t, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 2H), 7.58 (t, *J* = 7.6 Hz, 1H), 2.97 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.66, 158.15, 150.20, 142.42,

133.91, 132.27, 129.40, 128.99, 127.77, 125.06, 123.28, 118.98, 113.56, 21.97. IR (KBr): 3064, 2966, 2921, 2790, 2225, 1535, 1469, 1428, 854, 759 cm<sup>-1</sup>. MS (EI, m/z): 245.15 [M]<sup>+</sup>.

# (35) 2,4-diphenylquinazoline (3ka)

Ph Pale yellow solid, (88.8 mg, 63% Yield), m.p.: 116-118°C (Cheng et al., 2016); N Ph Ph NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.69 (d, J = 7.3 Hz, 2H), 8.11 (dd, J = 17.7, 8.4 Hz, N Ph 2H), 7.91 – 7.80 (m, 3H), 7.61 – 7.45 (m, 7H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 168.34, 160.29, 152.06, 138.30, 137.76, 133.55, 130.55, 130.25, 129.95, 129.22, 128.75, 128.58, 127.03, 121.74. IR (KBr): 3060, 2966, 1559, 1536, 1440, 1338, 769, 702 cm<sup>-1</sup>. MS (EI, m/z): 282.15 [M]<sup>+</sup>.

(36) 6-(2-chloro-4-(trifluoromethyl)phenoxy)-2-phenylquinazoline (3la)



Pale yellow solid, (136 mg, 68% Yield), m.p.: 142-143°C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.34 (s, 1H), 8.59 (d, *J* = 7.1 Hz, 2H), 8.13 (d, *J* = 9.1 Hz, 1H), 7.82 (s, 1H), 7.68 (d, *J* = 9.1 Hz, 1H), 7.59 – 7.46

(m, 4H), 7.27 (s, 1H), 7.17 (d, J = 8.5 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.68, 159.57, 154.61, 154.48, 148.06, 137.80, 131.29, 130.67, 128.68, 128.62, 128.58, 128.48, 127.21, 126.69, 125.51 (q,  $J_{C-F} = 4.0$  Hz), 124.08, 120.96, 112.02. IR (KBr): 3060, 1562, 1537, 1486, 1340, 771, 702 cm<sup>-1</sup>. HRMS (ESI): Calcd. for C<sub>21</sub>H<sub>13</sub>ClF<sub>3</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 401.0663; found: 401.0664.

(37) 1-bromo-3,5-diphenylimidazo[1,5-c]quinazoline (4ja)



Yellow solid, (95.7 mg, 48% Yield), m.p.: 229 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.86 (d, *J* = 7.4 Hz, 1H), 7.89 (d, *J* = 7.4 Hz, 1H), 7.65 – 7.53 (m, 2H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.20 – 6.97 (m, 8H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  145.63, 141.80, 138.54, 133.45, 130.55, 130.13, 129.28, 128.87,

128.72, 128.50, 128.48, 128.27, 127.85, 127.54, 125.61, 121.69, 118.93, 109.04. MS (EI, m/z): 399.05 [M]<sup>+</sup>.

(38) 3,5-diphenyl-1-(phenylethynyl)imidazo[1,5-c]quinazoline (5ja)



Yellow solid, (151 mg, 72% Yield), m.p.: 201-202°C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.95 (d, *J* = 7.2 Hz, 1H), 7.92 (d, *J* = 7.1 Hz, 1H), 7.70 (d, *J* = 6.9 Hz, 2H), 7.66 – 7.57 (m, 2H), 7.45 – 7.37 (m, 3H), 7.33 (d, *J* = 7.4 Hz, 2H), 7.22 – 7.12 (m, 3H), 7.12 – 6.99 (m, 5H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  146.10, 142.39, 138.90, 133.52, 131.57, 131.51, 130.87, 130.08, 129.31, 129.28, 128.77, 128.66, 128.56, 128.53, 128.42, 128.05, 127.81, 127.49,

123.18, 122.46, 119.61, 116.48, 94.53, 83.93. IR (KBr): 3061, 2219, 1548, 1477, 1330, 758, 697 cm<sup>-1</sup>. HRMS (ESI): Calcd. for  $C_{30}H_{20}N_3$  [M+H]<sup>+</sup>: 422.1652; found: 422.1649.

| Data S4. Cartesian coordinates. | Related to Figure 2, Figure 3, | Figure S99, Figure S100 and |
|---------------------------------|--------------------------------|-----------------------------|
| Scheme S4, Scheme S5, Sche      | me S6, Scheme S7 & Scheme      | S8.                         |

69

| Ir-O1  | SCF Done: 1 | E(RM06) = -14 | 190.22403005 | Н       | 6.37997500   | 2.05872500    | -1.12305800 |
|--------|-------------|---------------|--------------|---------|--------------|---------------|-------------|
| С      | 0.65556600  | -1.93376900   | -1.77003100  | С       | -1.67851400  | -0.39160200   | 3.22323900  |
| С      | -0.73969600 | -1.66490900   | -1.98479000  | Н       | -1.83556400  | -1.46554200   | 3.38284100  |
| С      | -1.50812100 | -2.38720600   | -0.96538800  | Н       | -2.24044000  | -0.10300400   | 2.32981800  |
| С      | 0.76498600  | -2.63814500   | -0.50448600  | Н       | -2.10217300  | 0.14185100    | 4.08571700  |
| С      | -0.59464200 | -2.95550500   | -0.06758300  | С       | -0.17546200  | -0.09136700   | 3.04474400  |
| С      | -1.34097600 | -1.02188500   | -3.20154700  | С       | 0.05254800   | 1.43403400    | 3.00607200  |
| Н      | -0.64607300 | -0.32065600   | -3.67298000  | Н       | -0.54687400  | 1.91010000    | 2.22561400  |
| Н      | -1.61076000 | -1.77852000   | -3.95271200  | Н       | -0.22134000  | 1.89902400    | 3.96293500  |
| Н      | -2.25318800 | -0.47040300   | -2.95331300  | Н       | 1.10797600   | 1.65183300    | 2.81010100  |
| С      | -2.99799000 | -2.54865800   | -0.95585700  | С       | 0.59489300   | -0.65879400   | 4.25916200  |
| Н      | -3.28965700 | -3.44228100   | -1.52770800  | Н       | 0.48000700   | -1.74796900   | 4.30631700  |
| Н      | -3.38850100 | -2.66338300   | 0.05928500   | Н       | 1.66431600   | -0.43628700   | 4.16660900  |
| Н      | -3 49915500 | -1 69072400   | -1 40803600  | Н       | 0 23323000   | -0 23384300   | 5 20516400  |
| C      | -0.88421300 | -3 69010000   | 1 20135100   | 0       | 0.36721400   | -0 76092400   | 1 92891100  |
| Н      | -0.45951100 | -4 702 50900  | 1 17972100   | 0       | 0.00721.00   | 0.7002.00     | 1.)=0)1100  |
| Н      | -0 42448200 | -3 14518600   | 2 03556000   | 18      |              |               |             |
| н      | -1 95757700 | -3 77630200   | 1 39228600   | 10      | SCE Done: E( | RM06) = -551  | 095580062   |
| C      | 1 99397000  | -3 26943400   | 0.08485300   | ra<br>C | -1 23151900  | -1 36260700   | -0 19493900 |
| н      | 1 99346400  | -4 35820700   | -0.06901200  | C<br>C  | -0.11523500  | -0.55241700   | 0.03399600  |
| н      | 2 90807900  | -2.88163700   | -0.37359200  | C<br>C  | -0.21816400  | 0.83818100    | 0.03377000  |
| н      | 2.05243100  | -2.08105700   | 1 16265500   | C<br>C  | -1.51230800  | 1 373//000    | 0.24400100  |
| C II   | 1 77330200  | 1 65208600    | 2 72070500   | C<br>C  | -1.51250800  | 0.58434400    | 0.03020000  |
| с<br>u | 1.77339200  | -1.03298000   | -2.72979300  | C<br>C  | -2.03032700  | 0.38434400    | -0.03929000 |
| п<br>u | 2 71222100  | -0.79843000   | -3.37408000  | С<br>и  | -2.49/24400  | -0.78993800   | -0.24103500 |
| п      | 2.71252100  | -1.43/03400   | -2.21555900  | п       | -1.09027200  | -2.42041300   | -0.34030000 |
| П      | 1.94080600  | -2.52602800   | -3.3/003300  | н       | -1.63302700  | 2.44051500    | 0.30800300  |
| C      | -4.42585800 | 0.6/558800    | 0.05254100   | Н       | -3.6205/100  | 1.04338400    | -0.06885400 |
| C      | -2.3093/800 | 1.52996500    | -0.235/9400  | H       | -3.36529000  | -1.41297700   | -0.43335100 |
| C      | -2.83932200 | 2.83844800    | -0.46984800  | 0       | 1.18923900   | -2.45142700   | 0.2/1/5600  |
| C      | -4.2409/500 | 3.00504400    | -0.43/93600  | N       | 1.18112600   | -1.24143000   | 0.05600700  |
| C      | -5.04851600 | 1.919/1/00    | -0.1/424900  | 0       | 2.21251400   | -0.586/3800   | -0.15254500 |
| Н      | -5.03357500 | -0.20135500   | 0.27072800   | C       | 0.95127800   | 1.77650300    | 0.51148100  |
| С      | -1.93409000 | 3.90327400    | -0.71657900  | Н       | 1.60035100   | 1.36103800    | 1.29404200  |
| Н      | -4.66032600 | 3.99201600    | -0.61723800  | Н       | 0.54884600   | 2.72195700    | 0.88662200  |
| Н      | -6.12955600 | 2.00679400    | -0.13631100  | 0       | 1.68521300   | 2.09806900    | -0.65823100 |
| С      | -0.59314200 | 3.64761300    | -0.71326600  | Н       | 2.15466900   | 1.27824100    | -0.89064900 |
| С      | -0.10681600 | 2.32919100    | -0.47845300  |         |              |               |             |
| Н      | -2.31745800 | 4.90370600    | -0.89930900  | 87      |              |               |             |
| Н      | 0.11568100  | 4.44655800    | -0.89459200  | IN1     | SCF Done: E( | (RM06) = -204 | 1.32132465  |
| Ν      | -3.11684800 | 0.47825000    | 0.02099300   | С       | 2.79540100   | -0.66819000   | -2.22001400 |
| Ν      | -0.95089900 | 1.29188200    | -0.25047700  | С       | 2.00676600   | 0.52486300    | -2.40361500 |
| С      | 1.29848200  | 1.98906600    | -0.44272700  | С       | 0.65792400   | 0.08049200    | -2.61546000 |
| С      | 2.34085200  | 2.92536300    | -0.56779000  | С       | 1.95608100   | -1.83676900   | -2.55362500 |
| С      | 3.66886600  | 2.53928100    | -0.45344900  | С       | 0.65480500   | -1.37795200   | -2.78811800 |
| С      | 3.95908700  | 1.18780200    | -0.18614000  | С       | 2.49546200   | 1.94238600    | -2.40620400 |
| С      | 2.92527200  | 0.24967000    | -0.06170500  | Н       | 3.42670100   | 2.04310300    | -1.84134800 |
| С      | 1.58306700  | 0.61133500    | -0.21370000  | Н       | 2.69160200   | 2.27193600    | -3.43631900 |
| Н      | 2.12593000  | 3.97506100    | -0.74748500  | Н       | 1.75762500   | 2.61245500    | -1.95804900 |
| Н      | 4.45634100  | 3.27670700    | -0.55400100  | С       | -0.52596400  | 0.93760900    | -2.93464100 |
| Н      | 3.20903300  | -0.77194100   | 0.16540300   | Н       | -0.72586400  | 0.88123000    | -4.01517300 |
| Ir     | 0.01183500  | -0.62795300   | -0.12390700  | Н       | -1.42950300  | 0.59263600    | -2.42195800 |
| 0      | 5.22037400  | 0.69808000    | -0.03426700  | Н       | -0.36028800  | 1.98362500    | -2.67713000 |
| С      | 6.31848700  | 1.59606100    | -0.12929400  | С       | -0.54626200  | -2.16556900   | -3.21646400 |
| Н      | 6.26694300  | 2.38166500    | 0.63547200   | Н       | -0.73334300  | -2.01082400   | -4.28854100 |

| С  | -1.67851400  | -0.39160200   | 3.22323900  |
|----|--------------|---------------|-------------|
| Η  | -1.83556400  | -1.46554200   | 3.38284100  |
| Н  | -2.24044000  | -0.10300400   | 2.32981800  |
| Н  | -2.10217300  | 0.14185100    | 4.08571700  |
| С  | -0.17546200  | -0.09136700   | 3.04474400  |
| С  | 0.05254800   | 1.43403400    | 3.00607200  |
| Н  | -0.54687400  | 1.91010000    | 2.22561400  |
| Н  | -0.22134000  | 1.89902400    | 3.96293500  |
| Н  | 1.10797600   | 1.65183300    | 2.81010100  |
| С  | 0.59489300   | -0.65879400   | 4.25916200  |
| Н  | 0.48000700   | -1.74796900   | 4.30631700  |
| Н  | 1.66431600   | -0.43628700   | 4.16660900  |
| Н  | 0.23323000   | -0.23384300   | 5.20516400  |
| 0  | 0.36721400   | -0.76092400   | 1.92891100  |
|    |              |               |             |
| 8  |              |               |             |
| a  | SCF Done: E( | RM06) = -551  | .095580062  |
| С  | -1.23151900  | -1.36260700   | -0.19493900 |
| С  | -0.11523500  | -0.55241700   | 0.03399600  |
| С  | -0.21816400  | 0.83818100    | 0.24400100  |
| С  | -1.51230800  | 1.37344000    | 0.20371000  |
| С  | -2.63652700  | 0.58434400    | -0.03929000 |
| С  | -2.49724400  | -0.78993800   | -0.24163500 |
| Н  | -1.09027200  | -2.42641500   | -0.34030000 |
| Н  | -1.63302700  | 2.44051500    | 0.36866500  |
| Н  | -3.62057100  | 1.04338400    | -0.06885400 |
| Н  | -3.36529000  | -1.41297700   | -0.43335100 |
| 0  | 1.18923900   | -2.45142700   | 0.27175600  |
| Ν  | 1.18112600   | -1.24143000   | 0.05600700  |
| 0  | 2.21251400   | -0.58673800   | -0.15254500 |
| С  | 0.95127800   | 1.77650300    | 0.51148100  |
| Н  | 1.60035100   | 1.36103800    | 1.29404200  |
| Н  | 0.54884600   | 2.72195700    | 0.88662200  |
| 0  | 1.68521300   | 2.09806900    | -0.65823100 |
| н  | 2.15466900   | 1.27824100    | -0.89064900 |
|    |              |               |             |
| 7  |              |               |             |
| N1 | SCF Done: E  | (RM06) = -204 | 1.32132465  |
| С  | 2.79540100   | -0.66819000   | -2.22001400 |
| С  | 2.00676600   | 0.52486300    | -2.40361500 |
| С  | 0.65792400   | 0.08049200    | -2.61546000 |
| C  | 1.95608100   | -1.83676900   | -2.55362500 |
| C  | 0.65480500   | -1.37795200   | -2.78811800 |
| C  | 2.49546200   | 1.94238600    | -2.40620400 |
| H  | 3.42670100   | 2.04310300    | -1.84134800 |
| н  | 2.69160200   | 2.27193600    | -3.43631900 |
| н  | 1.75762500   | 2.61245500    | -1.95804900 |
| C  | -0.52596400  | 0.93760900    | -2.93464100 |
| Ĥ  | -0.72586400  | 0.88123000    | -4.01517300 |
| Н  | -1.42950300  | 0.59263600    | -2.42195800 |
| Н  | -0.36028800  | 1.98362500    | -2.67713000 |
| C  | -0.54626200  | -2.16556900   | -3.21646400 |
|    |              |               |             |

Н 7.21318100 0.99233800 0.03877100

| Н  | -0.41495100 | -3.23922500  | -3.05914600 |
|----|-------------|--------------|-------------|
| Н  | -1.45094500 | -1.84958400  | -2.68735800 |
| С  | 2.47283100  | -3.23482700  | -2.70011400 |
| Н  | 2.88697800  | -3.36925600  | -3.70976100 |
| Н  | 3.27873600  | -3.44999400  | -1.99312700 |
| Н  | 1.68935200  | -3.98490900  | -2.56428300 |
| C  | 4.28248200  | -0.72094000  | -2.04235000 |
| Н  | 4 65396100  | 0 16295900   | -1 51868100 |
| Н  | 4 59190500  | -1 60464300  | -1 47559700 |
| Н  | 4 77825100  | -0 76487100  | -3 02265200 |
| C  | -2.14200400 | 4.87588100   | -2.16031000 |
| Č  | -1.05970900 | 3.66778600   | -0.52794400 |
| Č  | -2.09070800 | 3.96122600   | 0.41843800  |
| Č  | -3.17973100 | 4.76151200   | -0.00170100 |
| Č  | -3.20789300 | 5.22616600   | -1.29688400 |
| Н  | -2.14989800 | 5 23055300   | -3 19073100 |
| C  | -1.95290700 | 3.41990700   | 1.72275000  |
| Н  | -3 97549100 | 4 99622300   | 0 70174900  |
| Н  | -4 02204200 | 5 84398000   | -1 66294600 |
| C  | -0.84271900 | 2 67594000   | 2 02459700  |
| C  | 0 16152700  | 2 45775200   | 1 02560900  |
| Н  | -2.72887000 | 3 59877300   | 2 46375600  |
| Н  | -0 71634600 | 2 23134200   | 3 00420900  |
| N  | -1.10978200 | 4.13180200   | -1.80885700 |
| N  | 0.03329500  | 2,92076500   | -0 20940500 |
| C  | 1 44189600  | 1 80390300   | 1 42916800  |
| C  | 2.08742000  | 2 42561400   | 2 51318000  |
| C  | 3 32385800  | 2.01176700   | 3 00326300  |
| C  | 3 93416800  | 0.91336200   | 2 39396300  |
| C  | 3 28807900  | 0 26549400   | 1 33231800  |
| C  | 2.04683200  | 0.67170600   | 0.81499000  |
| Н  | 1 61602600  | 3 28923900   | 2,97687700  |
| Н  | 3 78321400  | 2 54119100   | 3 83020000  |
| Н  | 3 79036100  | -0.60894000  | 0 93015700  |
| Ir | 1 33980500  | -0 60987400  | -0 64390900 |
| 0  | 5 14204400  | 0 39022100   | 2 76297500  |
| Č  | 5 82591400  | 0.99419700   | 3 85056700  |
| Н  | 5 24128400  | 0.94138100   | 4 77886500  |
| н  | 6 75017300  | 0.42564600   | 3 97886500  |
| н  | 6 07694100  | 2 04301200   | 3 64203900  |
| C  | 0.09527600  | -3 23633700  | 2 60274300  |
| Н  | -0 90794600 | -2.80928600  | 2.68868200  |
| Н  | 0 73957600  | -2.73823400  | 3 33584800  |
| Н  | 0.04088200  | -4 301 59700 | 2 85817400  |
| C  | 0.65838400  | -3 04200100  | 1 18343700  |
| C  | 2.06925400  | -3 64995200  | 1 12377200  |
| Н  | 2 71915200  | -3 16770100  | 1 86196800  |
| Н  | 2.04369000  | -4 72563600  | 1 33884000  |
| н  | 2 51669400  | -3 51254300  | 0 13450600  |
| C  | -0 26428900 | -3 71553000  | 0 15955500  |
| н  | -1.27349400 | -3.29132000  | 0.20420900  |
| Н  | 0.11724300  | -3.58192000  | -0.85587000 |
| Н  | -0.34436500 | -4.79255800  | 0.35257100  |
| 0  | 0 75662400  | -1 62141700  | 0 97360400  |
| Č  | -5 24100600 | -1 85077400  | 3 15232400  |
| Č  | -4 03441300 | -1 32885000  | 2 69044100  |
| č  | -3.80349000 | -1.07950400  | 1.33003900  |
| Ċ  | -4.86224300 | -1.39539900  | 0.45099000  |

| С         | -6.07588700 | -1.92946200   | 0.90084200  |
|-----------|-------------|---------------|-------------|
| С         | -6.27025500 | -2.15332600   | 2.25703100  |
| Н         | -5.37732800 | -2.02362200   | 4.21658400  |
| Н         | -3.23057400 | -1.10195200   | 3.38001200  |
| Н         | -6.84583100 | -2.15924800   | 0.17530900  |
| Н         | -7.21279100 | -2.56093300   | 2.60962600  |
| С         | -2.46141500 | -0.48944300   | 0.91716100  |
| Н         | -2.04270200 | -1.06557600   | 0.08676100  |
| Н         | -2.63674600 | 0.52103100    | 0.52243000  |
| 0         | -1.56497600 | -0.44607000   | 2.00631800  |
| Н         | -0.69474500 | -0.79201600   | 1.69393900  |
| N         | -4 74514900 | -1 19445900   | -0.99668200 |
| 0         | -3 76761800 | -0 57120800   | -1 42688500 |
| 0         | -5.62739900 | -1.65238000   | -1.72605000 |
| 0         | -5.02757700 | -1.05258000   | -1.72005000 |
| 07        |             |               |             |
| 0/<br>TC1 | SCE Dama: E | (DM06) = 204  | 1 20005570  |
| 151       | SCF Done: E | (RM06) = -204 | -1.30885579 |
| C         | 2.6/403100  | -0.06227900   | -2.10613200 |
| C         | 1./9289400  | 0.44018300    | -2.4561/000 |
| C         | 0.49698700  | -0.12884200   | -2.71119900 |
| С         | 1.93560000  | -1.90526400   | -2.35065300 |
| С         | 0.61325000  | -1.58849600   | -2.70083300 |
| С         | 2.17766500  | 1.87968400    | -2.62402400 |
| Н         | 3.03411700  | 2.14000500    | -1.99619700 |
| Н         | 2.45582600  | 2.07262900    | -3.67000400 |
| Н         | 1.35100600  | 2.54218500    | -2.35622500 |
| С         | -0.70786700 | 0.60320700    | -3.21170600 |
| Н         | -0.71729500 | 0.57596400    | -4.31168000 |
| Н         | -1.63636600 | 0.13343000    | -2.87120600 |
| Н         | -0.72276900 | 1.64628300    | -2.89552900 |
| С         | -0.47980300 | -2.53968800   | -3.08906000 |
| Н         | -0.54564800 | -2.62400100   | -4.18339100 |
| Н         | -0.30842600 | -3.54560700   | -2.69457800 |
| Н         | -1.45967300 | -2.20601600   | -2.73656400 |
| С         | 2.55735000  | -3.26760200   | -2.32482100 |
| н         | 3 10662300  | -3 42726800   | -3 26402900 |
| н         | 3 27860000  | -3 37909100   | -1 51140800 |
| н         | 1 81581200  | -4 06571400   | -2 24022500 |
| C         | 1.01301200  | -0.58164900   | -2.24022300 |
| с<br>u    | 4.10479500  | -0.38104900   | 1 52701800  |
| н<br>ц    | 4.47540500  | 1 26508700    | 1 28005700  |
| н<br>ц    | 4.54858400  | -1.30398700   | -1.28993700 |
| п         | 4.03840700  | -0.70073400   | -2.92377800 |
| C         | -3.2/220400 | 4.00356500    | -2.49850100 |
| C         | -1.841/0000 | 3.29931900    | -0.8363/300 |
| C         | -2.80185400 | 3.63482800    | 0.17026100  |
| С         | -4.04583900 | 4.17191100    | -0.23677800 |
| С         | -4.28741200 | 4.35959400    | -1.57876700 |
| Н         | -3.44273000 | 4.14789500    | -3.56527300 |
| С         | -2.43574200 | 3.41049600    | 1.52185600  |
| Н         | -4.78929100 | 4.43003100    | 0.51415700  |
| Н         | -5.22609600 | 4.77029300    | -1.93750900 |
| С         | -1.19371900 | 2.90563900    | 1.79946200  |
| С         | -0.28671800 | 2.60107900    | 0.73067500  |
| Н         | -3.14220800 | 3.64104800    | 2.31621800  |
| Н         | -0.88386700 | 2.71838500    | 2.82198800  |
| Ν         | -2.10114600 | 3.49700400    | -2.16012500 |
| Ν         | -0.61666700 | 2.78386300    | -0.53965300 |
| С         | 1.09946800  | 2.17880500    | 1.08435500  |
|           |             |               |             |

| С      | 1.75261100  | 3.03977800    | 1.98648000        |
|--------|-------------|---------------|-------------------|
| С      | 3.06392300  | 2.84546500    | 2.41380400        |
| С      | 3.74657200  | 1.72519800    | 1.93424300        |
| С      | 3.10118900  | 0.84862300    | 1.05263800        |
| С      | 1.78784900  | 1.03315100    | 0.59426700        |
| Н      | 1.22248100  | 3.91811700    | 2.34790500        |
| Н      | 3 52318900  | 3 55287100    | 3 09482000        |
| Н      | 3 66295200  | -0.02584800   | 0 74465100        |
| Ir     | 1 11007500  | -0.48192400   | -0.63305700       |
| 0      | 5.03085500  | 1 30354400    | 2 26836700        |
| C      | 5 72405200  | 2 23878500    | 2.20030700        |
|        | 5.72403200  | 2.23878300    | <i>A</i> 14976900 |
| п      | 5.22180500  | 2.28990300    | 4.146/0800        |
| п      | 6./1329/00  | 1./9360/00    | 3.30493400        |
| Н      | 5.83986600  | 3.25580200    | 2.//439300        |
| С      | 0.98580100  | -2.9/610/00   | 3.20122800        |
| Н      | -0.08819200 | -2.78235600   | 3.30899800        |
| Н      | 1.52680100  | -2.23871800   | 3.80413900        |
| Η      | 1.19168900  | -3.97470000   | 3.60666700        |
| С      | 1.41257600  | -2.87307400   | 1.72473600        |
| С      | 2.92281800  | -3.12468700   | 1.61596600        |
| Н      | 3.47097800  | -2.40270300   | 2.23059700        |
| Н      | 3.18389500  | -4.13488500   | 1.95508700        |
| Н      | 3.26454800  | -3.01473200   | 0.58229700        |
| С      | 0.62229200  | -3.89103200   | 0.88683700        |
| Н      | -0.45678400 | -3.76519600   | 1.03924800        |
| Н      | 0.83131600  | -3.75804700   | -0.17846700       |
| Н      | 0.87738600  | -4.92239400   | 1.16082100        |
| 0      | 1 13904100  | -1 53200300   | 1 31882800        |
| Ċ      | -3 75571200 | -0.67117900   | 3 45917500        |
| C      | -2 81/61800 | -0.58062000   | 2 /3/59000        |
| C      | 2.01167100  | 1 18003600    | 1 18734400        |
| C      | -3.01107100 | -1.18905000   | 1.02700000        |
| C      | -4.21997800 | -1.90115500   | 2.04050700        |
| C      | -3.10943700 | -2.00083900   | 2.04930700        |
| U<br>U | -4.93998500 | -1.3869/600   | 3.27083900        |
| Н      | -3.560/0200 | -0.18055900   | 4.40902000        |
| Н      | -1.89616500 | -0.02622500   | 2.58281600        |
| Н      | -6.0/331000 | -2.57356800   | 1.86512500        |
| Н      | -5.67709400 | -1.46262300   | 4.06440600        |
| С      | -1.92351900 | -1.06316900   | 0.12477100        |
| Н      | -1.68532000 | -2.05885700   | -0.27055500       |
| Н      | -2.30368600 | -0.47587800   | -0.71616700       |
| 0      | -0.77012700 | -0.42049300   | 0.62820600        |
| Н      | -0.06474900 | -1.10295100   | 1.21898000        |
| Ν      | -4.55348300 | -2.57466400   | -0.23293500       |
| 0      | -3.86584400 | -2.32981700   | -1.22965400       |
| 0      | -5.51073600 | -3.35122200   | -0.24538600       |
|        |             |               |                   |
| 72     |             |               |                   |
| IN2    | SCF Done: E | (RM06) = -180 | 7.74615465        |
| С      | 3.15928400  | 0.45314100    | 1.03261300        |
| С      | 3.16524100  | -0.96201500   | 0.78496000        |
| С      | 2.40406800  | -1.61480800   | 1.85404000        |
| С      | 2.23773000  | 0.69658600    | 2.12901300        |
| С      | 1.83518600  | -0.61253600   | 2.65345000        |
| С      | 4.03570500  | -1.68147300   | -0.20538300       |
| Н      | 4.24609300  | -1.05999500   | -1.08062600       |
| Н      | 4,99913600  | -1.95908200   | 0.24645900        |
| Н      | 3.56492400  | -2.60381300   | -0.55970400       |
|        | 2.20172100  | 2.00001000    | 0.00070100        |

| C       | 2.32547500  | -3.09572800 | 2.06962700  |
|---------|-------------|-------------|-------------|
| Н       | 2.33102100  | -3.64351600 | 1.12480600  |
| Н       | 3.18972000  | -3.44047200 | 2.65672900  |
| Н       | 1.41882000  | -3.37944700 | 2.60969300  |
| С       | 0.85970500  | -0.78261400 | 3.77570000  |
| Н       | 1.16282200  | -0.20644100 | 4.65876000  |
| Н       | -0.12598000 | -0.42152900 | 3.45118400  |
| Н       | 0.75835000  | -1.83003200 | 4.07326000  |
| С       | 2.02470700  | 1.99482700  | 2.85380300  |
| Н       | 2.64696600  | 2.04973700  | 3.75909500  |
| Н       | 2.28608200  | 2.85436300  | 2.22959800  |
| Н       | 0.98048200  | 2.11317200  | 3.16003600  |
| С       | 4.03976000  | 1.46830200  | 0.36745900  |
| Н       | 4.29138700  | 1.17790000  | -0.65676400 |
| Н       | 3.57009700  | 2.45382100  | 0.32381000  |
| Н       | 4 98025800  | 1 57132900  | 0 92714200  |
| C       | -0.46012000 | -4 40863500 | 0.03416400  |
| C       | -0.07146300 | -2 51601300 | -1 20712500 |
| C       | -0.49823500 | -3 17342200 | -2 40310800 |
| C       | -0.89692400 | -4 52483800 | -2 31252200 |
| C       | -0.88212600 | -5 15390000 | -1.08645400 |
| н       | -0.44777100 | -4 87522900 | 1 01808300  |
| C       | 0.52464700  | 2 42802000  | 3 61130300  |
| ч       | 1 22226500  | 5.04326500  | 3 2110/100  |
| п<br>u  | -1.22220300 | -5.04520500 | -3.21104100 |
| п<br>С  | -1.19025100 | -0.18804300 | -0.9/124000 |
| C       | -0.18013300 | -1.10/93900 | -3.38913800 |
|         | 0.23107700  | -0.49090000 | -2.5/21/400 |
| п       | -0.83998800 | -2.91201300 | -4.53211/00 |
| н<br>N  | -0.22327700 | -0.51539600 | -4.494/4100 |
| IN<br>N | -0.06297700 | -3.1466/200 | -0.01286200 |
| N       | 0.32398500  | -1.19824000 | -1.22303100 |
| C       | 0.53049500  | 0.921/4600  | -2.24358800 |
| C       | 0.41214600  | 1.84998400  | -3.29266300 |
| C       | 0.60657200  | 3.20752300  | -3.07433400 |
| C       | 0.902/3400  | 3.64746500  | -1.77092400 |
| C       | 1.02985800  | 2.72547700  | -0.72165900 |
| С       | 0.88184300  | 1.35098600  | -0.92825800 |
| Н       | 0.15446800  | 1.52461400  | -4.29688200 |
| Н       | 0.50902500  | 3.90567400  | -3.89708500 |
| Н       | 1.24463300  | 3.12384600  | 0.26436800  |
| Ir      | 1.12085200  | -0.09358600 | 0.44732800  |
| 0       | 1.08814300  | 4.95261400  | -1.43221700 |
| С       | 0.95465800  | 5.94707900  | -2.44011400 |
| Н       | -0.05293900 | 5.94979100  | -2.87533800 |
| Н       | 1.13115100  | 6.90273600  | -1.94136400 |
| Н       | 1.69644400  | 5.81749900  | -3.23894300 |
| С       | -5.54999300 | 1.18495800  | 1.35663600  |
| С       | -4.49148800 | 0.52757200  | 0.71580200  |
| С       | -3.14313900 | 0.72224400  | 1.08692000  |
| С       | -2.92070100 | 1.62353200  | 2.13860100  |
| С       | -3.96136500 | 2.29307700  | 2.77702600  |
| С       | -5.28664100 | 2.07438900  | 2.38896400  |
| Н       | -6.56208800 | 0.98667000  | 1.02717300  |
| Н       | -3.73874400 | 2.98853700  | 3.58249300  |
| Н       | -6.10454600 | 2.59103800  | 2.88242900  |
| С       | -1.92987200 | 0.03131600  | 0.46101700  |
| Н       | -1.86672700 | 0.37727700  | -0.58276100 |
| Н       | -2.14956600 | -1.04833800 | 0.39825600  |

| 0        | -0.77961600              | 0.29904600               | 1.18797200  |
|----------|--------------------------|--------------------------|-------------|
| Ν        | -4.86702600              | -0.37641600              | -0.37492100 |
| 0        | -3.97864300              | -0.80970700              | -1.11502400 |
| 0        | -6.06082400              | -0.66448200              | -0.51365800 |
| Н        | -1.88998400              | 1.77613900               | 2.43376900  |
|          |                          |                          |             |
| 72       |                          |                          |             |
| TS2      | SCF Done: E              | (RM06) = -180            | 7.69742740  |
| С        | -0.86124200              | 0.75545200               | 2.65374200  |
| C        | 0.47530300               | 0.17093600               | 2.65327700  |
| С        | 0.33120700               | -1.23550600              | 2.39801900  |
| C        | -1.79795900              | -0.31949200              | 2.40783400  |
| C        | -1.06600000              | -1.54541600              | 2.25805900  |
| С        | 1.74518900               | 0.87532000               | 3.02479200  |
| Н        | 1.66487700               | 1.95195200               | 2.85130100  |
| Н        | 1.96573700               | 0.72435300               | 4.09147800  |
| Н        | 2.58816600               | 0.50823500               | 2.43563000  |
| С        | 1.44136300               | -2.23925300              | 2.36297400  |
| Н        | 2.40177000               | -1.78351600              | 2.11199400  |
| Н        | 1.53782700               | -2.71613200              | 3.34964400  |
| Н        | 1 24390000               | -3 03385800              | 1 63594200  |
| C        | -1 64180500              | -2.92025400              | 2.08886500  |
| Н        | -1 68904300              | -3 44384600              | 3 05452300  |
| Н        | -2.65789800              | -2.88981000              | 1 68577400  |
| н        | -1.03514300              | -3 53468500              | 1 41635800  |
| C        | -3 29199300              | -0 17623900              | 2 40817000  |
| н        | -3 68073400              | -0 26890600              | 3 43169300  |
| н        | -3 60145500              | 0.79909800               | 2 02265200  |
| н        | -3 77630600              | -0.94710700              | 1 80195400  |
| C        | -1 21305700              | 2 13722200               | 3 12068100  |
| н        | -0.44860100              | 2 86638600               | 2 84172300  |
| н        | -2 16489700              | 2 47811400               | 2 70240600  |
| н        | -1 30780800              | 2 15411800               | 4 21586600  |
| C        | 5 38770100               | -2 34956900              | 0.66102800  |
| C        | 3 97753400               | -0.80885300              | -0.31053700 |
| C        | 4 50201200               | -1 10533600              | -1 60864300 |
| C        | 5 51853400               | -2 08297400              | -1 71719200 |
| C        | 5 96883900               | -2 71087000              | -0 57764800 |
| н        | 5 72997600               | -2 83616600              | 1 57430800  |
| C        | 3 96383900               | -0 38923400              | -2 70894600 |
| н        | 5 92943000               | -2 32250600              | -2 69557600 |
| н        | 6 74899100               | -3 46510400              | -0.61245600 |
| C        | 2 99124600               | 0 54699600               | -2 48218800 |
| C        | 2 53020200               | 0.79111900               | -1 14673900 |
| н        | 4 32545100               | -0 59550200              | -3 71395700 |
| н        | 2 54863000               | 1 10090100               | -3 30312000 |
| N        | 4 43710300               | -1 44455700              | 0.80540200  |
| N        | 3 01066900               | 0 12556900               | -0 10745700 |
| C        | 1 55169900               | 1 89565500               | -0.10745700 |
| C        | 1.91733900               | 3 13376400               | -1 48233500 |
| C        | 1.14038500               | 1 28397800               | -1.35/3/100 |
| c        | -0.06770/00              | 4 18451500               | -0 66094500 |
| c        | -0 45464700              | 2 94976000               | -0 11956500 |
| c        | 0 32358300               | 1 78663100               | -0 21107800 |
| с<br>н   | 2 8620/200               | 3 21122000               | -0.21107800 |
| н        | 2.00504500               | 5 21805500               | -2.01+22100 |
| н        | 1.7777400<br>1 41854800  | 2 92460100               | 0 37833000  |
| II<br>Ir | -1.41034000              | 2.72400100<br>0.05202000 | 0.57055900  |
| 11       | -0. <del>1</del> 3200000 | 0.03373700               | 0.05451400  |

| 0        | -0.93985400  | 5.21767700               | -0.46272900 |
|----------|--------------|--------------------------|-------------|
| С        | -0.61525300  | 6.48325900               | -1.01743500 |
| Н        | -0.52591800  | 6.43761900               | -2.11122600 |
| Н        | -1.44175100  | 7.14812200               | -0.75508700 |
| Н        | 0.31563700   | 6.88676500               | -0.59618000 |
| С        | -4.28003500  | -2.70528000              | -1.92651000 |
| Ċ        | -3 46188600  | -1 58045200              | -1 76897600 |
| C        | -2 06846000  | -1 69023800              | -1 56459200 |
| C        | -1 54174700  | -2.99175200              | -1.54214800 |
| C        | -1.341/4/00  | -2.99175200              | 1 70627800  |
| C        | -2.34313200  | -4.11039300              | -1./002/800 |
| C II     | -3.72201800  | -3.9/684900              | -1.89983100 |
| Н        | -5.34300300  | -2.55866100              | -2.0/02/900 |
| Н        | -1.89432500  | -5.10509100              | -1.69053200 |
| Н        | -4.35617300  | -4.84829600              | -2.03328900 |
| С        | -1.06685800  | -0.55841700              | -1.46344600 |
| Н        | -1.65595500  | 0.40745800               | -0.49208600 |
| Н        | -1.20205300  | 0.21229800               | -2.23303000 |
| 0        | 0.18416600   | -0.88317800              | -1.17912600 |
| Ν        | -4.13939300  | -0.28129400              | -1.80531800 |
| 0        | -3.44555400  | 0.74143500               | -1.78066400 |
| 0        | -5.37078700  | -0.26297700              | -1.85850700 |
| н        | -0.47125700  | -3.08728100              | -1 40169300 |
|          | 0.17120700   | 5.00720100               | 1.1010/200  |
| 72       |              |                          |             |
| 1N3      | SCE Done: El | $(\mathbf{PM06}) = -180$ | 7 71120778  |
| INS<br>C |              | (100) = -180             | 2 51199100  |
| C        | -0.92972000  | 0.94402200               | 2.31100100  |
| C        | 0.335/3400   | 0.232/1800               | 2.03881000  |
| C        | 0.08309500   | -1.14431200              | 2.3913/400  |
| С        | -1.96676500  | -0.05381600              | 2.25645400  |
| С        | -1.33301600  | -1.32589200              | 2.15618300  |
| С        | 1.64218000   | 0.84323700               | 3.05010500  |
| Н        | 1.67553200   | 1.90815800               | 2.80456500  |
| Н        | 1.77997700   | 0.74810800               | 4.13687300  |
| Н        | 2.48373200   | 0.36093700               | 2.54799300  |
| С        | 1.07709400   | -2.26250900              | 2.44640300  |
| Н        | 2.10519400   | -1.90795500              | 2.35178900  |
| Н        | 0.98374100   | -2.79674200              | 3.40361900  |
| Н        | 0.90057900   | -2.99472100              | 1.65117400  |
| С        | -2.01153600  | -2.65429200              | 2.00556200  |
| Н        | -2.08666200  | -3 15661800              | 2 98070700  |
| н        | -3.02635400  | -2 55220400              | 1 61252900  |
| н        | -1 45863800  | -3 32323200              | 1 33936300  |
| C        | 3 44572100   | 0.20704000               | 2 24646800  |
| с<br>u   | 2 86022200   | 0.20794900               | 2.24040000  |
| п<br>11  | -3.80032300  | 1.220(0200               | 3.23490400  |
| H        | -3.6/225300  | 1.22969200               | 1.93128400  |
| Н        | -3.97745900  | -0.47204700              | 1.57521200  |
| С        | -1.17540800  | 2.35628100               | 2.96340000  |
| Н        | -0.34290700  | 3.01538700               | 2.70485100  |
| Н        | -2.08111800  | 2.77226200               | 2.51270100  |
| Н        | -1.30213200  | 2.38895900               | 4.05458500  |
| С        | 5.03593200   | -2.87982700              | 1.00902100  |
| С        | 3.83017500   | -1.25745700              | -0.09554000 |
| С        | 4.33488600   | -1.70248100              | -1.35846900 |
| С        | 5.22937800   | -2.79808400              | -1.37815100 |
| С        | 5.58626400   | -3.39339900              | -0.18912400 |
| Н        | 5.30689000   | -3.33688000              | 1.96070800  |
| C        | 3 90614600   | -1 00410200              | -2 51713900 |
| с<br>Ч   | 5.50014000   | _3 15150900              | _2.31713300 |
| п        | 5.02200500   | -2.12129800              | -2.32001200 |

| Н        | 6.27159500  | -4.23475600   | -0.15571700 | Н        | 4.86951400  | -0.20256500 | 2.48589900  |
|----------|-------------|---------------|-------------|----------|-------------|-------------|-------------|
| С        | 3.05413400  | 0.05765200    | -2.37651500 | С        | 1.45351800  | -0.42873900 | 3.57941500  |
| С        | 2.60454100  | 0.44379900    | -1.07165200 | Н        | 1.80486700  | -0.06404700 | 4.55632600  |
| Н        | 4 25718600  | -1 32077800   | -3 49684600 | Н        | 0 37002300  | -0 55542800 | 3 64384200  |
| н        | 2 69978000  | 0.60908600    | -3 24089400 | н        | 1 88877700  | -1 41924200 | 3 41895400  |
| N        | 4 19601300  | 1 86261800    | 1.07056700  | C        | 0.00071200  | 2 32/35000  | 2 08288200  |
| IN<br>NI | 4.19001300  | -1.80201800   | 0.02158200  |          | 0.00071200  | 1 55227000  | 2.77768600  |
| IN<br>C  | 2.97/16300  | -0.20323300   | 0.02158500  | п        | -0./1/53000 | 1.55557900  | 3.27768600  |
| C        | 1./9498300  | 1.69202200    | -0.94034100 | Н        | 0.39004600  | 2./8661/00  | 3.90241500  |
| С        | 2.40/6/100  | 2.83495800    | -1.48249100 | Н        | -0.54960800 | 3.09977100  | 2.44208500  |
| С        | 1.85205600  | 4.11014800    | -1.40178100 | С        | 3.39428800  | -3.20794700 | -0.59943300 |
| С        | 0.61818800  | 4.24420500    | -0.76322600 | С        | 1.92862400  | -1.73661500 | -1.58622800 |
| С        | -0.02034700 | 3.10832700    | -0.24563800 | С        | 1.96067300  | -2.48075000 | -2.80854200 |
| С        | 0.52507200  | 1.81636800    | -0.30610800 | С        | 2.77937700  | -3.62886300 | -2.86724800 |
| Н        | 3.37829600  | 2.72814800    | -1.96171800 | С        | 3.50615200  | -4.00371700 | -1.75714300 |
| Н        | 2.37801500  | 4.95906200    | -1.82336500 | Н        | 3.94909100  | -3.47868100 | 0.29800900  |
| Н        | -0.99311200 | 3.27105300    | 0.20529600  | С        | 1.15953700  | -2.03971600 | -3.89507500 |
| Ir       | -0 59223200 | 0 25270000    | 0 48473000  | Н        | 2 81711500  | -4 20443900 | -3 78906200 |
| 0        | -0.05149000 | 5 42415700    | -0.60232700 | н        | 4 14330100  | -4 88238800 | -1 75991100 |
| C        | 0.53854000  | 6 60244000    | 1 13020700  | C II     | 0.371/1000  | 0.03703000  | 3 73164300  |
|          | 0.55854900  | 6.52054400    | -1.13029700 | C        | 0.3/141000  | -0.93793000 | 2 407(2100  |
| н        | 0.00838000  | 0.53954400    | -2.21909000 | U<br>U   | 0.36/4/100  | -0.22404100 | -2.49762100 |
| Н        | -0.15403000 | /.41561500    | -0.90039000 | H        | 1.1/486100  | -2.59001400 | -4.83230300 |
| Н        | 1.50948300  | 6.81592600    | -0.66306500 | Н        | -0.263/6000 | -0.59456400 | -4.53951100 |
| С        | -4.34243600 | -2.54814300   | -1.81527500 | Ν        | 2.64568700  | -2.11999900 | -0.51004300 |
| С        | -3.46163700 | -1.46687500   | -1.70612300 | Ν        | 1.15230600  | -0.60409300 | -1.45828600 |
| С        | -2.06862700 | -1.64319000   | -1.55135800 | С        | -0.47534600 | 0.91787100  | -2.23331400 |
| С        | -1.61017200 | -2.97330300   | -1.52280300 | С        | -1.35972300 | 1.47853500  | -3.17342300 |
| С        | -2.47491700 | -4.05571000   | -1.65383000 | С        | -2.18426500 | 2.54194500  | -2.83882700 |
| С        | -3.84972100 | -3.84706100   | -1.80290400 | С        | -2.13435300 | 3.04545500  | -1.52339200 |
| Н        | -5.40239600 | -2.34903300   | -1.91402200 | С        | -1.25988000 | 2.48987700  | -0.58201000 |
| Н        | -2.07548600 | -5.06627600   | -1.64525800 | С        | -0.38805000 | 1.43773200  | -0.90307500 |
| н        | -4 53089300 | -4 68573300   | -1 90929700 | Н        | -1 41316100 | 1 08713400  | -4 18586900 |
| C        | -1 03922000 | -0 55914200   | -1 46166600 | н        | -2 85458900 | 2 96164000  | -3 57949600 |
| ч        | 1 71760100  | 1 21/07500    | 0.06102500  | и<br>П   | 1 20135400  | 2.00104000  | 0 41982900  |
| 11       | -1./1/09100 | 0.26104000    | -0.00102300 | 11<br>Te | -1.29133400 | 2.90339300  | 0.41982900  |
| П        | -1.10034100 | 0.26194900    | -2.10/04100 | II       | 0.97590200  | 0.58615000  | 0.29602300  |
| 0        | 0.18853800  | -0.885/9500   | -1.1181/300 | Н        | -0.20541400 | -0.45126400 | 0.62652700  |
| Ν        | -4.07517000 | -0.13569400   | -1.72367800 | 0        | -2.90281700 | 4.07778700  | -1.07840300 |
| 0        | -3.37526800 | 0.83118600    | -2.03151300 | С        | -3.86085900 | 4.64566200  | -1.96128700 |
| Ο        | -5.27192600 | -0.04817200   | -1.43159700 | Н        | -4.59524600 | 3.90124300  | -2.29457900 |
| Н        | -0.54324800 | -3.12868700   | -1.40701700 | Н        | -4.37377900 | 5.42063200  | -1.38717800 |
|          |             |               |             | Н        | -3.38476200 | 5.10585800  | -2.83726700 |
| 72       |             |               |             | С        | -3.01475500 | -3.83329900 | 1.19102100  |
| Ir-H     | SCF Done: E | (RM06) = -180 | 07.73824524 | С        | -2.99730500 | -2.46349400 | 1.44547500  |
| С        | 1.11652700  | 1.74831000    | 2.15598100  | С        | -3.83000500 | -1.56395000 | 0.75637400  |
| С        | 1.91752400  | 2.46668300    | 1.17772000  | С        | -4.71327200 | -2.10158700 | -0.18869500 |
| C        | 3 03031200  | 1 64512800    | 0.83320000  | C        | -4 75526300 | -3 47092800 | -0 44451800 |
| C        | 1 84419500  | 0.52008500    | 2 40225000  | C        | 3 00017500  | 4 33732400  | 0.24041500  |
| C        | 2.0075(000  | 0.32398300    | 2.49223900  |          | -3.90017300 | -4.33/32400 | 1 74010000  |
| C        | 2.99730000  | 0.46283100    | 1.08104900  | п        | -2.33418400 | -4.48531300 | 1.74919000  |
| U        | 1.0/238/00  | 5.87089400    | 0./0800900  | Н        | -5.55646800 | -1.41313000 | -0./2092200 |
| Н        | 2.06941100  | 4.59069300    | 1.43890600  | Н        | -5.450/1200 | -3.86185500 | -1.18149/00 |
| Н        | 2.16015900  | 4.07064200    | -0.25046800 | Н        | -3.92537100 | -5.40485200 | 0.04405500  |
| Н        | 0.60760500  | 4.08511300    | 0.58358500  | С        | -3.79297100 | -0.06824600 | 0.88448200  |
| С        | 4.15126500  | 1.99551400    | -0.10346800 | Н        | -2.84535700 | 0.38089600  | 1.21136800  |
| Н        | 4.51518300  | 1.11405900    | -0.64212500 | 0        | -4.75055000 | 0.61705100  | 0.57848700  |
| Н        | 3.83838900  | 2.73137100    | -0.85007900 | Ν        | -2.11591500 | -1.99813000 | 2.52573300  |
| Н        | 5.00815600  | 2.42039500    | 0.44067100  | 0        | -2.40629200 | -0.93703400 | 3.08492400  |
| С        | 4.09821500  | -0.54989200   | 1.78149400  | 0        | -1.16054400 | -2.70684700 | 2.83557400  |
| Ĥ        | 3.73074300  | -1.51394200   | 2.14246300  | -        |             |             |             |
| Н        | 4 58555900  | -0.71800200   | 0.81827100  | 72       |             |             |             |
|          |             |               |             | . –      |             |             |             |

| TS3     | SCF Done: E | (RM06) = -180 | 7.71121694  |
|---------|-------------|---------------|-------------|
| С       | 3.04265000  | 0.25970500    | -1.29602900 |
| С       | 3.38300400  | 0.88335200    | -0.03676700 |
| С       | 2.73068900  | 2.18362900    | 0.00203100  |
| C       | 2 16757400  | 1 16729800    | -1 99722100 |
| C       | 2 00328800  | 2 36107100    | -1 21219400 |
| C       | 4 38486300  | 0.37373400    | 0.05566600  |
|         | 4.38480300  | 0.37373400    | 0.93300000  |
| н       | 5.40104800  | 0.69489300    | 0.68225900  |
| Н       | 4.18015300  | 0.74839300    | 1.96300800  |
| Н       | 4.38320100  | -0.71883300   | 1.00279100  |
| С       | 2.89481300  | 3.19048200    | 1.09989100  |
| Н       | 2.02637100  | 3.84864600    | 1.16908600  |
| Н       | 3.02429900  | 2.70530300    | 2.07248400  |
| Н       | 3.78319700  | 3.81403900    | 0.92226400  |
| С       | 1.28837000  | 3.59151900    | -1.68489700 |
| Н       | 0 28412200  | 3 35800300    | -2.04787300 |
| н       | 1 19768500  | 4 33321000    | -0.88913300 |
| ш       | 1.19700300  | 4.059921000   | 2 51100700  |
| С       | 1.64440700  | 4.03888000    | -2.31109700 |
| C       | 1.62250400  | 0.96841700    | -3.3////900 |
| Н       | 2.15239600  | 1.62218200    | -4.08572600 |
| Н       | 1.75449300  | -0.06282400   | -3.71613100 |
| Н       | 0.55491000  | 1.20735400    | -3.42727900 |
| С       | 3.69551800  | -0.95029800   | -1.90095700 |
| Н       | 2.97958800  | -1.58413300   | -2.43310300 |
| Н       | 4.46503800  | -0.64258600   | -2.62311700 |
| Н       | 4.19234700  | -1.56413900   | -1.14513800 |
| С       | -1 12270200 | 4 20278900    | 1 02335400  |
| C       | -1.00275200 | 1.95661500    | 1.02555100  |
| C       | 2 12700500  | 2.05424600    | 2 27512100  |
| C       | -2.12790300 | 2.03434000    | 2.57512100  |
| C       | -2./3/15000 | 3.31630000    | 2.53815200  |
| С       | -2.23895800 | 4.40648600    | 1.85609500  |
| Н       | -0.70080500 | 5.04170600    | 0.47142400  |
| С       | -2.58183300 | 0.88416300    | 3.03971100  |
| Н       | -3.59523200 | 3.40610800    | 3.19980100  |
| Н       | -2.68174800 | 5.39278300    | 1.95053700  |
| С       | -1.92654100 | -0.29468800   | 2.82695700  |
| С       | -0.81362500 | -0.35876900   | 1.94541500  |
| Н       | -3.43683400 | 0.94252400    | 3.70786700  |
| н       | -2 25336300 | -1 19928400   | 3 32513300  |
| N       | -0 52073600 | 3 03494200    | 0.85032800  |
| N       | 0.36021800  | 0.74478400    | 1 27716800  |
| IN<br>C | -0.30921800 | 1.57011200    | 1.2//10800  |
| C       | -0.0/955400 | -1.5/011200   | 1.00880000  |
| C       | -0.35//9500 | -2.81190100   | 2.2661/900  |
| С       | 0.37973900  | -3.94305900   | 1.94732700  |
| С       | 1.41462000  | -3.82803900   | 1.00081200  |
| С       | 1.69462400  | -2.59370300   | 0.39944400  |
| С       | 0.97160300  | -1.43352700   | 0.70899200  |
| Н       | -1.16100500 | -2.91223100   | 2.99073600  |
| Н       | 0.14581000  | -4.89082300   | 2.41698000  |
| Н       | 2 49374900  | -2.58269100   | -0 33146700 |
| Ir      | 1 21938600  | 0.41867800    | -0.05283100 |
| п<br>U  | 0.00755200  | 0.22546600    | 1 20/12000  |
| п<br>0  | -0.09733200 | -0.33340000   | -1.29412900 |
| 0       | 2.20239600  | -4.80393600   | 0.00393100  |
| C       | 1.94606900  | -6.15951500   | 1.13889700  |
| Н       | 0.93206600  | -6.50288300   | 0.89742200  |
| Η       | 2.67143700  | -6.82572200   | 0.66639000  |
| Η       | 2.09120100  | -6.18638000   | 2.22682600  |
| С       | -4.08178800 | 0.68190500    | -1.55917200 |

| С       | -3.12041900 | -0.34102100   | -1.70338000 |
|---------|-------------|---------------|-------------|
| С       | -3.46922300 | -1.68957100   | -1.40490500 |
| С       | -4.75701300 | -1.93444800   | -0.89672500 |
| С       | -5.69175800 | -0.92191400   | -0.72576100 |
| C       | -5 34746900 | 0 39222200    | -1 07425200 |
| ч       | 3 70200100  | 1 60304300    | 1.81524200  |
| п<br>11 | -5.79290100 | 2.06597400    | -1.81324200 |
| н       | -5.00445900 | -2.9658/400   | -0.00035100 |
| Н       | -6.68239900 | -1.14907/00   | -0.34277300 |
| Н       | -6.06932600 | 1.19637500    | -0.95835000 |
| С       | -2.63769500 | -2.89236500   | -1.68051300 |
| Η       | -1.78538000 | -2.76160200   | -2.36198700 |
| 0       | -2.90583700 | -3.99682700   | -1.22872400 |
| Ν       | -1.85727500 | 0.05393700    | -2.17688700 |
| 0       | -0.83807000 | -0.78727500   | -2.02852000 |
| Õ       | -1 59763500 | 1 25513800    | -2 47833300 |
| 0       | 1.57705500  | 1.23313000    | 2.17055500  |
|         |             |               |             |
| 72      |             |               |             |
| IN4     | SCF Done: E | (RM06) = -180 | 7.75190479  |
| С       | -1.64370400 | 0.50954800    | -2.49714900 |
| С       | -1.70143500 | -0.92606600   | -2.46025500 |
| С       | -0.36033500 | -1.44095300   | -2.75751000 |
| С       | -0.24523000 | 0.88231800    | -2.58066700 |
| С       | 0 51764600  | -0 35045300   | -2.80784200 |
| C       | -2 95068200 | -1 76025600   | -2 44608800 |
| ч       | 3 28770400  | 1 08118200    | 3 46010000  |
| п<br>11 | -3.28779400 | -1.96116200   | -3.40910900 |
| H       | -2.78766000 | -2./1811/00   | -1.94164200 |
| Н       | -3./6814/00 | -1.24824000   | -1.93012500 |
| С       | -0.03827800 | -2.87840100   | -3.02689800 |
| Н       | 1.01527500  | -3.10216700   | -2.84069300 |
| Н       | -0.63716000 | -3.55106300   | -2.40877200 |
| Н       | -0.24898800 | -3.12073500   | -4.07920200 |
| С       | 1.99596100  | -0.37814100   | -3.04126100 |
| Н       | 2.51032100  | 0.26714500    | -2.32215700 |
| Н       | 2 40664400  | -1 38731200   | -2.94881800 |
| н       | 2 23414300  | -0.00709200   | -4 04812000 |
| C       | 0.20016200  | 2 26252200    | 2 81046200  |
| U<br>U  | 0.29910200  | 2.20233300    | -2.81040300 |
| H       | 0.42094900  | 2.46207800    | -3.88533600 |
| Н       | -0.36658/00 | 3.03179000    | -2.40880000 |
| Н       | 1.27454300  | 2.38913100    | -2.33165300 |
| С       | -2.82177000 | 1.43445800    | -2.57276900 |
| Н       | -2.59808400 | 2.42412400    | -2.16864800 |
| Н       | -3.11790900 | 1.56476200    | -3.62320800 |
| Н       | -3.68611300 | 1.04176500    | -2.02938100 |
| С       | 0.76715000  | -4.43355200   | 0.23900300  |
| С       | -0 57686600 | -2 76602900   | 1 06875200  |
| Ċ       | -0 94446500 | -3 57624200   | 2 18861300  |
| C       | 0.70296700  | 4 87717000    | 2.10001300  |
| C       | -0.40290700 | -4.8//1/900   | 1 20(91(00  |
|         | 0.40314100  | -3.31381300   | 1.29081000  |
| Н       | 1.45113000  | -4.75042300   | -0.54696500 |
| С       | -1.81499600 | -3.02282300   | 3.16396600  |
| Н       | -0.67161500 | -5.50877200   | 3.11824700  |
| Н       | 0.90661200  | -6.30573900   | 1.32803800  |
| С       | -2.24346300 | -1.73428900   | 3.02344600  |
| С       | -1.84152400 | -0.95994700   | 1.89493100  |
| Н       | -2.11225400 | -3.62330600   | 4.01988200  |
| Н       | -2.88270900 | -1.28513300   | 3,77354300  |
| N       | 0.27093900  | -3 21237100   | 0 11647800  |
| IN<br>N | 1 06222500  | -5.2125/100   | 0.1104/000  |
| 1N      | -1.00552500 | -1.40737100   | 0.92093000  |

| С      | -2.17939200 | 0.43801900        | 1.71512000     |
|--------|-------------|-------------------|----------------|
| С      | -2.94774700 | 1.18174000        | 2.62811500     |
| С      | -3.14210300 | 2.54562600        | 2.45706200     |
| С      | -2.53204200 | 3.18263400        | 1.36084500     |
| С      | -1.76914700 | 2.44388300        | 0.44340000     |
| С      | -1.60419100 | 1.06290700        | 0.56895000     |
| н      | -3 40018200 | 0 70403300        | 3 49276700     |
| н      | -3 73909900 | 3 09984700        | 3 17146300     |
| н      | -1 30076100 | 2 99327900        | -0.36556800    |
| Ir     | -0.60189500 | -0.1/3/1000       | -0.69124000    |
| н      | 1 24692400  | 2 18586300        | 1 47158600     |
| 0      | -2 62648400 | 4 51518500        | 1 10700200     |
| C      | 3 36570800  | 5 33316000        | 2 00592000     |
| ч      | 2 94211200  | 5 30718500        | 2.00372000     |
| н<br>ц | -2.94211200 | 6 3 4 9 6 6 0 0 0 | 1 61242500     |
| п      | -3.291/1100 | 5.02051000        | 2.04508000     |
| п      | -4.422/3000 | 3.03931000        | 2.04308900     |
| C      | 3.51822500  | -0.6499/100       | 1.09/10900     |
| C      | 3.29217200  | 0.65948400        | 0.64580800     |
| C      | 4.3/168/00  | 1.5/86//00        | 0.61968000     |
| C      | 5.62172100  | 1.17587600        | 1.11/33300     |
| C      | 5.83405100  | -0.11311900       | 1.59142600     |
| С      | 4.77585900  | -1.02/45100       | 1.56286900     |
| Н      | 2.69320600  | -1.34931100       | 1.08653500     |
| Н      | 6.42522100  | 1.90608500        | 1.09864800     |
| Н      | 6.81070800  | -0.40875400       | 1.96439500     |
| Н      | 4.92566300  | -2.04447400       | 1.91772400     |
| С      | 4.28871100  | 2.92756300        | 0.00644300     |
| Н      | 3.45329500  | 3.09475000        | -0.69274500    |
| 0      | 5.12076500  | 3.80381100        | 0.19141700     |
| Ν      | 2.00576100  | 1.02677100        | 0.14352700     |
| 0      | 1.67189900  | 2.36810100        | 0.60538700     |
| 0      | 1.03664900  | 0.16955100        | 0.59862900     |
|        |             |                   |                |
| 15     |             |                   |                |
| t-BuC  | OH SCF Don  | e: $E(RM06) = -$  | -233.585121245 |
| С      | 0.68230500  | 1.26641400        | -0.51554700    |
| Н      | 1.74205100  | 1.28398000        | -0.22710200    |
| Н      | 0.20416300  | 2.16186300        | -0.10328900    |
| Н      | 0.63689200  | 1.32275200        | -1.60978600    |
| С      | -0.00598600 | -0.00002600       | 0.01419500     |
| С      | -1.49358100 | -0.00356100       | -0.34475300    |
| Н      | -1.98910900 | 0.88174100        | 0.06901200     |
| Н      | -1.63488800 | -0.00350800       | -1.43104600    |
| Н      | -1.98479100 | -0.89157000       | 0.06836100     |
| С      | 0.68858500  | -1.26278700       | -0.51610700    |
| Н      | 1.74847300  | -1.27505500       | -0.22787200    |
| Н      | 0.21508500  | -2.16079600       | -0.10406400    |
| Н      | 0.64327800  | -1.31899400       | -1.61035400    |
| 0      | 0.02842200  | -0.00027500       | 1.45393000     |
| Н      | 0.96353300  | 0.00155300        | 1.71797100     |
|        |             |                   |                |
| 87     |             |                   |                |
| IN5    | SCF Done: E | (RM06) = -204     | 1.35886610     |
| С      | -1.47080900 | -1.58336000       | -2.41450600    |
| С      | -2.14105700 | -2.39965000       | -1.41228200    |
| Ċ      | -1.11555400 | -3.03206000       | -0.63067600    |
| Ċ      | -0.04437000 | -1.83771100       | -2.29727900    |
| Ċ      | 0.18465500  | -2.72641100       | -1.21895400    |
|        |             |                   |                |

| С    | -3.61958000 | -2.63076800 | -1.30745900 |
|------|-------------|-------------|-------------|
| Н    | -4.18906700 | -1.73168200 | -1.55975600 |
| Н    | -3.93211900 | -3.42753600 | -1.99724400 |
| Н    | -3.91094400 | -2.93417400 | -0.29743000 |
| С    | -1.34587400 | -4.00651700 | 0.48762600  |
| Н    | -1.43015300 | -5.02979300 | 0.09569700  |
| Н    | -0.51938800 | -3.99851900 | 1.20380200  |
| Н    | -2.26708700 | -3.78283500 | 1.03390300  |
| С    | 1.49471700  | -3.34936400 | -0.83440900 |
| Н    | 1.66866800  | -4.26199300 | -1.42389300 |
| Н    | 2.34055100  | -2.67860500 | -1.01162400 |
| Н    | 1.50793400  | -3.63708200 | 0.21939400  |
| С    | 0.97661200  | -1.17565600 | -3.16825200 |
| Н    | 0.79083300  | -1.41201100 | -4.22427200 |
| Н    | 0.91383000  | -0.08688200 | -3.04756600 |
| н    | 1 99693300  | -1 47211000 | -2 91828700 |
| C    | -2 11613300 | -0 90969800 | -3 59183600 |
| н    | -3 16360800 | -0.66500600 | -3 39604700 |
| н    | -1 59793100 | 0.01546200  | -3 86352900 |
| н    | -2.09634500 | -1 56919100 | -4 47164300 |
| C    | 2 30538000  | 2 01258000  | 2 60886000  |
| C    | 2.30338000  | 1.06186700  | 2.00880900  |
| C    | 0.20388800  | -1.00180700 | 2.49/49/00  |
| C    | 1 15122200  | -1.07739300 | 3.92290000  |
| C    | 1.15152500  | -1.04/84000 | 4.000/0400  |
| C II | 2.26184400  | -2.1356/200 | 4.01050400  |
| Н    | 3.18942700  | -2.33050200 | 2.05991200  |
| C    | -1.05263900 | -0.49159/00 | 4.516//100  |
| Н    | 1.07704000  | -1.6/993/00 | 5.75068400  |
| Н    | 3.09629600  | -2.57521100 | 4.54639600  |
| С    | -1.99551800 | 0.08297000  | 3.71445600  |
| С    | -1.86340300 | 0.03773500  | 2.29540600  |
| Н    | -1.15615900 | -0.48961200 | 5.59847600  |
| Н    | -2.86482000 | 0.56170200  | 4.14837600  |
| Ν    | 1.32309800  | -1.50324900 | 1.87562000  |
| Ν    | -0.80898100 | -0.57399500 | 1.70672200  |
| С    | -2.81624800 | 0.63271800  | 1.38188100  |
| С    | -3.90731100 | 1.41987000  | 1.79064600  |
| С    | -4.73178500 | 2.03838800  | 0.86083400  |
| С    | -4.44776300 | 1.87689700  | -0.50756500 |
| С    | -3.36441900 | 1.08509100  | -0.92048300 |
| С    | -2.54185800 | 0.43036600  | -0.00190200 |
| Н    | -4.11785400 | 1.57546500  | 2.84498300  |
| Н    | -5.56444900 | 2.64479200  | 1.19648700  |
| Н    | -3.18836500 | 1.00813400  | -1.98784400 |
| Ir   | -0.99381700 | -0.79230600 | -0.43446700 |
| 0    | -5.17225200 | 2.44801700  | -1.50608000 |
| С    | -6.27208100 | 3.28331100  | -1.16338100 |
| Н    | -5.95199800 | 4.14990000  | -0.57091400 |
| Н    | -6.68814600 | 3.63166600  | -2.11119400 |
| Н    | -7.04473200 | 2.73041500  | -0.61373600 |
| Н    | 1.94217100  | -0.26804200 | 0.55627900  |
| С    | 2.43604900  | 3.27117300  | 0.69182400  |
| C    | 1.38641600  | 2,70048600  | -0.07340600 |
| Ċ    | 0.69242300  | 3.50565200  | -0.98885300 |
| Ĉ    | 1.05880400  | 4.83696600  | -1.17471100 |
| C    | 2 12233700  | 5 39621300  | -0 45884300 |
| C    | 2 79691200  | 4 60942600  | 0 46728200  |
| н    | 0.51226200  | 5 43977100  | -1 89606700 |
| **   | 5.51220200  | 2.127/1100  | 1.0200700   |

| Н         | 2.40845300               | 6.43276400    | -0.61355600  | С        |
|-----------|--------------------------|---------------|--------------|----------|
| Н         | 3.61124300               | 5.01446800    | 1.06053700   | Н        |
| Ν         | 0.99162700               | 1.34540600    | 0.12992800   | Н        |
| 0         | 0.11175300               | 0.93351800    | -0.83614600  | С        |
| 0         | 2.21746400               | 0.52974900    | 0.04459700   | С        |
| С         | 5.36168600               | 0.95864100    | -2.33868200  | Н        |
| Н         | 4.74838500               | 1.69485000    | -1.80514300  | Н        |
| Н         | 4.98520400               | 0.88268900    | -3.36522400  | Ν        |
| Н         | 6.38873500               | 1.34241900    | -2.37487500  | Ν        |
| С         | 5.29649300               | -0.41039200   | -1.64451500  | С        |
| С         | 6.12234300               | -1.44659100   | -2.41163900  | С        |
| Н         | 5.76244800               | -1.53502700   | -3.44306300  | С        |
| Н         | 7.18163400               | -1.16665800   | -2.43766200  | С        |
| Н         | 6.03734700               | -2.43144200   | -1.93776300  | C        |
| C         | 5 77506300               | -0 30493000   | -0 18774700  | Ċ        |
| Н         | 5 16057700               | 0 40906400    | 0 37283500   | Н        |
| Н         | 5 70236900               | -1 28115900   | 0.30671700   | Н        |
| Н         | 6 81746600               | 0.03150300    | -0 12894700  | Н        |
| 0         | 3 94702600               | -0.90192100   | -1 67481300  | Ir       |
| н         | 3 36002800               | -0.24373400   | -1.24548900  | n<br>0   |
| и<br>П    | 0.11880300               | 3 06541700    | 1 55245300   | C C      |
| II<br>C   | 3 11060200               | 2 55427200    | 1 70246000   | с<br>ч   |
| с<br>u    | 2.62273600               | 2.33427200    | 2 15207700   | п        |
| П         | 2.022/3000               | 2.04022000    | 2.13397700   | п        |
| 0         | 4.14439000               | 2.94955900    | 2.33033300   | п        |
| 07        |                          |               |              | Н        |
| 8/<br>TC4 |                          |               | 1 21 (1 4905 | C        |
| 184       | SCF Done: E              | (RM06) = -204 | 1.31614895   | C        |
| C         | 2.42943500               | -0.50009300   | -2.32562500  | C        |
| С         | 1.23293200               | 0.25145200    | -2.6/793200  | C        |
| C         | 0.12934200               | -0.68699700   | -2.69/69400  | C        |
| С         | 2.03111200               | -1.88101100   | -2.14871400  | С        |
| С         | 0.62828900               | -2.00633700   | -2.39910300  | Н        |
| С         | 1.18768300               | 1.67681100    | -3.13997400  | Н        |
| Н         | 2.01760500               | 2.25355100    | -2.72230100  | Н        |
| Н         | 1.26479400               | 1.72137800    | -4.23577000  | N        |
| Н         | 0.25905600               | 2.16180000    | -2.83116800  | 0        |
| С         | -1.28500100              | -0.37770800   | -3.07196500  | 0        |
| Н         | -1.47358000              | -0.72614400   | -4.09767400  | С        |
| Н         | -1.98927100              | -0.89601400   | -2.41323900  | Н        |
| Н         | -1.50377600              | 0.69042600    | -3.02577600  | Н        |
| С         | -0.15806300              | -3.28263700   | -2.42289100  | Н        |
| Н         | -0.14171900              | -3.73758800   | -3.42378800  | С        |
| Н         | 0.25278600               | -4.02440100   | -1.72986200  | С        |
| Н         | -1.20798900              | -3.11283900   | -2.16637600  | Н        |
| С         | 2.93180900               | -3.01926800   | -1.78108200  | Н        |
| Н         | 3.07559400               | -3.67697600   | -2.64887000  | Н        |
| Н         | 3.91591300               | -2.67243500   | -1.45736800  | С        |
| Н         | 2.49881400               | -3.61246900   | -0.97095700  | Н        |
| C         | 3 83988700               | 0.00265500    | -2.41185800  | Н        |
| н         | 3 90767300               | 1.06578100    | -2 16960400  | Н        |
| н         | 4 51032200               | -0 53565400   | -1 73526500  | 0        |
| н         | 4 22447000               | -0 13087800   | -3 43304200  | U<br>Ц   |
|           | -1 06803800              | 2 86360600    | -3.73304200  | п<br>u   |
|           | - <del>1</del> .00003000 | 2.00300000    | -2.33224000  | п        |
|           | -2.41022/00              | 2.0/100400    | -0.73838400  | U<br>11  |
|           | -3.32238300              | 2.27010200    | 0.09040300   | H        |
| C         | -4.03838700              | 3.3/918300    | -0.26/06900  | 0        |
| C         | -5.03834500              | 3.2/151200    | -1.58552300  | <b>~</b> |
| H         | -4.34948900              | 2.77469600    | -3.58133300  | 87       |

| С  | -2.81357900 | 3.16234500  | 1.41142200  |
|----|-------------|-------------|-------------|
| Н  | -5.36286100 | 3.68885200  | 0.50181600  |
| Н  | -6.05189400 | 3.49043700  | -1.90678500 |
| С  | -1.49642200 | 2.86271000  | 1.63867300  |
| С  | -0.65051400 | 2.47230600  | 0.54801600  |
| Н  | -3.47353100 | 3.45436200  | 2.22524200  |
| Н  | -1.08246700 | 2.90615500  | 2.64046400  |
| Ν  | -2.81377700 | 2.57407800  | -2.23998500 |
| Ν  | -1.11325600 | 2.37338700  | -0.69080400 |
| С  | 0.80798700  | 2.28596600  | 0.80262700  |
| С  | 1.40703800  | 3.34462300  | 1.50982400  |
| С  | 2.77569300  | 3.42133600  | 1.76019000  |
| С  | 3.58149300  | 2.38860000  | 1.27907400  |
| С  | 2.99302700  | 1.31511500  | 0.59464800  |
| С  | 1.61681900  | 1.19846200  | 0.34463600  |
| Н  | 0.78337800  | 4.17029100  | 1.84433500  |
| Н  | 3.18353500  | 4.27244100  | 2.29347600  |
| Н  | 3.67151300  | 0.54111600  | 0.25737800  |
| Ir | 1.01403400  | -0.51901800 | -0.66530400 |
| 0  | 4.93871500  | 2.32523600  | 1.42460200  |
| С  | 5.58692900  | 3.38625500  | 2.11038300  |
| Н  | 5.23974700  | 3.47154300  | 3.14883600  |
| Н  | 6.65139800  | 3.13990000  | 2.10959900  |
| Н  | 5.44133400  | 4.34851000  | 1.60125900  |
| Н  | -0.88709900 | -3.51521900 | 0.18172700  |
| С  | -3.88896900 | -1.89353000 | 1.03359400  |
| С  | -2.68614200 | -1.21517000 | 1.32897900  |
| С  | -2.55149200 | -0.51256400 | 2.53183100  |
| С  | -3.60740400 | -0.48251200 | 3.43827400  |
| С  | -4.80718700 | -1.14654200 | 3.15273600  |
| С  | -4.94234500 | -1.84487100 | 1.95724100  |
| Н  | -3.49523700 | 0.05686500  | 4.37500900  |
| Н  | -5.62778200 | -1.12008300 | 3.86413600  |
| Н  | -5.86026500 | -2.37016300 | 1.71332600  |
| Ν  | -1.64243200 | -1.26011300 | 0.33794900  |
| 0  | -0.72995100 | -0.41306600 | 0.57442900  |
| 0  | -0.80574900 | -3.02990700 | 1.01943100  |
| С  | 1.51664300  | -1.10250900 | 3.23407000  |
| Н  | 0.44190000  | -1.25269500 | 3.38343200  |
| Н  | 1.67828600  | -0.08416000 | 2.87020500  |
| Н  | 2.00939900  | -1.20007500 | 4.21007700  |
| С  | 2.06987100  | -2.13573000 | 2.24129900  |
| С  | 3.57821200  | -1.94919500 | 2.04581200  |
| Н  | 3.81482400  | -0.93906000 | 1.70762700  |
| Н  | 4.11050700  | -2.11816100 | 2.99019300  |
| Н  | 3.96151000  | -2.66445800 | 1.30930700  |
| C  | 1.80917400  | -3.55983100 | 2.77272900  |
| Н  | 0.73786000  | -3.74605100 | 2.89342400  |
| Н  | 2.20757300  | -4.30837600 | 2.07735900  |
| Н  | 2,29957500  | -3.70325200 | 3.74331800  |
| 0  | 1.40256600  | -2.03464000 | 0.96263200  |
| Н  | 0.34960000  | -2.54296200 | 1.01129900  |
| Н  | -1.61852600 | -0.00461600 | 2.74062200  |
| C  | -4 07495900 | -2 66731900 | -0.21800400 |
| Н  | -3.21491300 | -2.68326900 | -0.90897100 |
| 0  | -5.10423200 | -3.26149100 | -0.49437200 |
|    |             |             | •           |

| 6057300           69070800           69070800           62884300           61337300           5211500           2308100           2402700           9759800           8567400           16394200           21549200           61037500           0496700           23055700           55412700           91582600           22402300           9024500           55616100           61057800           7240000 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39070800           39070800           32884300           1337300           32211500           2308100           2402700           9759800           8567400           16394200           21549200           61037500           0496700           23055700           55412700           91582600           22402300           9024500           55616100           37164500           1057800                   |
| 22884300<br>232884300<br>25211500<br>2308100<br>2402700<br>9759800<br>8567400<br>16394200<br>21549200<br>61037500<br>0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>5616100<br>57164500<br>57040000                                                                                                                                                                                     |
| 11337300         15211500         2308100         2402700         9759800         8567400         16394200         21549200         61037500         0496700         23055700         55412700         91582600         22402300         9024500         55616100         37164500         1057800                                                                                                             |
| 25211500<br>2308100<br>2402700<br>9759800<br>8567400<br>16394200<br>21549200<br>61037500<br>0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>55616100<br>57164500                                                                                                                                                                                                                         |
| 2308100<br>2402700<br>9759800<br>8567400<br>16394200<br>21549200<br>61037500<br>0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>55616100<br>57164500<br>51057800                                                                                                                                                                                                                         |
| 2402700<br>9759800<br>8567400<br>16394200<br>21549200<br>61037500<br>0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>55616100<br>5616100<br>51057800<br>57040000                                                                                                                                                                                                                         |
| 9759800           9759800           8567400           16394200           21549200           61037500           0496700           23055700           55412700           91582600           22402300           9024500           55616100           37164500           61057800           72040000                                                                                                               |
| 8567400<br>16394200<br>21549200<br>61037500<br>0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>55616100<br>57164500<br>51057800<br>7240200                                                                                                                                                                                                                                               |
| 16394200<br>21549200<br>21549200<br>61037500<br>0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>55616100<br>37164500<br>51057800                                                                                                                                                                                                                                                         |
| 10334200           21549200           61037500           0496700           23055700           55412700           91582600           22402300           9024500           55616100           37164500           1057800           72040200                                                                                                                                                                      |
| 21349200<br>61037500<br>0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>5616100<br>57164500<br>51057800                                                                                                                                                                                                                                                                                  |
| 61037500<br>0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>55616100<br>57164500<br>51057800                                                                                                                                                                                                                                                                                             |
| 0496700<br>23055700<br>55412700<br>91582600<br>22402300<br>9024500<br>55616100<br>57164500<br>51057800                                                                                                                                                                                                                                                                                                         |
| 23055700<br>55412700<br>91582600<br>22402300<br>99024500<br>55616100<br>37164500<br>51057800                                                                                                                                                                                                                                                                                                                   |
| 55412700<br>91582600<br>22402300<br>9024500<br>55616100<br>37164500<br>51057800                                                                                                                                                                                                                                                                                                                                |
| 91582600<br>22402300<br>9024500<br>5616100<br>37164500<br>1057800                                                                                                                                                                                                                                                                                                                                              |
| 22402300<br>9024500<br>55616100<br>57164500<br>51057800                                                                                                                                                                                                                                                                                                                                                        |
| 9024500<br>55616100<br>37164500<br>1057800                                                                                                                                                                                                                                                                                                                                                                     |
| 55616100<br>37164500<br>31057800                                                                                                                                                                                                                                                                                                                                                                               |
| 37164500<br>1057800                                                                                                                                                                                                                                                                                                                                                                                            |
| 31057800                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7040000                                                                                                                                                                                                                                                                                                                                                                                                        |
| / 940900                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5219400                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2744500                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0522700                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4754900                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4/34800                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30/5000                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2036400                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8546000                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7566600                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7582000                                                                                                                                                                                                                                                                                                                                                                                                        |
| )908500                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0045000                                                                                                                                                                                                                                                                                                                                                                                                        |
| \$5755800                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3632200                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7606900                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3732100                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5953200                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30367200                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3040900                                                                                                                                                                                                                                                                                                                                                                                                        |
| 621100                                                                                                                                                                                                                                                                                                                                                                                                         |
| /                                                                                                                                                                                                                                                                                                                                                                                                              |
| 891700                                                                                                                                                                                                                                                                                                                                                                                                         |
| 891700<br>170500                                                                                                                                                                                                                                                                                                                                                                                               |
| 891700<br>170500                                                                                                                                                                                                                                                                                                                                                                                               |
| 891700<br>170500<br>870500                                                                                                                                                                                                                                                                                                                                                                                     |
| 891700<br>170500<br>870500<br>340600                                                                                                                                                                                                                                                                                                                                                                           |
| 891700<br>170500<br>870500<br>340600<br>346700                                                                                                                                                                                                                                                                                                                                                                 |
| 891700<br>170500<br>870500<br>340600<br>346700<br>886200                                                                                                                                                                                                                                                                                                                                                       |
| 891700<br>170500<br>870500<br>340600<br>346700<br>886200<br>508000                                                                                                                                                                                                                                                                                                                                             |
| 891700<br>891700<br>170500<br>870500<br>340600<br>346700<br>886200<br>508000<br>442500                                                                                                                                                                                                                                                                                                                         |
| 891700<br>891700<br>170500<br>870500<br>340600<br>346700<br>886200<br>508000<br>442500<br>51665500                                                                                                                                                                                                                                                                                                             |
| 891700<br>170500<br>870500<br>340600<br>346700<br>886200<br>508000<br>442500<br>(1665500<br>052400                                                                                                                                                                                                                                                                                                             |
| 891700<br>891700<br>170500<br>870500<br>340600<br>346700<br>886200<br>508000<br>442500<br>442500<br>11665500<br>052400<br>432600                                                                                                                                                                                                                                                                               |
| 891700<br>891700<br>170500<br>870500<br>340600<br>346700<br>886200<br>508000<br>442500<br>508000<br>442500<br>502400<br>432600<br>266800                                                                                                                                                                                                                                                                       |
| 891700         170500         870500         340600         346700         886200         508000         442500         1665500         052400         432600         266800         933800                                                                                                                                                                                                                    |
| 821100         891700         170500         870500         340600         346700         886200         508000         442500         1665500         052400         432600         266800         933800         321600                                                                                                                                                                                      |
| 891700         891700         170500         870500         340600         346700         886200         508000         442500         1665500         052400         432600         266800         933800         321600         7587600                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                |

| С      | -2.77524100 | -1.02967900         | 1.28031100     |
|--------|-------------|---------------------|----------------|
| С      | -2.61328300 | -0.42381100         | 2.54371500     |
| С      | -3.65684200 | -0.44163200         | 3.45774900     |
| С      | -4.87628800 | -1.05553600         | 3.13232100     |
| С      | -5.04482900 | -1.65352100         | 1.88670300     |
| Н      | -3.52600000 | 0.02054900          | 4.43221800     |
| Н      | -5.68743600 | -1.06764300         | 3.85475900     |
| Н      | -5.97824100 | -2.13726800         | 1.61764800     |
| Ν      | -1.77133000 | -1.07097700         | 0.30286700     |
| 0      | -0.69308700 | -0.51936000         | 0.65430700     |
| 0      | -0.21011200 | -3.77685200         | 1.04721900     |
| С      | 1.30687900  | -0.62804500         | 3.22632400     |
| Н      | 0.29165700  | -1.02808900         | 3.32000800     |
| Н      | 1.25410300  | 0.34201700          | 2.72464200     |
| Н      | 1.70263700  | -0.47031300         | 4.23844600     |
| С      | 2.19469200  | -1.60302400         | 2.43595300     |
| С      | 3.65872400  | -1.12302400         | 2.45372600     |
| Н      | 3.74977100  | -0.08636500         | 2.12732700     |
| Н      | 4.07917300  | -1.19145200         | 3.46574700     |
| Н      | 4.26946700  | -1.75001600         | 1.79295700     |
| С      | 2.14676100  | -2.98724900         | 3.12505100     |
| Н      | 1.12920900  | -3.38903800         | 3.12537600     |
| Н      | 2.79818800  | -3.69856700         | 2.60184400     |
| Н      | 2.49173100  | -2.91728500         | 4.16423000     |
| 0      | 1.72196200  | -1.81093100         | 1.10421900     |
| Н      | 0.46663600  | -3.04992400         | 1.07441100     |
| Η      | -1.66855300 | 0.04682000          | 2.78305000     |
| С      | -4.23341300 | -2.32628100         | -0.36009800    |
| Н      | -3.37215700 | -2.35976400         | -1.04562600    |
| 0      | -5.30322200 | -2.82329300         | -0.67112800    |
|        |             |                     |                |
| 15     |             |                     |                |
| 1a-2   | SCF Done: E | $(RM06) = -4^{1/2}$ | 4.6/5//9651    |
| C      | 1.03180400  | -1.33220900         | 0.01250300     |
| C      | -0.12818600 | -0.55552900         | -0.06032800    |
| C      | -0.04526900 | 0.85525900          | -0.0/5/5200    |
| C      | 1.2185/900  | 1.45458500          | -0.03320100    |
| C      | 2.3/30/100  | 0.07/87/00          | 0.04634000     |
|        | 2.28083700  | -0./1682200         | 0.00992000     |
| п      | 1 20077700  | -2.41249200         | -0.00303400    |
| п<br>u | 2 24008600  | 2.33938300          | -0.04280100    |
| п<br>u | 3.34908000  | 1.13787100          | 0.0841/200     |
| 0      | -1 48744900 | -1.32283000         | 0.12040100     |
| N      | -1.48744900 | -2.33103900         | 0.11012000     |
| C      | 1 23305400  | 1 74531800          | -0.20703700    |
| ч      | -1.00135000 | 2 79553700          | -0.07200300    |
| 0      | -2 36454200 | 1 41782000          | 0.22663300     |
| 0      | 2.30131200  | 1.11,02000          | 0.22003300     |
| 3      |             |                     |                |
| H2O    | SCF Done: F | R(RM06) = -76       | .4222760449    |
| 0      | 0.00000000  | 0.00000000          | 0.12002100     |
| Н      | 0.00000000  | -0.76170600         | -0.48008200    |
| Н      | 0.00000000  | 0.76170600          | -0.48008200    |
|        |             |                     |                |
| 15     |             |                     |                |
| t-BuO  | Na SCF Dor  | ne: E(RM06) =       | -395.287318925 |

t-BuONa SCF Done: E(RM06) = -395.28/318 C 1.15477700 0.97578400 1.07835800

0.78239700 0.67710900 2.06706300 Η Η 0.78653500 1 99032700 0 87676800 Η 2.25264300 1.01348700 1.12360200 С 0.61924400 -0.00014500 -0.00004100 С 1.15334600 0.44648300 -1.38434200 0.77937300 1.45189100 -1.61799100 Η Η 2.25111500 0.46753800 -1.44129400 Η -0.23537900 -2.16133900 0.78392000 С 1.15376100 -1.42245200 0.30535200 Η 0.78116600 -1.75678700 1.28251700 Η 0.78413800 -2.12781100 -0.45059700 Η 2.25154100 -1.48066400 0.31993300 0 -0.75527600 0.00000000 0.00013600Na -2.71794400 0.00020700 0.00038900 18 IN7 SCF Done: E(RM06) = -712.810324879 С 1.51910700 1.43002600 -0.06034500 С 0.52865900 0.45365700 0.03590400 С 0.79195800 -0.91702600 0.06458400 С 2.14084800 -1.28923700 0.01870000 С 3.15949300 -0.33842700 -0.05472700 С 2.85163000 1.02459200 -0.09939400 Н 2.48098200 -0.09268500 1.24802500 Η 2.38808900 -2.34872100 0.01942000 Η 4.19649000 -0.66095700 -0.09657200 3.64011000 1.76787000 -0.17098100Η 0 -1.37215800 1.51305600 -0.82577800 Ν -0.85818600 0.93242900 0.14581000 0 -1.40265900 0.89362200 1.26127200 С -0.36494600 -1.92900100 0.09151000 Η -0.41610000 -2.30695300 1.14322300 Η -0.00713100 -2.80503800 -0.49660600 0 -1.52853700 -1.40112100 -0.36027000 Na -3.12507600 -0.11874100 -0.17324100 18 TS5 SCF Done: E(RM06) = -712.755776275 С 1.72815600 1.19925300 -0.47386300 С 0.52561100 0.52772100 -0.11530700 С 0.52081700 -0.88201600 0.17223200 С 1.79489900 -1.50112500 0.29559200 С 2.95657100 -0.84219200 -0.04162200 С 2.91792800 0.51530300 -0.45861600 Н 1.67698300 2.25634900 -0.70427400 Η 1.82293200 -2.55145200 0.57533700 Η 3.90543800 -1.37137000 -0.01953600 Η 3.83796600 1.02270100 -0.73459300 0 -0.51576900 2.56193900 0.33783500Ν -0.55336900 1.30705400 0.25289500 0 -1.58734500 0.65307900 0.79888400 С -0.69263100 -1.66614700 0.41643300 -1.09508300 -0.52008100Η 1.16882100 Η -0.49570800 -2.56239000 1.03090900 0 -1.72631500 -1.72971600 -0.38514700 Na -3.05923800 -0.12821100 -0.71532800 NaOH SCF Done: E(RM06) = -238.118923163 Na 0.04216600 -0.92733100 0.00000000  $0.04216600 \quad 1.08048800 \quad 0.00000000$ 0 Η -0.80116000 1.55674300 0.00000000 16 2a SCF Done: E(RM06) = -346.623269538 С 1.61938200 1.20796900 -0.07982200 С 0.24464900 1.20556300 0.16211200 С -0.45759700 0.00048000 0.28975400С 0.24387600 -1.20512600 0.16270100 С 1.61859800 -1.20852900 -0.07922300 С 2.30959800 -0.00052900 -0.20017600 Η 2.15146500 2.15130700 -0.17253700 Η -0.29076300 2.14787800 0.25479100Η -0.29213300 -2.14705600 0.25584600 Η 2.15007900 -2.15225400 -0.17145400 Η 3.38065100 -0.00092000 -0.38559200 С -1.94906300 0.00098500 0.51700000 -0.88554500 1.10408500 Η -2.23538200 -2.23514000 0.88922700 1.10161400 Η 0 -2.60550800 -0.00073000 -0.75485600 Η -3.56137400 -0.00166700 -0.58198600 85 IN8 SCF Done: E(RM06) = -1836.83696080 С -2.60767100 -0.31319200 -1.98166300 С -1.47837200 -1.20500100 -2.22516200 С -0.40685500 -0.38497500 -2.70497600 С -2.26276100 0.99767800 -2.55498900 С -0.92625600 0.96395400 -2.96418000 С -1.46510000 -2.69864400 -2.09079500 Η -2.18609500 -3.04004400 -1.34331400 Η -1.72921300 -3.16447000 -3.05091900 Н -0.47760600 -3.05795700 -1.79061100 С 0.92751700 -0.85902700 -3.19129100 Η -1.00399400 -4.28147100 0.88867100 Η 1.71715000 -0.12683800 -2.99171700 Η 1.22753400 -1.79959100 -2.73078900 С -0.14356300 2.06390400 -3.61695200 Η -0.12023700 1.92813500 -4.70769100 Η -0.57463600 3.04936000 -3.41744400 Η 0.89675700 2.07664500 -3.27732200 С -3.23813600 2.11688700 -2.75324600 Н -3.84664600 1.90786400 -3.64524800 Н -3.92975200 2.22148700 -1.91416200 Η -2.74443900 3.07906700 -2.91267900 С -4.00950500 -0.74620800 -1.66387200 Η -4.02162700 -1.65701400 -1.06069000 Η -4.55856800 0.02467500 -1.11396400 Η -4.56505300 -0.95249800 -2.59036000 С 4.49795200 -3.08518200 -2.17823800 С 2.97747100 -2.52554000 -0.54133000 С 4.02862000 -2.35162500 0.41399400 С 5.36314900 -2.56261800 -0.00569300

-2.93256000

-3.38112700

-1.98353800

-1.30935400

-3.21344900

1.73300700

С

Η

С

5.60467100

4.66793700

3.65866900

| Н          | 6.17521400  | -2.43277400       | 0.70629900  | С       | -0.39060000       | -0.36789300   | -2.71643600              |
|------------|-------------|-------------------|-------------|---------|-------------------|---------------|--------------------------|
| Н          | 6.61158400  | -3.10781500       | -1.67542800 | С       | -2.25170800       | 1.00100600    | -2.55105600              |
| С          | 2.33168900  | -1.82863700       | 2.03218600  | С       | -0.90827000       | 0.98186700    | -2.95446500              |
| Ċ          | 1 33843200  | -2.03141700       | 1 01713400  | C       | -1 44722600       | -2,692,662,00 | -2 13230100              |
| Н          | 4 42924200  | -1 83013200       | 2 48528000  | Н       | -2 17981400       | -3 04684100   | -1 40243000              |
| н          | 2 01344900  | -1 54352600       | 3 02920600  | Н       | -1 68712500       | -3 15158500   | -3 10195200              |
| N          | 3 23973300  | -2 89395700       | -1 82757200 | н       | -0.46235900       | -3 04531100   | -1 81595900              |
| N          | 1 66333100  | 2 3 5 4 4 8 6 0 0 | 0.22570400  | C II    | 0.94764000        | 0.83011100    | 2 10210200               |
| IN<br>C    | 0.00625000  | 1 00040800        | -0.22370400 |         | 0.94704000        | -0.83911100   | 4 28202200               |
| C          | -0.09033900 | -1.99049800       | 1.42300700  | п       | 1 72280400        | -0.98702300   | -4.28302300              |
| C          | -0.40932200 | -2.84203700       | 2.30133800  | п       | 1.73289400        | -0.10349700   | -2.98973400              |
| C          | -1.69588800 | -2.98084500       | 3.0166/900  | H       | 1.24826800        | -1.//662900   | -2./26/2400              |
| C          | -2./1166800 | -2.21014500       | 2.44659400  | C       | -0.13058900       | 2.096/4500    | -3.58828800              |
| C          | -2.40924300 | -1.33899400       | 1.39278200  | H       | -0.13297600       | 1.99727400    | -4.68328400              |
| С          | -1.12680600 | -1.20216800       | 0.83946000  | Н       | -0.54917200       | 3.07856900    | -3.34792400              |
| Н          | 0.38391400  | -3.44459400       | 2.93811000  | Н       | 0.91656700        | 2.09161700    | -3.27122100              |
| Н          | -1.88271500 | -3.66823100       | 3.83393300  | С       | -3.21924700       | 2.13335600    | -2.71012600              |
| Н          | -3.22667400 | -0.73182800       | 1.02180600  | Н       | -3.79873000       | 1.98350700    | -3.63268400              |
| Ir         | -1.00862200 | 0.20413200        | -0.66200900 | Н       | -3.93709200       | 2.18349100    | -1.88799200              |
| 0          | -4.01941800 | -2.22522000       | 2.84794100  | Н       | -2.72081200       | 3.10277200    | -2.79141300              |
| С          | -4.37462000 | -3.06945300       | 3.93161100  | С       | -4.01243700       | -0.76227500   | -1.72703300              |
| Н          | -3.83530500 | -2.80194300       | 4.85043300  | Н       | -4.02689900       | -1.68124500   | -1.13611900              |
| Н          | -5.44546200 | -2.92123100       | 4.09153100  | Н       | -4.56694100       | -0.00046400   | -1.16943800              |
| Н          | -4.19093500 | -4.12797400       | 3.70196900  | Н       | -4.56402600       | -0.95758100   | -2.65820500              |
| С          | -1.62452100 | 3.18936000        | 2.62168200  | С       | 4.55088400        | -2.98350900   | -2.14634600              |
| Н          | -0.54514600 | 3.36721500        | 2,69848300  | C       | 3.00632000        | -2.45435700   | -0.52193700              |
| Н          | -1 89670500 | 2 43099000        | 3 36392100  | Ċ       | 4 04640100        | -2.25450000   | 0 44053900               |
| н          | -2 14256300 | 4 12383700        | 2 87334600  | C       | 5 38829400        | -2 43601600   | 0.03085400               |
| C          | -1 99182100 | 2 70137700        | 1 20551000  | C<br>C  | 5.64755000        | -2 80358800   | -1 27006900              |
| C          | -3 50754500 | 2.70137700        | 1.20331000  | н       | <i>4</i> 73511000 | -3 27814700   | -3 17951900              |
| с<br>u     | 2 70882700  | 1 71044400        | 1.143/3300  | II<br>C | 4.75511900        | -3.27814700   | 1 75607200               |
| п          | -3./9883/00 | 1./1944400        | 1.90091800  |         | 5.03929900        | -1.89212300   | 0.74822700               |
| н          | -4.07/98900 | 3.3/139200        | 1.31430400  | н       | 6.19200300        | -2.28548900   | 0.74822700               |
| Н          | -3./9/88500 | 2.04/88200        | 0.16815300  | H       | 6.66084100        | -2.95650300   | -1.62852700              |
| C          | -1.5/2/5800 | 3.77325300        | 0.18232500  | C       | 2.32/30800        | -1./66/6200   | 2.0456/900               |
| Н          | -0.50692600 | 4.00898000        | 0.29095800  | С       | 1.34690400        | -1.99141200   | 1.02373000               |
| Н          | -1.73944700 | 3.42438400        | -0.84101500 | Н       | 4.42103700        | -1.71835200   | 2.51277700               |
| Н          | -2.13504800 | 4.70603500        | 0.31950900  | Н       | 1.99577900        | -1.48659000   | 3.03971000               |
| 0          | -1.28604300 | 1.48456400        | 1.02114000  | Ν       | 3.28607000        | -2.81984100   | -1.80538900              |
| С          | 3.86617400  | 2.95042400        | 2.78460000  | Ν       | 1.68656400        | -2.31035200   | -0.21635800              |
| С          | 3.05292100  | 2.18657800        | 1.94445600  | С       | -0.09195400       | -1.97877700   | 1.41741200               |
| С          | 2.69821800  | 2.66153000        | 0.67586200  | С       | -0.40491700       | -2.83290100   | 2.49100400               |
| С          | 3.17270100  | 3.91525000        | 0.26651000  | С       | -1.69695600       | -2.99323700   | 2.98656100               |
| С          | 3.99315000  | 4.67542400        | 1.10144300  | С       | -2.71833300       | -2.24468500   | 2.39753800               |
| С          | 4.34161800  | 4.19499800        | 2.36595200  | С       | -2.41608500       | -1.37213600   | 1.34433500               |
| Н          | 4.12785000  | 2.57170400        | 3.76962300  | С       | -1.12708400       | -1.21225400   | 0.81321800               |
| Н          | 2.68314800  | 1.21976700        | 2.27001900  | Н       | 0.39255700        | -3.41966200   | 2.94152500               |
| Н          | 4.35090900  | 5.64660800        | 0.76874100  | Н       | -1.88389800       | -3.68113800   | 3.80335400               |
| Н          | 4.97346800  | 4.78870500        | 3.02147500  | Н       | -3.23989300       | -0.78374400   | 0.95650100               |
| С          | 1.84368100  | 1.83837900        | -0.27119800 | Ir      | -0.99769800       | 0.19476700    | -0.68683100              |
| Н          | 1 26333700  | 2 50952500        | -0.91869500 | 0       | -4 03208300       | -2.28436100   | 2 77743900               |
| н          | 2 48403900  | 1 23052900        | -0.92146500 | Č       | -4 38953400       | -3 13789400   | 3 85310200               |
| 0          | 0.98519600  | 0.91952300        | 0.92110300  | с<br>н  | -3 87333200       | -2 86077300   | 4 78229500               |
| ч          | 0.26419500  | 1 41303400        | 0.93455400  | н<br>Ц  | 5 46608800        | 3 01260600    | 3 00316100               |
| 11         | 0.20419500  | 1.41303400        | 0.71204600  | 11      | -3.40008800       | -3.01209000   | 2 62522000               |
| 11         | 2.073/1300  | 4.5006000         | -0./1294000 | п       | 1 59/27000        | -+.17100000   | 5.02552900<br>2.71611100 |
| 05         |             |                   |             | C       | -1.3843/000       | 3.20281400    | 2.71011100               |
| 60<br>TC ( |             | (DM0C) 100        | 0.0000000   | H       | -0.50102100       | 3.34962100    | 2.79830000               |
| 156        | SCF Done: E | (KMU6) = -183     | / 6066066   | H       | -1.88041300       | 2.43812600    | 3.44234400               |
| C          | -2.60906900 | -0.32241200       | -2.02880800 | H       | -2.0/631/00       | 4.14625000    | 2.98449300               |
| С          | -1.47196700 | -1.19831700       | -2.25529600 | С       | -1.96668900       | 2.75959200    | 1.29142500               |

| С      | -3.48324600       | 2.54017300        | 1.21527200   | Н      | 4.22217100  | -2.44221600   | 0.41037300  |
|--------|-------------------|-------------------|--------------|--------|-------------|---------------|-------------|
| Н      | -3.79536300       | 1.79404800        | 1.95388700   | С      | 1.39350200  | -0.15155900   | 4.17545500  |
| Н      | -4.03082000       | 3.47032900        | 1.41194000   | Н      | 3.91282700  | -1.16988900   | 4.50905000  |
| Н      | -3.77479500       | 2.17702600        | 0.22508400   | Н      | 5.25380900  | -2.24968800   | 2.67394000  |
| С      | -1.51362300       | 3.82851300        | 0.28294100   | С      | 0.17390800  | 0.32821500    | 3.79212200  |
| Н      | -0.44054000       | 4.02866800        | 0.38674300   | С      | -0.27793400 | 0.15467100    | 2.45018900  |
| Н      | -1.70264200       | 3.50372400        | -0.74481700  | Н      | 1.75289200  | -0.02372800   | 5.19335800  |
| Н      | -2.04424900       | 4.77560700        | 0.44279100   | Н      | -0.45361500 | 0.85659200    | 4,49941400  |
| 0      | -1 31148200       | 1 50906100        | 1 07146900   | N      | 2 44601500  | -1 55732700   | 0 92017500  |
| C      | 3 66059100        | 2 87133400        | 2 84738000   | N      | 0.46273600  | -0 52059300   | 1 54912900  |
| C      | 2 80027900        | 2.16465700        | 2.00221500   | C      | -1 50977800 | 0.71945600    | 1.93207100  |
| C      | 2.60027900        | 2.10103700        | 0.67609500   | C<br>C | -2 39835200 | 1 49297600    | 2 69845400  |
| C      | 3 30936700        | 3 69758400        | 0.21240300   | C<br>C | -3.49795800 | 2 11086300    | 2.07045400  |
| C      | <i>A</i> 17/18800 | <i>1</i> 39956600 | 1.05234400   | C<br>C | -3.69680200 | 1 96945400    | 0.73218600  |
| C      | 4.35167700        | 3 08878100        | 2 37662200   | C<br>C | 2 81087000  | 1 18836000    | 0.03514000  |
| с<br>u | 4.33107700        | 2 54642200        | 2.37002200   | C<br>C | -2.81987000 | 0.52122200    | -0.03314000 |
| п      | 3.78902900        | 2.34042200        | 2 26571500   |        | -1.73383000 | 1 62257000    | 2.76200800  |
| п      | 2.20319900        | 1.29317300        | 2.303/1300   | п      | -2.23080700 | 1.03237900    | 3.70390800  |
| п      | 4.70308000        | 5.27201100        | 0.07641700   | н      | -4.1/005300 | 2.70279400    | 2.72709700  |
| П      | 5.01940000        | 4.53848700        | 3.03509600   | П      | -3.01236200 | 1.13503800    | -1.10135900 |
| C      | 1.69/40300        | 1.8148/300        | -0.2/264000  | lr     | -0.41/96500 | -0.65963300   | -0.41506/00 |
| Н      | 1.13/9/500        | 2.54099800        | -0.88194100  | 0      | -4.71788400 | 2.55242700    | 0.04617500  |
| Н      | 2.30507700        | 1.22042700        | -0.96916800  | С      | -5.62020000 | 3.39530100    | 0.75118100  |
| 0      | 0.82082700        | 0.92928600        | 0.39743800   | Н      | -5.10261500 | 4.24688600    | 1.21113100  |
| Н      | -0.05688300       | 1.45534600        | 0.95269800   | Н      | -6.32677500 | 3.76659500    | 0.00549900  |
| Н      | 3.16941600        | 4.02952200        | -0.81513900  | Н      | -6.17164100 | 2.84385900    | 1.52411100  |
|        |                   |                   |              | С      | 1.57003100  | 1.25436400    | -1.59521300 |
| 70     |                   |                   |              | О      | 0.61732800  | 1.13259900    | -0.59998500 |
| Ir-O2  | SCF Done:         | E(RM06) = -16     | 503.27002002 | Н      | 1.12144300  | 1.27780100    | -2.61274500 |
| С      | -1.91456300       | -1.96744900       | -1.29717600  | Н      | 2.29099800  | 0.41203100    | -1.60965800 |
| С      | -0.96814300       | -2.80755200       | -0.61803000  | С      | 2.37860700  | 2.54094800    | -1.44160200 |
| С      | 0.26983400        | -2.81592700       | -1.40417300  | С      | 3.46206500  | 2.79517600    | -2.29550700 |
| С      | -1.20004900       | -1.27722100       | -2.35812700  | С      | 2.05681700  | 3.49102400    | -0.46729700 |
| С      | 0.12953000        | -1.89219400       | -2.44597400  | С      | 4.20635000  | 3.96940100    | -2.18027000 |
| С      | -1.27669800       | -3.76808400       | 0.49557200   | Н      | 3.72482500  | 2.06302700    | -3.05837000 |
| Н      | -2.11222700       | -3.41503500       | 1.10716800   | С      | 2.80075000  | 4.66904200    | -0.34848700 |
| Н      | -1.54744900       | -4.75845400       | 0.10111100   | Н      | 1.21790700  | 3.28753500    | 0.18964500  |
| Н      | -0.41656200       | -3.90476400       | 1.15887400   | С      | 3.87731400  | 4.91415700    | -1.20272400 |
| С      | 1.43122200        | -3.72981900       | -1.16063800  | Н      | 5.04413700  | 4.14800700    | -2.85082700 |
| Н      | 1.25302400        | -4.70335700       | -1.64150600  | Н      | 2.53685600  | 5.39818300    | 0.41474700  |
| Н      | 2.36140100        | -3.32467900       | -1.56811100  | Н      | 4.45604300  | 5.83008600    | -1.10968100 |
| Н      | 1 58775800        | -3 91326300       | -0.09517100  |        |             |               |             |
| C      | 1 12621800        | -1 60575500       | -3 52758300  | 70     |             |               |             |
| н      | 0.89941300        | -2 20874500       | -4 41899500  | TS7    | SCF Done: E | (RM06) = -160 | 3 22749750  |
| н      | 1 10102000        | -0 55666900       | -3 83513500  | C C    | -1 45744300 | 0 70661000    | 2 39596000  |
| н      | 2 14867500        | -1 84278300       | -3 21953900  | C<br>C | -0 12445800 | 0.13192000    | 2 55090900  |
| C II   | 1 810/0700        | 0 / 20 2 2 8 0 0  | 3 44127400   | C<br>C | 0.22803200  | 1 27623800    | 2.33070700  |
| с<br>u | -1.81940700       | 1 05050200        | 4 20432400   | C<br>C | -0.22893200 | -1.27023800   | 2.27490900  |
| п      | -2.13280200       | -1.03939200       | -4.29432400  | C      | -2.34/03000 | -0.30993200   | 2.02340800  |
| п      | -2./0348100       | 0.09510000        | -3.08209000  | C<br>C | -1.39323100 | -1.39339400   | 1.90320000  |
| П      | -1.11886800       | 0.31227700        | -3.81940700  | C      | 1.08085100  | 0.84345300    | 3.08899700  |
| C      | -3.39409300       | -1.9396/000       | -1.05045800  | Н      | 1.02385000  | 1.91820500    | 2.89399700  |
| Н      | -3.63/0/800       | -2.11/16900       | 0.00129200   | Н      | 1.14968600  | 0.70493200    | 4.17/99200  |
| H      | -3.84582300       | -0.98/91900       | -1.33726800  | H      | 1.99965600  | 0.4/585500    | 2.62/68800  |
| H      | -3.87967900       | -2.72805900       | -1.64318000  | С      | 0.88694300  | -2.2/180900   | 2.35670000  |
| C      | 3.66250300        | -1.98102100       | 1.22293400   | Н      | 1.86663300  | -1.79922000   | 2.25813200  |
| С      | 1.71332200        | -0.96728500       | 1.89092600   | Н      | 0.85243300  | -2.78700700   | 3.32785800  |
| С      | 2.21625700        | -0.80401300       | 3.21990100   | Н      | 0.79996600  | -3.03660400   | 1.57801700  |
| С      | 3.51319200        | -1.28366200       | 3.50436000   | С      | -2.14722600 | -2.96552700   | 1.71228300  |
| С      | 4.25016200        | -1.87486900       | 2.50106200   | Н      | -2.40790400 | -3.46081900   | 2.65902500  |

| Н       | 4.22217100        | -2.44221600        | 0.41037300  |
|---------|-------------------|--------------------|-------------|
| С       | 1.39350200        | -0.15155900        | 4.17545500  |
| Н       | 3.91282700        | -1.16988900        | 4.50905000  |
| Н       | 5.25380900        | -2.24968800        | 2.67394000  |
| С       | 0.17390800        | 0.32821500         | 3.79212200  |
| С       | -0.27793400       | 0.15467100         | 2.45018900  |
| Н       | 1.75289200        | -0.02372800        | 5.19335800  |
| Н       | -0.45361500       | 0.85659200         | 4.49941400  |
| Ν       | 2.44601500        | -1.55732700        | 0.92017500  |
| Ν       | 0.46273600        | -0.52059300        | 1.54912900  |
| С       | -1.50977800       | 0.71945600         | 1.93207100  |
| С       | -2.39835200       | 1.49297600         | 2.69845400  |
| С       | -3.49795800       | 2.11086300         | 2.11720100  |
| C       | -3.69680200       | 1.96945400         | 0.73218600  |
| Č       | -2.81987000       | 1.18836000         | -0.03514000 |
| C       | -1 73583600       | 0.52133200         | 0 53818700  |
| Н       | -2.23680700       | 1 63257900         | 3 76390800  |
| Н       | -4 17005300       | 2 70279400         | 2 72709700  |
| Н       | -3 01256200       | 1 13563800         | -1 10135900 |
| Ir      | -0 41796500       | -0.65963300        | -0.41506700 |
| 0       | -4 71788400       | 2 55242700         | 0.04617500  |
| C       | -5 62020000       | 3 39530100         | 0.75118100  |
| н       | -5 10261500       | 4 24688600         | 1 21113100  |
| н       | -6 32677500       | 3 76659500         | 0.00549900  |
| н       | -6 17164100       | 2 84385900         | 1 52411100  |
| C       | 1 57003100        | 1 25436400         | -1 59521300 |
| 0       | 0.61732800        | 1 13259900         | -0 59998500 |
| н       | 1 12144300        | 1.13239900         | -2 61274500 |
| н       | 2 29099800        | 0.41203100         | -1 60965800 |
| C II    | 2.27077800        | 2 54094800         | -1.44160200 |
| C       | 3 46206500        | 2.34074600         | -2 29550700 |
| C       | 2 05681700        | 3 49102400         | -0.46729700 |
| C       | <i>4</i> 20635000 | 3 96940100         | -2.18027000 |
| н       | 3 72482500        | 2 06302700         | -3.05837000 |
| C II    | 2 80075000        | 2.00302700         | 0 34848700  |
| с<br>и  | 2.80073000        | 4.00904200         | 0.18064500  |
| II<br>C | 3 87731400        | <i>J</i> .28733300 | 1 20272400  |
| с<br>u  | 5.0//51400        | 4.91413700         | -1.20272400 |
| п<br>u  | 2 53685600        | 4.14800700         | -2.83082700 |
| п<br>u  | 2.33083000        | 5.39818300         | 1 10068100  |
| п       | 4.43004300        | 5.85008000         | -1.10908100 |
| 70      |                   |                    |             |
| TS7     | SCF Done: E       | (RM06) = -160      | 3.22749750  |
| C       | -1.45744300       | 0.70661000         | 2.39596000  |
| C       | -0 12445800       | 0.13192000         | 2 55090900  |
| C       | -0 22893200       | -1 27623800        | 2 27496900  |
| C       | -2.34763600       | -0 36993200        | 2.02546800  |
| C       | -1 59523100       | -1 59339400        | 1 96326600  |
| C       | 1.08085100        | 0.84345300         | 3 08899700  |
| н       | 1.02385000        | 1 91820500         | 2 89399700  |
| Н       | 1 14968600        | 0 70493200         | 4 17799200  |
| Н       | 1 99965600        | 0 47585500         | 2 62768800  |
| C       | 0.88694300        | -2.27180900        | 2.35670000  |
| Н       | 1.86663300        | -1.79922000        | 2.25813200  |
| Н       | 0.85243300        | -2.78700700        | 3 32785800  |
| Н       | 0.79996600        | -3.03660400        | 1.57801700  |
| C       | -2.14722600       | -2.96552700        | 1.71228300  |
| -       |                   |                    |             |

| Н   | -3.05295400 | -2.93439100   | 1.09997200  | С  | -1.37496500 | 1.01855100  | 2.28527400  |
|-----|-------------|---------------|-------------|----|-------------|-------------|-------------|
| Н   | -1.42335700 | -3.60579000   | 1.19962000  | С  | -0.18263400 | 0.21779500  | 2.54185400  |
| С   | -3.83092400 | -0.24915400   | 1.82742700  | С  | -0.49964300 | -1.13331800 | 2.24657900  |
| Н   | -4.35754700 | -0.45134400   | 2.77046900  | С  | -2.44921100 | 0.09257500  | 1.92621200  |
| Н   | -4.11340400 | 0.75497700    | 1.49902600  | С  | -1.89645600 | -1.21533900 | 1.86651600  |
| Н   | -4.19855100 | -0.96184300   | 1.08305000  | С  | 1.11532000  | 0.73139900  | 3.09044600  |
| С   | -1.86539300 | 2.08655100    | 2.82032900  | Н  | 1.23764500  | 1.79881100  | 2.88615100  |
| Н   | -1.09327400 | 2.82551900    | 2.59274400  | Н  | 1.14684200  | 0.59746700  | 4.18149000  |
| Н   | -2.78806400 | 2.40809000    | 2.32828500  | Н  | 1.96778000  | 0.21024500  | 2.64862400  |
| Н   | -2.04339000 | 2.11112500    | 3.90493100  | С  | 0.40405500  | -2.31797300 | 2.38958400  |
| С   | 5.06735000  | -2.11422100   | 1.27171400  | Н  | 1.45595000  | -2.03005700 | 2.43473200  |
| С   | 3.74079300  | -0.63984200   | 0.10000300  | Н  | 0.15700000  | -2.86772800 | 3.31001700  |
| С   | 4.44964100  | -0.92066700   | -1.11108700 | Н  | 0.28304800  | -3.01752100 | 1.55554400  |
| С   | 5.51072700  | -1.85490800   | -1.06928000 | С  | -2.64480500 | -2.49152000 | 1.62327600  |
| С   | 5.82657500  | -2.45721300   | 0.12784900  | Н  | -2.88956700 | -2.97919400 | 2.57813000  |
| Н   | 5.30125300  | -2.58149000   | 2.22828500  | Н  | -3.58362000 | -2.31945900 | 1.09082300  |
| С   | 4.03706800  | -0.23420000   | -2.28228800 | Н  | -2.05650600 | -3.20319800 | 1.03731900  |
| Н   | 6.06022300  | -2.08291200   | -1.98010400 | С  | -3.89873100 | 0.45167700  | 1.76599900  |
| Н   | 6.63409400  | -3.17848400   | 0.20780300  | Н  | -4.42788500 | 0.32743900  | 2.72130400  |
| С   | 3.00262000  | 0.65865500    | -2.20091300 | Н  | -4.02426200 | 1.49121200  | 1.45180100  |
| С   | 2.35195500  | 0.88765700    | -0.94403000 | Н  | -4.39446600 | -0.18329400 | 1.02626900  |
| Н   | 4.54078000  | -0.42996500   | -3.22639000 | С  | -1.56820200 | 2.44315000  | 2.72290100  |
| Н   | 2.65267200  | 1.18695600    | -3.08138800 | Н  | -0.66941800 | 3.04296700  | 2.55867500  |
| Ν   | 4.06956200  | -1.24945300   | 1.27551100  | Н  | -2.38921800 | 2.92360100  | 2.18252500  |
| Ν   | 2.71660300  | 0.25182300    | 0.15882500  | Н  | -1.80707300 | 2.48465300  | 3.79493400  |
| С   | 1.29969200  | 1.94370600    | -0.87130600 | С  | 4.47126700  | -3.12492700 | 1.46837300  |
| С   | 1.66943800  | 3.19293800    | -1.39890600 | C  | 3.48668400  | -1.46179300 | 0.21571700  |
| С   | 0.82529300  | 4.30257000    | -1.38950500 | С  | 4.10098800  | -1.95729500 | -0.97775600 |
| С   | -0.45221500 | 4.14857600    | -0.84689500 | С  | 4.92906000  | -3.10027300 | -0.88391700 |
| С   | -0.84025900 | 2.90176700    | -0.33505800 | С  | 5.11929800  | -3.69102500 | 0.34509300  |
| С   | -0.00195600 | 1.77639300    | -0.31367500 | Н  | 4.61063800  | -3.57710400 | 2.45031200  |
| Н   | 2.66961400  | 3.31403100    | -1.80928400 | С  | 3.84147400  | -1.25795500 | -2.18510000 |
| Н   | 1.16852900  | 5.24801400    | -1.79401200 | Н  | 5.40351900  | -3.49348000 | -1.78039300 |
| Н   | -1.85314300 | 2.83316800    | 0.04962100  | Н  | 5.74812700  | -4.56782800 | 0.46521200  |
| Ir  | -0.79465500 | 0.01101200    | 0.44394400  | С  | 3.04039900  | -0.14857900 | -2.15257600 |
| 0   | -1.39373700 | 5.13806200    | -0.77683400 | C  | 2.47325500  | 0.28614600  | -0.91022500 |
| C   | -1.05860700 | 6.41659600    | -1.29414600 | Н  | 4.27899700  | -1.61160700 | -3.11609200 |
| Н   | -0.83187300 | 6.37512200    | -2.36819300 | Н  | 2.81503500  | 0.40504700  | -3.05786700 |
| Н   | -1.93953000 | 7.04465700    | -1.14037000 | Ν  | 3.68844300  | -2.06239700 | 1.42323300  |
| Н   | -0.20582100 | 6.86071900    | -0.76309200 | Ν  | 2.68644500  | -0.36110200 | 0.22430400  |
| C   | -4.07902700 | -2.60879300   | -2.92371100 | C  | 1.73025900  | 1.58144000  | -0.87969900 |
| Č   | -3.23502800 | -1.55039800   | -2.58975900 | Ċ  | 2.46301900  | 2.67600800  | -1.36998100 |
| Č   | -1.96214800 | -1.79745200   | -2.05658500 | Ċ  | 1.98003800  | 3.98316400  | -1.36477400 |
| Č   | -1.53748700 | -3.11983300   | -1.88141200 | Ċ  | 0.69807200  | 4.20066900  | -0.85754900 |
| Č   | -2.38005800 | -4 17966500   | -2.22288500 | C  | -0.05579000 | 3 11438200  | -0 39150600 |
| C   | -3 65309500 | -3 92830200   | -2 74013600 | C  | 0.41136000  | 1 78943700  | -0 37910100 |
| н   | -5.06570200 | -2 40612800   | -3 33233700 | Н  | 3 46968600  | 2 50368500  | -1 74440600 |
| н   | -2.03945400 | -5 20359200   | -2 09052600 | Н  | 2 59661300  | 4 79110100  | -1 74173900 |
| н   | -4 30742500 | -4 75430100   | -3 00643300 | Н  | -1.05648800 | 3 34476200  | -0.04094400 |
| C   | -1 02907400 | -0 65479600   | -1 75955700 | Ir | -0.88222400 | 0.31291600  | 0 29784600  |
| н   | -1 82846600 | 0 23830200    | -0.87711200 | 0  | 0.08499500  | 5 42075600  | -0.78516100 |
| Н   | -1.06616600 | 0.13489800    | -2.53045200 | C  | 0.79177700  | 6.55207200  | -1.27013700 |
| 0   | 0 16252100  | -0.89653200   | -1 24632200 | н  | 1 02599400  | 6 45834300  | -2.33924300 |
| н   | -0 54071500 | -3 29989200   | -1 49170300 | Н  | 0 12781500  | 7 40764000  | -1 12476400 |
| Н   | -3 56415800 | -0 52387400   | -2.74233000 | н  | 1 72198500  | 6 72230900  | -0 71132700 |
|     | 5.50115000  | 0.02007400    | 2., 1255000 | С  | -4 52931100 | -1 94280900 | -2,72179600 |
| 70  |             |               |             | C  | -3.51034300 | -1.03559400 | -2.43674100 |
| IN9 | SCE Done: E | (RM06) = -160 | 3 24039221  | C  | -2 26943700 | -1 48380200 | -1 95623100 |
|     | Ser Done. D |               |             | U  | 2.20713700  | 1.10500200  | 1.75025100  |

| 9                                                                                                                                                                                                                                                                                                                                    | • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С                                                                                                                                                                                                                                                                                                                                    | -2.06038000                                                                                                                                                                                                                                                                                                                                                                                      | -2.86125800                                                                                                                                                                                                                                                                                                                                                                                                 | -1.79281600                                                                                                                                                                                                                                                                                                                                                                                                      |
| С                                                                                                                                                                                                                                                                                                                                    | -3.07755000                                                                                                                                                                                                                                                                                                                                                                                      | -3.76970200                                                                                                                                                                                                                                                                                                                                                                                                 | -2.08918700                                                                                                                                                                                                                                                                                                                                                                                                      |
| С                                                                                                                                                                                                                                                                                                                                    | -4.31636400                                                                                                                                                                                                                                                                                                                                                                                      | -3.31462300                                                                                                                                                                                                                                                                                                                                                                                                 | -2.54800900                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | -5.48761100                                                                                                                                                                                                                                                                                                                                                                                      | -1.58254800                                                                                                                                                                                                                                                                                                                                                                                                 | -3.08746600                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | -2,90096400                                                                                                                                                                                                                                                                                                                                                                                      | -4 83569900                                                                                                                                                                                                                                                                                                                                                                                                 | -1 96799900                                                                                                                                                                                                                                                                                                                                                                                                      |
| н                                                                                                                                                                                                                                                                                                                                    | -5 10781100                                                                                                                                                                                                                                                                                                                                                                                      | -4 02294400                                                                                                                                                                                                                                                                                                                                                                                                 | -2 77873400                                                                                                                                                                                                                                                                                                                                                                                                      |
| C II                                                                                                                                                                                                                                                                                                                                 | 1 1 ( 9 / 4 0 0 0                                                                                                                                                                                                                                                                                                                                                                                | -4.02294400                                                                                                                                                                                                                                                                                                                                                                                                 | 1 71(09(00                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                      | -1.10844000                                                                                                                                                                                                                                                                                                                                                                                      | -0.30981800                                                                                                                                                                                                                                                                                                                                                                                                 | -1./1008000                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | -1.89960900                                                                                                                                                                                                                                                                                                                                                                                      | 1.31152900                                                                                                                                                                                                                                                                                                                                                                                                  | -0.384/0600                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | -1.16401500                                                                                                                                                                                                                                                                                                                                                                                      | 0.34443100                                                                                                                                                                                                                                                                                                                                                                                                  | -2.40589700                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                                                                                                                                                                                                                                                                                                                                    | -0.01552000                                                                                                                                                                                                                                                                                                                                                                                      | -0.89005800                                                                                                                                                                                                                                                                                                                                                                                                 | -1.23406400                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | -1.08884900                                                                                                                                                                                                                                                                                                                                                                                      | -3.20504400                                                                                                                                                                                                                                                                                                                                                                                                 | -1.45140100                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | -3.67248800                                                                                                                                                                                                                                                                                                                                                                                      | 0.03065200                                                                                                                                                                                                                                                                                                                                                                                                  | -2.58182600                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2a-1                                                                                                                                                                                                                                                                                                                                 | SCF Done: E                                                                                                                                                                                                                                                                                                                                                                                      | (RM06) = -345                                                                                                                                                                                                                                                                                                                                                                                               | 423119235                                                                                                                                                                                                                                                                                                                                                                                                        |
| C                                                                                                                                                                                                                                                                                                                                    | 1 73382700                                                                                                                                                                                                                                                                                                                                                                                       | 1 06318400                                                                                                                                                                                                                                                                                                                                                                                                  | -0.00000200                                                                                                                                                                                                                                                                                                                                                                                                      |
| C<br>C                                                                                                                                                                                                                                                                                                                               | 0.35821100                                                                                                                                                                                                                                                                                                                                                                                       | 1 20187600                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000200                                                                                                                                                                                                                                                                                                                                                                                                       |
| C                                                                                                                                                                                                                                                                                                                                    | 0.53621100                                                                                                                                                                                                                                                                                                                                                                                       | 0.21114200                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000000                                                                                                                                                                                                                                                                                                                                                                                                       |
| C                                                                                                                                                                                                                                                                                                                                    | -0.53501500                                                                                                                                                                                                                                                                                                                                                                                      | 0.21114300                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000200                                                                                                                                                                                                                                                                                                                                                                                                       |
| С                                                                                                                                                                                                                                                                                                                                    | -0.04223300                                                                                                                                                                                                                                                                                                                                                                                      | -1.10401800                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00000300                                                                                                                                                                                                                                                                                                                                                                                                       |
| С                                                                                                                                                                                                                                                                                                                                    | 1.33015300                                                                                                                                                                                                                                                                                                                                                                                       | -1.33072000                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00000100                                                                                                                                                                                                                                                                                                                                                                                                       |
| С                                                                                                                                                                                                                                                                                                                                    | 2.21814800                                                                                                                                                                                                                                                                                                                                                                                       | -0.24748400                                                                                                                                                                                                                                                                                                                                                                                                 | -0.00000200                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | 2.42612100                                                                                                                                                                                                                                                                                                                                                                                       | 1.90049500                                                                                                                                                                                                                                                                                                                                                                                                  | -0.00000400                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | -0.02996900                                                                                                                                                                                                                                                                                                                                                                                      | 2.30830800                                                                                                                                                                                                                                                                                                                                                                                                  | -0.00000100                                                                                                                                                                                                                                                                                                                                                                                                      |
| Н                                                                                                                                                                                                                                                                                                                                    | -0.74978800                                                                                                                                                                                                                                                                                                                                                                                      | -1.92775700                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00000600                                                                                                                                                                                                                                                                                                                                                                                                       |
| Н                                                                                                                                                                                                                                                                                                                                    | 1 71417200                                                                                                                                                                                                                                                                                                                                                                                       | -2 34712800                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00000100                                                                                                                                                                                                                                                                                                                                                                                                       |
| н                                                                                                                                                                                                                                                                                                                                    | 3 28995300                                                                                                                                                                                                                                                                                                                                                                                       | -0.42767400                                                                                                                                                                                                                                                                                                                                                                                                 | -0.00000400                                                                                                                                                                                                                                                                                                                                                                                                      |
| C II                                                                                                                                                                                                                                                                                                                                 | 1 00084000                                                                                                                                                                                                                                                                                                                                                                                       | 0.12707100                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000000100                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                      | -1.99084900                                                                                                                                                                                                                                                                                                                                                                                      | 1.54294100                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000500                                                                                                                                                                                                                                                                                                                                                                                                       |
| П                                                                                                                                                                                                                                                                                                                                    | -2.2/0//200                                                                                                                                                                                                                                                                                                                                                                                      | 1.54584100                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00001500                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0                                                                                                                                                                                                                                                                                                                                    | -2.85164600                                                                                                                                                                                                                                                                                                                                                                                      | -0.39493200                                                                                                                                                                                                                                                                                                                                                                                                 | -0.00000700                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 87                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 87<br>TS8                                                                                                                                                                                                                                                                                                                            | SCF Done: E                                                                                                                                                                                                                                                                                                                                                                                      | (RM06) = -207                                                                                                                                                                                                                                                                                                                                                                                               | 9.15228870                                                                                                                                                                                                                                                                                                                                                                                                       |
| 87<br>TS8<br>C                                                                                                                                                                                                                                                                                                                       | SCF Done: E(<br>0.18037600                                                                                                                                                                                                                                                                                                                                                                       | (RM06) = -207<br>-0.71195000                                                                                                                                                                                                                                                                                                                                                                                | 9.15228870<br>-2.86115800                                                                                                                                                                                                                                                                                                                                                                                        |
| 87<br>TS8<br>C<br>C                                                                                                                                                                                                                                                                                                                  | SCF Done: E00.18037600                                                                                                                                                                                                                                                                                                                                                                           | (RM06) = -207<br>-0.71195000<br>-2.09412700                                                                                                                                                                                                                                                                                                                                                                 | 9.15228870<br>-2.86115800<br>-2.57964400                                                                                                                                                                                                                                                                                                                                                                         |
| 87<br>TS8<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                             | SCF Done: E<br>0.18037600<br>0.53254900<br>1.88976600                                                                                                                                                                                                                                                                                                                                            | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100                                                                                                                                                                                                                                                                                                                                                  | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100                                                                                                                                                                                                                                                                                                                                                          |
| 87<br>TS8<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                        | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.88976600<br>1.35647000                                                                                                                                                                                                                                                                                                                             | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800                                                                                                                                                                                                                                                                                                                                    | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2 58083800                                                                                                                                                                                                                                                                                                                                           |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                   | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.88976600<br>1.35647000<br>2.39293100                                                                                                                                                                                                                                                                                                               | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>0.75996500                                                                                                                                                                                                                                                                                                                      | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800                                                                                                                                                                                                                                                                                                                            |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                              | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.88976600<br>1.35647000<br>2.39293100<br>0.32205600                                                                                                                                                                                                                                                                                                 | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>2.28024100                                                                                                                                                                                                                                                                                                       | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>2.88702200                                                                                                                                                                                                                                                                                                              |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                         | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.88976600<br>1.35647000<br>2.39293100<br>-0.32205600                                                                                                                                                                                                                                                                                                | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100                                                                                                                                                                                                                                                                                                      | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200                                                                                                                                                                                                                                                                                                             |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>H                                                                                                                                                                                                                                                                                         | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100                                                                                                                                                                                                                                                                                               | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000                                                                                                                                                                                                                                                                                       | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500                                                                                                                                                                                                                                                                                              |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H                                                                                                                                                                                                                                                                                    | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.88976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300                                                                                                                                                                                                                                                                  | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700                                                                                                                                                                                                                                                                        | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900                                                                                                                                                                                                                                                                               |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H                                                                                                                                                                                                                                                                               | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400                                                                                                                                                                                                                                                                 | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100                                                                                                                                                                                                                                                         | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600                                                                                                                                                                                                                                                                |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H<br>C                                                                                                                                                                                                                                                                     | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.88976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100                                                                                                                                                                                                                                     | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300                                                                                                                                                                                                                                          | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600                                                                                                                                                                                                                                                 |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H<br>C<br>H                                                                                                                                                                                                                                                                | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100                                                                                                                                                                                                                                     | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700                                                                                                                                                                                                                           | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800                                                                                                                                                                                                                                  |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200                                                                                                                                                                                                                       | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900                                                                                                                                                                                                            | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300                                                                                                                                                                                                                   |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700                                                                                                                                                                                                         | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600                                                                                                                                                                                             | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300                                                                                                                                                                                                    |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C                                                                                                                                                                                                                                            | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700                                                                                                                                                                                           | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400                                                                                                                                                                              | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100                                                                                                                                                                                     |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H                                                                                                                                                                                                                                            | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4 35662900                                                                                                                                                               | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900                                                                                                                                                               | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700                                                                                                                                                                      |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H                                                                                                                                                                                                                                            | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>2.86926000                                                                                                                                                 | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900                                                                                                                                                               | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>1.24612600                                                                                                                                                        |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H                                                                                                                                                                                                                                  | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000                                                                                                                                                 | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>1.00420200                                                                                                                                   | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>1 25500000                                                                                                                                         |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H                                                                                                                                                                                                              | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200                                                                                                                                   | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200                                                                                                                                  | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900                                                                                                                                        |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>C                                                                                                                                                                                                                        | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400                                                                                                                     | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600                                                                                                                    | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.89000800                                                                                                                         |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>C<br>H<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400<br>1.61578700                                                                                                                     | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600<br>1.70053700                                                                                                      | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.89000800<br>-3.97151900                                                                                                          |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400<br>1.61578700<br>0.56522000                                                                                                       | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600<br>1.70053700<br>2.09868800                                                                                        | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.89000800<br>-3.97151900<br>-2.59992500                                                                                           |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                             | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400<br>1.61578700<br>0.56522000<br>2.32070200                                                                                         | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600<br>1.70053700<br>2.09868800<br>2.01753300                                                                          | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.89000800<br>-3.97151900<br>-2.59992500<br>-2.37691600                                                                            |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                             | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400<br>1.61578700<br>0.56522000<br>2.32070200<br>-0.97252300                                                                          | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600<br>1.70053700<br>2.09868800<br>2.01753300<br>-0.25191200                                                           | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.89000800<br>-3.97151900<br>-2.59992500<br>-2.37691600<br>-3.70763700                                                             |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                             | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400<br>1.61578700<br>0.56522000<br>2.32070200<br>-0.97252300<br>-1.79613500                                             | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600<br>1.70053700<br>2.09868800<br>2.01753300<br>-0.25191200<br>-0.96986300                                            | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.89000800<br>-3.97151900<br>-2.59992500<br>-2.37691600<br>-3.70763700<br>-3.70143900                                              |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                             | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400<br>1.61578700<br>0.56522000<br>2.32070200<br>-0.97252300<br>-1.79613500<br>-1.34885600                              | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600<br>1.70053700<br>2.09868800<br>2.01753300<br>-0.25191200<br>-0.96986300<br>0.71851500                              | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.89000800<br>-3.97151900<br>-2.59992500<br>-2.37691600<br>-3.70763700<br>-3.70143900<br>-3.37472900                               |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                             | SCF Done: E0<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400<br>1.61578700<br>0.56522000<br>2.32070200<br>-0.97252300<br>-1.79613500<br>-1.34885600<br>-0.64035100               | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600<br>1.70053700<br>2.09868800<br>2.01753300<br>-0.25191200<br>-0.96986300<br>0.71851500<br>-0.14921000               | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.89000800<br>-3.97151900<br>-2.59992500<br>-2.59992500<br>-2.37691600<br>-3.70763700<br>-3.70143900<br>-3.37472900<br>-4.75018600 |
| 87<br>TS8<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                             | SCF Done: El<br>0.18037600<br>0.53254900<br>1.38976600<br>1.35647000<br>2.39293100<br>-0.32205600<br>-1.38061100<br>-0.21810300<br>-0.04053400<br>2.66946100<br>3.22796100<br>3.39232200<br>2.01479700<br>3.81203700<br>4.35662900<br>3.86836000<br>4.33658200<br>1.47195400<br>1.61578700<br>0.56522000<br>2.32070200<br>-0.97252300<br>-1.79613500<br>-1.34885600<br>-0.64035100<br>4.24804100 | (RM06) = -207<br>-0.71195000<br>-2.09412700<br>-2.11073100<br>0.10123800<br>-0.75996500<br>-3.28934100<br>-3.08563000<br>-3.57671700<br>-4.15600100<br>-3.33458300<br>-3.70877700<br>-3.12535900<br>-4.14296600<br>-0.35379400<br>-0.25523900<br>0.60725600<br>-1.09430200<br>1.56101600<br>1.70053700<br>2.09868800<br>2.01753300<br>-0.25191200<br>-0.96986300<br>0.71851500<br>-0.14921000<br>1.42938200 | 9.15228870<br>-2.86115800<br>-2.57964400<br>-2.13813100<br>-2.58083800<br>-2.12351800<br>-2.88702200<br>-2.70223500<br>-3.94261900<br>-2.28111600<br>-1.77017600<br>-2.64011800<br>-0.97830300<br>-1.43067300<br>-1.86265100<br>-2.81298700<br>-1.34612600<br>-1.25599900<br>-2.8900800<br>-3.97151900<br>-2.59992500<br>-2.37691600<br>-3.70763700<br>-3.70763700<br>-3.70743900<br>-4.75018600<br>1.70801000   |

| С        | 1.98672400  | -1.80936400 1.83594900  |
|----------|-------------|-------------------------|
| С        | 2.12200500  | -2.34245000 3.15535700  |
| С        | 3.41037200  | -2.38117000 3.73114200  |
| С        | 4.48781300  | -1.91684800 3.00864500  |
| Н        | 5.08015300  | -1.06437200 1.10790500  |
| С        | 0 95763000  | -2.81102400 3.81913500  |
| н        | 3 52945300  | -2 77709700 4 73644100  |
| н        | 5 49448100  | -1 92414600 3 41324000  |
| C        | -0 24763600 | -2 74607200 3 18399000  |
| C        | -0.33864200 | -2.19647700 1.87037500  |
| ч        | 1.04080600  | 2 21228500 / 82521/00   |
| и<br>п   | 1 14696400  | 3 00127800 3 67842400   |
| N        | 2 05518800  | 1 27622100 1 12405700   |
| IN<br>NI | 0.75467000  | 1 72702200 1 22807700   |
| IN<br>C  | 1 59149600  | -1./5/92800 1.2280//00  |
| C        | -1.58148600 | -2.0/558/00 1.14119600  |
| C        | -2.80/98600 | -2.58808100 1.60067100  |
| C        | -3.9/2/9000 | -2.44/58000 0.86192600  |
| C        | -3.911//300 | -1./6/81400 -0.36/08000 |
| C        | -2.69239700 | -1.25165700 -0.83191100 |
| C        | -1.508/4/00 | -1.39308800 -0.106/4/00 |
| Н        | -2.86404900 | -3.11595300 2.54821700  |
| H        | -4.90435400 | -2.85141/00 1.23941800  |
| H        | -2.71730100 | -0./11/8400 -1./69/4000 |
| lr       | 0.33213900  | -0.76065000 -0.68341300 |
| Н        | -0.75209800 | 0.47089000 -0.96170600  |
| 0        | -4.9800/300 | -1.55769100 -1.17728800 |
| С        | -6.26488/00 | -1.99570700 -0.74560500 |
| Н        | -6.55714600 | -1.51506800 0.19604700  |
| Н        | -6.96011300 | -1.69645100 -1.53262600 |
| Н        | -6.30182300 | -3.08642400 -0.62906200 |
| С        | 2.92640100  | 2.22695800 0.76089100   |
| С        | 1.67709000  | 2.82729400 0.41997700   |
| С        | 1.68237200  | 4.23458900 0.11050000   |
| С        | 2.90050800  | 4.94016500 0.09781000   |
| С        | 4.10660500  | 4.32965800 0.40193200   |
| С        | 4.09866700  | 2.96170700 0.74238300   |
| Η        | 2.92703100  | 1.17766700 1.02383700   |
| Η        | 2.85325500  | 5.99821900 -0.14527900  |
| Н        | 5.03485200  | 4.89402500 0.39655100   |
| Н        | 5.03451800  | 2.46902000 1.00233900   |
| С        | 0.45003100  | 4.98472400 -0.13791900  |
| Η        | -0.49222800 | 4.43890600 0.05964400   |
| 0        | 0.40278800  | 6.15513500 -0.51091600  |
| Ν        | 0.50746700  | 2.13504800 0.40830700   |
| 0        | 0.57333100  | 0.83587600 0.80630800   |
| С        | -3.17349500 | 1.88662600 2.82609800   |
| С        | -2.61796500 | 1.80082200 1.54527300   |
| С        | -3.24043300 | 2.43239700 0.46269600   |
| С        | -4.42378300 | 3.15150100 0.69155400   |
| С        | -4.98143900 | 3.23080600 1.96714600   |
| С        | -4.35492200 | 2.59618100 3.04375000   |
| Н        | -2.67196200 | 1.39748700 3.65806600   |
| Н        | -1.69382800 | 1.25329600 1.39441100   |
| Н        | -4.91129800 | 3.65784300 -0.14024500  |
| Н        | -5.89758000 | 3.79574500 2.12301300   |
| Н        | -4.78085400 | 2.66249700 4.04197700   |
| С        | -2.71102000 | 2.34685000 -0.96242700  |
| Н        | -3.35835000 | 1.66188700 -1.53143700  |

| Н            | -2.83073300 | 3.33642400    | -1.43431900 | С      | -4.23072900 | -3.86608800    | -1.64542100 |
|--------------|-------------|---------------|-------------|--------|-------------|----------------|-------------|
| Ο            | -1.37610000 | 1.91802100    | -1.13457300 | Н      | -4.81165600 | -3.58595700    | -0.75802100 |
| Н            | -0.59824000 | 2.24867000    | -0.37769600 | Н      | -4.87095100 | -3.80274200    | -2.52816800 |
|              |             |               |             | Н      | -3.87222800 | -4.89791600    | -1.53620500 |
| 87           |             |               |             | С      | 0.66409100  | 3.55629300     | 0.90515100  |
| IN10         | SCF Done: I | E(RM06) = -20 | 79.22221171 | С      | -0.36848600 | 3.10111800     | 0.04962100  |
| С            | 1 55973900  | 0.08200900    | -2.73516300 | Ċ      | -1 30631600 | 4 05896100     | -0 45087400 |
| Ċ            | 2 04341100  | -1 27863400   | -2 58720800 | C      | -1 22829200 | 5 39748800     | -0.01899500 |
| C            | 3 23698600  | -1 22118600   | -1 79234200 | C<br>C | -0.22746300 | 5 82518500     | 0.83812000  |
| C            | 2 59234800  | 0.96788100    | -2 19199600 | C<br>C | 0.72502800  | 1 88909700     | 1 28198800  |
| C            | 3 61172000  | 0.18564000    | 1 63401000  | с<br>ц | 1 38214200  | 2 83073000     | 1.26608000  |
| C            | 1 48872000  | 2 50421000    | 2 25078200  | П<br>Ц | 1.06994900  | 6.00033000     | 0.40002500  |
|              | 1.48873000  | -2.30431900   | -3.23078200 | п      | -1.90884800 | 0.09033000     | -0.40902300 |
| п            | 0.41200700  | -2.451/9200   | -5.41940100 | п      | -0.10903200 | 0.80309900     | 1.13099400  |
| Н            | 1.96880100  | -2.64581600   | -4.22945200 | Н      | 1.52464900  | 5.21148/00     | 1.94593300  |
| Н            | 1.6/008300  | -3.40484800   | -2.65685300 | C      | -2.30421200 | 3.70251900     | -1.45998000 |
| С            | 4.12225500  | -2.38239/00   | -1.43858400 | Н      | -2.10259000 | 2.76438900     | -2.01582300 |
| Н            | 4.91543700  | -2.51454100   | -2.18866200 | 0      | -3.29372000 | 4.37045500     | -1.74994800 |
| Н            | 4.61066900  | -2.23474100   | -0.47002000 | Ν      | -0.45669700 | 1.77281900     | -0.30227900 |
| Н            | 3.55717300  | -3.31761300   | -1.38590800 | 0      | 0.30691200  | 0.89061300     | 0.45628400  |
| С            | 4.90725500  | 0.66738800    | -1.05688800 | С      | -7.12725500 | -0.96574400    | 0.13772600  |
| Н            | 5.68448200  | 0.68845400    | -1.83548800 | С      | -5.82085400 | -0.48436900    | 0.03799600  |
| Η            | 4.82009700  | 1.67817200    | -0.64937300 | С      | -5.26264200 | 0.27627400     | 1.07514800  |
| Η            | 5.26116600  | 0.01427200    | -0.25627100 | С      | -6.03737000 | 0.54623500     | 2.20955400  |
| С            | 2.53026100  | 2.46208400    | -2.26070000 | С      | -7.34149200 | 0.05731200     | 2.31479500  |
| Н            | 2.78787300  | 2.80966800    | -3.27168200 | С      | -7.89071400 | -0.69934600    | 1.27779400  |
| Н            | 1.52375000  | 2.82666800    | -2.03840800 | Н      | -7.55161600 | -1.54769100    | -0.67681200 |
| Η            | 3.22233700  | 2.93475400    | -1.55862600 | Н      | -5.22577300 | -0.68693500    | -0.84810100 |
| С            | 0.44887500  | 0.54252400    | -3.63461700 | Н      | -5.61822100 | 1.14680900     | 3.01425700  |
| Н            | -0.28977300 | -0.24632400   | -3.80486000 | Н      | -7.93118600 | 0.27781400     | 3.20103300  |
| Н            | -0.07659800 | 1.40152500    | -3.20679200 | Н      | -8.90856300 | -1.07306900    | 1.35378600  |
| Н            | 0.83709700  | 0.84338600    | -4.61874200 | С      | -3.83503600 | 0.77555000     | 0.98190100  |
| С            | 4.43954400  | 0.89942500    | 2.59468200  | Н      | -3.68107600 | 1.61718000     | 1.67219900  |
| С            | 2.71348100  | -0.58097400   | 2.26793500  | Н      | -3.13187500 | -0.01347700    | 1.27001400  |
| С            | 2.80390300  | -1.03251600   | 3.62218700  | О      | -3.45067600 | 1.13363600     | -0.34934400 |
| С            | 3.78930700  | -0.45538000   | 4.45227800  | Н      | -1.40476200 | 1.41449400     | -0.42137400 |
| С            | 4.61657700  | 0.52166500    | 3.94203800  |        |             |                |             |
| Н            | 5.07651700  | 1.67014500    | 2.16297600  | 71     |             |                |             |
| С            | 1.88890200  | -2.02286300   | 4.06636700  | TS8'   | SCF Done: E | R(RM06) = -173 | 32.49020995 |
| Н            | 3.87363000  | -0.78703000   | 5.48420100  | С      | -0.36403200 | -2.83276800    | 0.36507000  |
| Н            | 5.38296600  | 0.99532200    | 4.54696500  | С      | -1.51296100 | -2.75012300    | -0.52149100 |
| С            | 0.93814300  | -2.48834700   | 3.20447600  | С      | -2.61513800 | -2.25711800    | 0.23191400  |
| С            | 0.87925100  | -2.00172700   | 1.86519600  | С      | -0.79311900 | -2.35392100    | 1.67051700  |
| Н            | 1.94422000  | -2.38334300   | 5.09032400  | С      | -2.16222300 | -1.95356300    | 1.55561100  |
| Н            | 0.21201700  | -3.22159900   | 3.53336200  | С      | -1.55342700 | -3.23757600    | -1.94093900 |
| Ν            | 3.53550800  | 0.37519300    | 1.78251100  | Н      | -0.55722600 | -3.23875200    | -2.39212500 |
| N            | 1 77666700  | -1 10190700   | 1 40893700  | Н      | -1 94090700 | -4 26485400    | -1 99770100 |
| С            | -0 14755800 | -2 38397600   | 0 91616200  | Н      | -2 19782500 | -2.61137700    | -2 56765300 |
| C            | -1 17992400 | -3 29314100   | 1 20502600  | C      | -4 00688100 | -2.06479100    | -0.28787100 |
| C            | -2 19814300 | -3 53590700   | 0 29249600  | н      | -4 62717600 | -2 94675900    | -0.07209000 |
| C            | -2 19420300 | -2 83311500   | -0.92605800 | Н      | -4 49557800 | -1 20136600    | 0.17131900  |
| Č            | -1 15865500 | -1 93448900   | -1 22521700 | Н      | -4 01857400 | -1 92316100    | -1 37346900 |
| Č            | -0 10104300 | -1 71041300   | -0 34060000 | л<br>С | -2,96293600 | -1 39225000    | 2 69099400  |
| н            | -1 20576300 | -3 82111600   | 2 15443300  | н      | -2 98358100 | -2 08949700    | 3 53922600  |
| Н            | -2.98468300 | -4 24036000   | 0 53521400  | н      | -2 52051100 | -0 45332000    | 3 04392400  |
| н            | _1 21919000 | -1 40777800   | -2 17125200 | н<br>Н | -3 99790800 | -1 19378500    | 2 40057700  |
| Ir           | 1 46651200  | -0.48696300   | -0.62547000 |        | -0.0352/300 | -2 46130800    | 2.40037700  |
| н            | -4 02983200 | 1 85637200    | -0 64643100 | н      | -0 39695800 | _3 32564100    | 3 53542200  |
| 0            | -3 15734300 | -2 96168700   | -1 87927000 | н<br>Н | 1 03559600  | -2 59526100    | 2 79190300  |
| $\mathbf{U}$ | 5.15754500  | 2.20100700    | 1.0//2/000  | 11     | 1.055557000 | 2.57520100     |             |

| Н      | -0.16036200 | -1.56518900        | 3.57213400   | С      | 2.15187600  | -1.86677000               | -1.82030500 |
|--------|-------------|--------------------|--------------|--------|-------------|---------------------------|-------------|
| C      | 0.84184500  | -3 69543400        | 0 12118500   | C      | 3 30719400  | -2 10534300               | 1 75473700  |
| н      | 1 15968400  | -3 67481100        | -0.92357800  | н      | 2 64092200  | -2 29748900               | 2 60082100  |
| н      | 1.69230700  | -3 39780500        | 0.74058100   | н      | 4 08341600  | -2 88448900               | 1 75880500  |
| н      | 0 59881900  | -4 73775400        | 0.37127700   | н      | 3 80537300  | -1 14738500               | 1 93485100  |
| C      | -4 14262600 | 1 90555400         | 1 08664300   | C      | 4 39149800  | -0.86576700               | -0.95840500 |
| C      | -2 48737900 | 1.50555400         | -0.47812300  | н      | 5 18813200  | -1 61603000               | -0.99840900 |
| C      | -2.99257200 | 2 75207100         | -1.2/353/00  | н      | 4 41511100  | -0.21775300               | -1.83777800 |
| C      | -4 13236100 | 3 42882500         | -0.75711300  | н      | 4 63729200  | -0.25313600               | -0.08870200 |
| C      | -4.71012900 | 3 01374700         | 0.7338300    | C      | 2 17396400  | -1.41509800               | -3 24710600 |
| н      | -4 58793600 | 1 54540800         | 2 01249400   | н      | 2.17370400  | -2 26710600               | -3 93398500 |
| C      | -2 32818900 | 3 09683500         | 2.01249400   | н      | 1 32240300  | -0.74677800               | -3 /3113900 |
| н      | -4 53373200 | 4 26707900         | -1 32063700  | н      | 3 09064400  | -0.87005400               | -3.48785500 |
| н      | -5 58149300 | 3 51013100         | 0.83764500   | C      | 0.01536400  | -3 36583000               | -2.05535900 |
| C      | -1 22225100 | 2 39568900         | -2 83706000  | н      | 0.01330400  | -4 23436800               | -2.03333500 |
| C      | -0.72631600 | 1 33380700         | -2.02551200  | н      | -0.80223800 | -3 73757800               | -1.43045100 |
| н      | -2 70497500 | 3 92076100         | -3.051/0500  | н      | -0.41654800 | -2 70605200               | -2.81507900 |
| н      | -0.69869800 | 2 65266500         | -3.74993100  | C      | 0.71855300  | -3.84122400               | 1.08765100  |
| N      | 3 08002100  | 1 24022500         | -5.74995100  | ч      | 0.71855500  | -3.84122400               | 2 11203500  |
| N      | -3.08092100 | 0.07800000         | 0.05805400   | и<br>П | 0.09733900  | 4 05821300                | 0.70274400  |
| C      | -1.30147400 | 0.5764000          | -0.88078500  | п<br>п | 1 26802600  | 4 70204400                | 1.00219700  |
| C      | 1 20507000  | 0.82344400         | -2.30331300  | C II   | 2 87007600  | -4.79304400<br>2.68104400 | 0.36024400  |
| C      | 2 40702000  | 0.82344400         | -3.410/1000  | C      | 2.0169200   | 2.08104400                | -0.30024400 |
| C      | 2.49/03900  | 0.15528800         | -5.56554600  | C      | 2.01088300  | 1.98515000                | 0.80555000  |
| C      | 2.88559000  | 1 02827600         | -2.00239700  | C      | 2.03313000  | 3.13341000                | 1.02313700  |
| C      | 2.00138100  | -1.0382/000        | -1.49099700  | C      | 3.08303000  | 4.09457000                | 0.20562000  |
| U<br>U | 0.84480600  | -0.3//19500        | -1.32227200  | U<br>U | 4.00208900  | 3.86434400                | 1.10001100  |
| п      | 1.02418600  | 1.55815900         | -4.10/49400  | П      | 4.5/9/5400  | 2.4/111000                | -1.10001100 |
| п      | 3.11928100  | 0.33184300         | -4.45021000  | U<br>U | 1.04992600  | 3.32282800                | 2.012/3500  |
| H      | 2.42429000  | -1./49/6900        | -0.75922800  | Н      | 3.13084200  | 4.98935000                | 2.013/9200  |
| lr     | -0.46/35/00 | -0.629/2300        | 0.19621100   | H      | 4.80401500  | 4.56396500                | 0.18266/00  |
| H      | 0.97690700  | -0.68176200        | 1.01162600   | C      | 0.06278000  | 2.38636700                | 2.72383400  |
| 0      | 4.03433600  | -1.50996900        | -2.642/6800  | С      | 0.05353600  | 1.24476700                | 1.8/168600  |
| С      | 4.96151100  | -1.264/8200        | -3.69596200  | H      | 1.06/84800  | 4.20034200                | 3.25383700  |
| H      | 5.29901200  | -0.22110500        | -3.69842300  | H      | -0.72763600 | 2.50590200                | 3.45468800  |
| H      | 5.81404600  | -1.91740400        | -3.49764300  | N      | 2.92844500  | 1.77180500                | -0.16922500 |
| Н      | 4.53580100  | -1.516/5000        | -4.67552000  | N      | 1.03470800  | 1.03526500                | 0.96494200  |
| C      | 1.62735400  | 2.72559600         | 1.20315800   | C      | -1.00062000 | 0.25065000                | 1.87067500  |
| С      | 1.97495900  | 1.51821100         | 1.88296700   | С      | -2.15558700 | 0.32695300                | 2.66777200  |
| С      | 3.34192600  | 1.38725900         | 2.32543000   | С      | -3.18184200 | -0.59954000               | 2.53794900  |
| С      | 4.26977200  | 2.40904800         | 2.05147600   | С      | -3.05158600 | -1.62332500               | 1.58278100  |
| С      | 3.91003300  | 3.56353400         | 1.37506300   | С      | -1.89155300 | -1.71361000               | 0.79580000  |
| С      | 2.57016700  | 3.70759000         | 0.96037100   | С      | -0.84164900 | -0.79825900               | 0.91925200  |
| Н      | 0.59798400  | 2.85712600         | 0.89625900   | Н      | -2.27874600 | 1.12915800                | 3.38989300  |
| Н      | 5.28682400  | 2.25845900         | 2.40397900   | Н      | -4.06863300 | -0.51330900               | 3.15422100  |
| Н      | 4.63785200  | 4.34578200         | 1.17800600   | Н      | -1.85255300 | -2.52170800               | 0.07219100  |
| Н      | 2.26524900  | 4.61382200         | 0.43891300   | Ir     | 0.85859400  | -0.77077700               | -0.16460300 |
| С      | 3.79122600  | 0.22321000         | 3.08601200   | Н      | -1.83058000 | -0.47040500               | -1.49874900 |
| Н      | 2.99676100  | -0.50127300        | 3.35006300   | 0      | -3.99418500 | -2.57185400               | 1.34743900  |
| 0      | 4.94898900  | 0.01629800         | 3.44831500   | С      | -5.25442200 | -2.46151200               | 2.00312500  |
| Ν      | 1.09659300  | 0.51402300         | 2.15942300   | Н      | -5.74991900 | -1.51516900               | 1.75528100  |
| 0      | -0.20000500 | 0.75956000         | 1.64615100   | Н      | -5.85719300 | -3.29152900               | 1.62871500  |
|        |             |                    |              | Н      | -5.15357900 | -2.55393100               | 3.09200400  |
| 71     |             |                    |              | С      | -1.43892900 | 2.79249200                | -1.76882900 |
| IN10'  | SCF Done: 1 | $E(RM06) = -1^{2}$ | 732.58402243 | С      | -2.11964200 | 1.54836100                | -1.70151200 |
| С      | 1.38757400  | -2.88021300        | 0.15082000   | С      | -3.54916500 | 1.56717700                | -1.57641800 |
| С      | 2.55816000  | -2.10278800        | 0.45296200   | С      | -4.21753200 | 2.80833300                | -1.51739400 |
| С      | 3.06751100  | -1.54902900        | -0.80247900  | С      | -3.53904400 | 4.01176800                | -1.58086100 |
| С      | 1.06058600  | -2.65393000        | -1.24330100  | С      | -2.13648900 | 3.98541200                | -1.70771100 |

| П          | -0.302/3400               | 2.77020800                                | -1.88122300 |
|------------|---------------------------|-------------------------------------------|-------------|
| Н          | -5.29904000               | 2.77783500                                | -1.42087400 |
| Н          | -4.07390400               | 4.95615700                                | -1.53943000 |
| Н          | -1.58319900               | 4.92074400                                | -1.76337500 |
| С          | -4.36062200               | 0.35242600                                | -1.50457900 |
| Н          | -3.82403300               | -0.61012800                               | -1.63620500 |
| 0          | -5.57517000               | 0.32408800                                | -1.32726100 |
| N          | -1 41045100               | 0 38729700                                | -1 83286600 |
| 0          | -0.03045200               | 0 40408400                                | -1 67518800 |
| 0          | 0.03013200                | 0.10100100                                | 1.07510000  |
| 71<br>TS9" | SCE Dana I                | $7(\mathbf{D}\mathbf{M}0\mathbf{C}) = 17$ | 22 4077(04( |
| 138        | SCF Done. I               | 2(RM00) = -17                             | 0 20272000  |
| C<br>C     | 0.16026100                | -2.89291400                               | 0.30272900  |
| C<br>C     | -0.38328300               | -3.01992400                               | -1.058/4900 |
| C          | -1./4164100               | -2./0931600                               | -1.009/8200 |
| C          | -0.94043300               | -2.65069400                               | 1.19/33900  |
| C          | -2.09249000               | -2.40641200                               | 0.38175400  |
| С          | 0.43626500                | -3.38420800                               | -2.25834000 |
| Н          | 0.78419500                | -4.42480500                               | -2.19828900 |
| Н          | -0.13280800               | -3.27941200                               | -3.18669600 |
| Н          | 1.32820100                | -2.75132300                               | -2.34051700 |
| C          | -2.71948600               | -2.66467300                               | -2.14572900 |
| Н          | -3.45389400               | -3.47868400                               | -2.06570500 |
| Н          | -3.28740900               | -1.72687600                               | -2.15546900 |
| Н          | -2.22346000               | -2.76356900                               | -3.11565900 |
| С          | -3.50069800               | -2.29444900                               | 0.88819200  |
| Н          | -3.53676300               | -1.82149000                               | 1.87270400  |
| Н          | -4.12971500               | -1.71164800                               | 0.21169800  |
| Н          | -3.94558000               | -3.29691200                               | 0.97843800  |
| С          | -0.92308200               | -2.76477900                               | 2.69307800  |
| Н          | -1.35322200               | -1.87263700                               | 3.15482800  |
| Н          | -1.48430100               | -3.65413400                               | 3.01231800  |
| Н          | 0.09936700                | -2.86074700                               | 3.06657800  |
| С          | 1.49294600                | -3.44487600                               | 0.72959600  |
| Н          | 1.91924300                | -2.89017200                               | 1.56978300  |
| Н          | 1 38203500                | -4 49101600                               | 1.04956300  |
| Н          | 2 21968700                | -3 43787600                               | -0.08696500 |
| C II       | -4 57071000               | 1 30453000                                | 0.46279100  |
| C<br>C     | -2 52931800               | 1 54749700                                | -0 56842400 |
| C<br>C     | -2.92991000               | 2 73804000                                | -0.30042400 |
| C<br>C     | -2.90902000               | 3 17977600                                | -0.98747300 |
| C<br>C     | -4.20000200<br>5 10264800 | 2 46521800                                | 0.13453300  |
| ч          | 5 18259500                | 0.71472500                                | 1 1/318200  |
| II<br>C    | -5.18259500               | 2 42420000                                | 2.07220400  |
|            | -2.00231400               | 3.42430900                                | -2.07320400 |
| н          | -4.64032400               | 4.083/1600                                | -1.4/909400 |
| H          | -6.12038500               | 2.77460000                                | 0.07962400  |
| C          | -0./9652300               | 2.93830700                                | -2.22129/00 |
| C          | -0.3892/200               | 1./5645000                                | -1.53//9300 |
| Н          | -2.38298900               | 4.32765600                                | -2.58524200 |
| Н          | -0.08398000               | 3.44939400                                | -2.85644100 |
| N          | -3.34291800               | 0.85695500                                | 0.25385200  |
| Ν          | -1.24182700               | 1.07195000                                | -0.73928000 |
| С          | 0.94112000                | 1.19981500                                | -1.63038200 |
| С          | 1.97400900                | 1.75865400                                | -2.40240200 |
| С          | 3.23266700                | 1.17466700                                | -2.44437500 |
| С          | 3.46560400                | 0.01287700                                | -1.68952300 |
| С          | 2.43756300                | -0.53859400                               | -0.90382400 |
| С          | 1.16395300                | 0.02495500                                | -0.86051700 |

| Н      | -0.36273400 | 2.77626800    | -1.88122500 | Н           | 1.80965400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.66072300                               | -2.98445300  |  |
|--------|-------------|---------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|--|
| Н      | -5.29904000 | 2.77783500    | -1.42087400 | Н           | 4.01437400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.62113800                               | -3.04740100  |  |
| Н      | -4.07390400 | 4.95615700    | -1.53943000 | Н           | 2.69026300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.41454500                              | -0.32115300  |  |
| Н      | -1.58319900 | 4.92074400    | -1.76337500 | Ir          | -0.47796800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.71789500                              | 0.13436700   |  |
| С      | -4.36062200 | 0.35242600    | -1.50457900 | Н           | -1.51860400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.14640100                              | 1.26208200   |  |
| Н      | -3.82403300 | -0.61012800   | -1.63620500 | 0           | 4.64706200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.65134500                              | -1.65785500  |  |
| 0      | -5.57517000 | 0.32408800    | -1.32726100 | С           | 5.75456500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.11610100                              | -2.37413800  |  |
| Ν      | -1.41045100 | 0.38729700    | -1.83286600 | Н           | 6.01405900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.88916300                               | -2.01967300  |  |
| 0      | -0.03045200 | 0.40408400    | -1.67518800 | Н           | 6.58952800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.79186700                              | -2.17841800  |  |
|        |             |               |             | Н           | 5.56019300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.08620100                              | -3.45408100  |  |
| 71     |             |               |             | С           | 0.41737300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.56977200                               | 2.06181600   |  |
| TS8"   | SCF Done: I | E(RM06) = -17 | 32.48776846 | С           | 1.04305300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.30945900                               | 2.02449100   |  |
| С      | 0.16026100  | -2.89291400   | 0.30272900  | С           | 2.45978600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.25659300                               | 2.03032800   |  |
| C      | -0.38328300 | -3.01992400   | -1.05874900 | C           | 3.20321700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.45000000                               | 1.98545100   |  |
| Ċ      | -1.74164100 | -2.70931600   | -1.00978200 | C           | 2.57177400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.68489500                               | 1.96415100   |  |
| Ċ      | -0.94043300 | -2.65069400   | 1.19733900  | Ċ           | 1.16846300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.73661300                               | 2.01442500   |  |
| C      | -2.09249000 | -2 40641200   | 0 38175400  | H           | -0 66245200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 59338700                               | 2.13686800   |  |
| C      | 0.43626500  | -3 38420800   | -2.25834000 | Н           | 4 28639600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 37034500                               | 1 99666900   |  |
| н      | 0 78419500  | -4 42480500   | -2 19828900 | Н           | 3 15454400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 60182900                               | 1 93539700   |  |
| н      | -0 13280800 | -3 27941200   | -3 18669600 | н           | 0.66352100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 70038700                               | 2 02251200   |  |
| н      | 1 32820100  | -2 75132300   | -2 34051700 | C II        | 3 18468400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.01594300                              | 2.02231200   |  |
| C      | -2 71948600 | -2.75152500   | -2.54051700 | н           | 2 5/3/0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.88603800                              | 2.20524000   |  |
| н      | -3 45389400 | -3.47868400   | -2.14572500 | 0           | <i>1 4 0</i> <b>3</b> <i>0</i> <b>2</b> <i>0</i> <b>0 2</b> <i>0</i> <b>0 1 1</b> <i>0</i> <b>1 1 1 1 1 1 1 1 1 1</b> | -0.13041400                              | 2.42788500   |  |
| н<br>ц | 3 28740000  | 1 72687600    | 2 15546900  | N N         | 0.20487100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.08620100                               | 2.10290300   |  |
| н<br>ц | -3.28740900 | -1.72087000   | 2.11565000  | N O         | 0.2948/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.08029100                               | 2.12052500   |  |
| С      | -2.22340000 | -2.70330900   | -3.11303900 | 0           | -0.88280300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.33093300                               | 2.72824100   |  |
| п      | -3.50009800 | -2.29444900   | 1.87270400  | 71          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |              |  |
| п      | -3.33070300 | -1.82149000   | 0.21160800  | /1<br>DV10" |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $E(\mathbf{D}\mathbf{M}0\mathbf{c}) = 1$ | 722 50022700 |  |
| п      | -4.129/1500 | -1./1104800   | 0.21109800  | IN IU       | SCF Done:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E(RM06) = -1                             | 0.70205600   |  |
| п      | -3.94558000 | -3.29691200   | 0.97843800  | C           | 0.24210200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.88626700                              | 0.72323000   |  |
| C<br>H | -0.92308200 | -2./64//900   | 2.69307800  | C           | 0.14286500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.8892/800                              | -0./2440/00  |  |
| н      | -1.35322200 | -1.8/263/00   | 3.15482800  | C           | -1.20943500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.5/293200                              | -1.06826700  |  |
| Н      | -1.48430100 | -3.65413400   | 3.01231800  | C           | -1.11516300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2./484/300                              | 1.246/2900   |  |
| Н      | 0.09936/00  | -2.860/4/00   | 3.0665/800  | C           | -1.99/39400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.5512/200                              | 0.168/1300   |  |
| С      | 1.49294600  | -3.4448/600   | 0.72959600  | C           | 1.22256500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.27915200                              | -1.688/6900  |  |
| Н      | 1.91924300  | -2.89017200   | 1.56978300  | H           | 1.15658100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.35750000                              | -1.89209700  |  |
| Н      | 1.38203500  | -4.49101600   | 1.04956300  | H           | 1.13085400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.75436800                              | -2.64403600  |  |
| Н      | 2.21968700  | -3.43787600   | -0.08696500 | Н           | 2.22111200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.07987100                              | -1.29471700  |  |
| С      | -4.57071000 | 1.30453000    | 0.46279100  | С           | -1.78325400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.55199600                              | -2.45588100  |  |
| С      | -2.52931800 | 1.54749700    | -0.56842400 | Н           | -2.12451200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.55485100                              | -2.75130500  |  |
| С      | -2.96982000 | 2.73804000    | -1.22517300 | Н           | -2.64577700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.88236800                              | -2.52906800  |  |
| С      | -4.28990200 | 3.17977600    | -0.98747300 | Н           | -1.04326200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.22457100                              | -3.19201500  |  |
| С      | -5.10264800 | 2.46521800    | -0.13453300 | С           | -3.49293600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.46210500                              | 0.22882200   |  |
| Н      | -5.18259500 | 0.71472500    | 1.14318200  | Н           | -3.84031500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.09556400                              | 1.19823700   |  |
| С      | -2.06231400 | 3.42430900    | -2.07320400 | Н           | -3.89314400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.79731000                              | -0.54077100  |  |
| Н      | -4.64032400 | 4.08371600    | -1.47909400 | Н           | -3.93972200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.45442900                              | 0.06930000   |  |
| Н      | -6.12038500 | 2.77460000    | 0.07962400  | С           | -1.45034100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.81450400                              | 2.70453600   |  |
| С      | -0.79652300 | 2.93830700    | -2.22129700 | Н           | -2.48513200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.52571500                              | 2.90055200   |  |
| С      | -0.38927200 | 1.75645000    | -1.53779300 | Н           | -1.30575500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.83888800                              | 3.07590700   |  |
| Н      | -2.38298900 | 4.32765600    | -2.58524200 | Н           | -0.80533800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.14789000                              | 3.28244300   |  |
| Н      | -0.08398000 | 3.44939400    | -2.85644100 | С           | 1.41902000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.34217100                              | 1.53686500   |  |
| Ν      | -3.34291800 | 0.85695500    | 0.25385200  | Н           | 1.43185900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.86419600                              | 2.52084600   |  |
| Ν      | -1.24182700 | 1.07195000    | -0.73928000 | Н           | 1.38538700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.42993800                              | 1.69740800   |  |
| С      | 0.94112000  | 1.19981500    | -1.63038200 | Н           | 2.36934400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.11573400                              | 1.04503500   |  |
| С      | 1.97400900  | 1.75865400    | -2.40240200 | С           | -4.46034300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.18839300                               | 0.34924400   |  |
| С      | 3.23266700  | 1.17466700    | -2.44437500 | С           | -2.44256000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.34556100                               | -0.76057400  |  |
| С      | 3.46560400  | 0.01287700    | -1.68952300 | С           | -2.95805900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.37654700                               | -1.60538100  |  |
| ~      |             |               |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |              |  |
| C      | 2.43756300  | -0.53859400   | -0.90382400 | С           | -4.30756000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.75581700                               | -1.44632800  |  |

| Н        | -5.01958700      | 0.72427600        | 1.15912300   |
|----------|------------------|-------------------|--------------|
| С        | -2.07389200      | 2.98671400        | -2.53464700  |
| Н        | -4.71873700      | 3.53022900        | -2.08890500  |
| Н        | -6.11374700      | 2.42279500        | -0.31234600  |
| С        | -0.76883000      | 2.59131700        | -2.56810000  |
| С        | -0.30696100      | 1.53693200        | -1.72353400  |
| Н        | -2.44124700      | 3.77362200        | -3.18786900  |
| Н        | -0.07212900      | 3.06606300        | -3.24771400  |
| Ν        | -3.20211000      | 0.79111000        | 0.21194000   |
| Ν        | -1.14957300      | 0.89602700        | -0.87901200  |
| С        | 1.06088300       | 1.07429100        | -1.69560200  |
| С        | 2.09965600       | 1.66307500        | -2.44061300  |
| С        | 3.40525400       | 1.20899000        | -2.33385300  |
| С        | 3.68000500       | 0.14534600        | -1.45396800  |
| С        | 2.64857100       | -0.44300300       | -0.70621900  |
| С        | 1.32382600       | -0.01325200       | -0.80864600  |
| Н        | 1.90060700       | 2.49482700        | -3.11019200  |
| Н        | 4.19100000       | 1.67839100        | -2.91357800  |
| Н        | 2.93160000       | -1.24149000       | -0.03023500  |
| Ir       | -0.28855400      | -0.85605500       | 0.07423800   |
| Н        | -2.09606800      | 0 38411900        | 1 69126100   |
| 0        | 4 91420400       | -0 38776100       | -1 27147800  |
| C        | 6.02374600       | 0 20582700        | -1 93551200  |
| н        | 6 1 50 6 3 6 0 0 | 1 25643900        | -1 64605500  |
| н        | 6 90007800       | -0.36178300       | -1 61547800  |
| н        | 5 92803300       | 0 13468000        | -3.02685300  |
| C        | -0.32932400      | 2 71683400        | 2 1/692000   |
| C        | 0.43276100       | 1 52528400        | 2.14072000   |
| C        | 1 85381500       | 1.52528400        | 2.02137400   |
| C        | 2 44780400       | 2.02620700        | 2.118/9200   |
| C        | 2.44/89400       | 2.92030700        | 2.19030000   |
| C        | 0.28202000       | 4.08180300        | 2.23033700   |
| С        | 0.28393000       | 2 6 4 2 0 0 7 0 0 | 2.23419400   |
| п        | -1.4091//00      | 2.04200700        | 2.10955500   |
| п        | 3.33170700       | 2.90400100        | 2.23768200   |
| п        | 2.15578200       | 5.05965700        | 2.29400000   |
| П        | -0.33049300      | 4.84961000        | 2.303/4800   |
| C II     | 2./11/4/00       | 0.4/938900        | 2.32806000   |
| Н        | 2.1655/400       | -0.4/0/4200       | 2.4/1/2400   |
| 0        | 3.93518400       | 0.51049100        | 2.41933700   |
| N        | -0.14413/00      | 0.26/04000        | 1.8821/100   |
| 0        | -1.4/949300      | 0.29525200        | 2.4538/600   |
|          |                  |                   |              |
| 86<br>TC |                  |                   | 0// 10051700 |
| 158      | SCF Done:        | E(RM06) = -1      | 966.10951/99 |
| C        | 0.80064400       | -0.56136300       | -2.57507800  |
| С        | 1.15213700       | 0.83850800        | -2.74972400  |
| С        | -0.06525000      | 1.59690300        | -2.76198300  |
| С        | -0.63843100      | -0.62467500       | -2.43208600  |
| С        | -1.16264300      | 0.70839900        | -2.52957600  |
| С        | 2.51930700       | 1.36227000        | -3.08053600  |
| Η        | 3.30267700       | 0.76457800        | -2.60701400  |
| Η        | 2.69173400       | 1.33816100        | -4.16563500  |
| Η        | 2.64764900       | 2.39782300        | -2.74977000  |
| С        | -0.15329000      | 3.07457700        | -2.98488400  |
| Н        | -0.22468500      | 3.29354100        | -4.05985900  |
| Н        | -1.03057700      | 3.50430000        | -2.49768000  |
| Н        | 0.73452100       | 3.59274800        | -2.60874500  |
| C        | 2 62160000       | 1.05335600        | -2 55741100  |

| Н      | -3.08767700 | 0.65706000 -3.47068900  |  |
|--------|-------------|-------------------------|--|
| Н      | -3.15485600 | 0.62934200 -1.70265400  |  |
| Н      | -2.77685800 | 2.13400500 -2.54919800  |  |
| С      | -1.44720500 | -1.88310500 -2.42363000 |  |
| Н      | -1.62486200 | -2.20824000 -3.45944500 |  |
| н      | -0 92777300 | -2.68880300 -1.90104200 |  |
| н      | -2 41869000 | -1 73783700 -1 94838000 |  |
| C      | 1 66494000  | -1 74716300 -2 90028300 |  |
| с<br>u | 2 72718500  | 1 40102000 2 00420000   |  |
| п      | 2.72718300  | -1.49193000 -2.90430000 |  |
| п      | 1.30302100  | -2.37043900 -2.19872000 |  |
| Н      | 1.41634800  | -2.11188400 -3.90658200 |  |
| C      | -2.800/0000 | 3.58637500 0.17962900   |  |
| C      | -0.74140600 | 2.88103900 0.90447000   |  |
| С      | -0.74197900 | 3.85362100 1.95167800   |  |
| С      | -1.87042000 | 4.69269800 2.08115200   |  |
| С      | -2.91666900 | 4.55816300 1.19539600   |  |
| Н      | -3.60483100 | 3.46613300 -0.54447500  |  |
| С      | 0.39117500  | 3.93547000 2.80242500   |  |
| Н      | -1.89289300 | 5.43157800 2.87815800   |  |
| Н      | -3.80473100 | 5.17819100 1.25988000   |  |
| С      | 1.44779800  | 3.09792300 2.59351000   |  |
| С      | 1.39952300  | 2.13131700 1.54616900   |  |
| Н      | 0.40442200  | 4.66485400 3.60807900   |  |
| Н      | 2.32019000  | 3.14419900 3.23329300   |  |
| N      | -1 76205300 | 2 77922900 0 02882300   |  |
| N      | 0 32236100  | 2 02218700 0 74442200   |  |
| C      | 2 47189000  | 1 20583900 1 25693500   |  |
| C      | 3 73103800  | 1 25745600 1 88051600   |  |
| C      | 4 74468600  | 0 37470700 1 53726200   |  |
| C      | 4 48509200  | -0 59119400 0 55013800  |  |
| C      | 3 22594900  | -0.65740000 -0.06627700 |  |
| C      | 2 19641200  | 0.22863400 0.25575600   |  |
| н      | 3 93797500  | 2 00545300 2 64007200   |  |
| н      | 5 70794300  | 0.43901200 2.02847900   |  |
| н      | 3 08349400  | -1 44631200 -0 79207300 |  |
| Ir     | 0.36188900  | 0.33471500 -0.62239900  |  |
| п<br>Ц | 0.50188700  | 1 28607000 0 06588300   |  |
| 0      | 5 28815700  | 1 51452000 0 12804800   |  |
| C      | 5.58815700  | 1 52415000 0 71682600   |  |
| U<br>U | 6.68501400  | -1.52415000 0.71685600  |  |
| п      | 0.03035400  | -1./1595500 1./9602900  |  |
| п      | 7.22526300  | -2.33967800 0.23173300  |  |
| Н      | /.216/0100  | -0.58156100 0.53494200  |  |
| C      | -3./5532400 | -0.0/415200 1.03323300  |  |
| C      | -3.05855900 | -1.30350400 0.78399800  |  |
| C      | -3.87662700 | -2.48492900 0.60262100  |  |
| С      | -5.27727200 | -2.39586900 0.74600200  |  |
| С      | -5.91880400 | -1.20067900 1.01451200  |  |
| С      | -5.13015800 | -0.03505400 1.14270300  |  |
| Н      | -3.16183100 | 0.82048900 1.15782100   |  |
| Н      | -5.83894400 | -3.31712600 0.61493800  |  |
| Н      | -6.99931800 | -1.15437800 1.11766800  |  |
| Н      | -5.61486400 | 0.91933000 1.34506000   |  |
| С      | -3.31232700 | -3.77460500 0.22546400  |  |
| Н      | -2.22378100 | -3.77962800 0.03094800  |  |
| 0      | -3.94890500 | -4.82153700 0.09256300  |  |
| Ν      | -1.71094100 | -1.38570600 0.77847500  |  |
| 0      | -1.04699100 | -0.18505700 0.91716300  |  |
| С      | 1.19450400  | -2.41479500 2.61687400  |  |
| Н      | 0.26780100  | -1.90838400   | 2.90506100  |
|--------|-------------|---------------|-------------|
| Н      | 1.92866600  | -1.65332000   | 2.33960200  |
| Н      | 1.57745800  | -2.95723600   | 3.49042800  |
| С      | 0.93925800  | -3.38328500   | 1.45369100  |
| С      | 2.23951300  | -4.03296700   | 0.97247000  |
| н      | 2 97629900  | -3 28095200   | 0 67564800  |
| н      | 2.57825500  | -4 64196100   | 1 76941700  |
| ц      | 2.005555000 | 4.68580400    | 0.11377100  |
| n<br>C | 2.04311000  | 4.08589400    | 1 99426600  |
|        | -0.03792000 | -4.47092000   | 1.88430000  |
| п      | -0.99551800 | -4.02814600   | 2.23/11900  |
| H      | -0.28609000 | -5.14383800   | 1.05045300  |
| Н      | 0.35863300  | -5.07102700   | 2.70263000  |
| 0      | 0.35915800  | -2.68019300   | 0.32007200  |
| Н      | -0.64188000 | -2.31750400   | 0.57277000  |
|        |             |               |             |
| 87     |             |               |             |
| IN11   | SCF Done: E | E(RM06) = -20 | 79.18976561 |
| С      | -0.59292800 | -2.48153700   | -2.06560900 |
| С      | 0.85917500  | -2.40624300   | -1.98943200 |
| С      | 1.25539800  | -1.22100100   | -2.70348700 |
| С      | -1.04914600 | -1.34481600   | -2.85413500 |
| С      | 0.08804400  | -0.58057400   | -3.26726900 |
| С      | 1.77160300  | -3.45882000   | -1.43437800 |
| Н      | 1 28236600  | -4 02049200   | -0 63342800 |
| н      | 2 05091300  | -4 17350900   | -2 22227400 |
| н      | 2.68191400  | -3.02132600   | -1.01975600 |
| n<br>C | 2.67014400  | 0.78844800    | 2 03063400  |
| п      | 2.07014400  | 1 25475900    | -2.93003400 |
| п      | 3.044/8100  | -1.234/3800   | -5.85554500 |
| Н      | 2.75145300  | 0.2948/300    | -3.062/0400 |
| Н      | 3.32804900  | -1.09133100   | -2.11252400 |
| С      | 0.07064100  | 0.62294900    | -4.16446500 |
| Н      | 0.04279600  | 0.32678500    | -5.22280900 |
| Н      | -0.80545500 | 1.25261700    | -3.97909000 |
| Н      | 0.96195100  | 1.24191200    | -4.02695200 |
| С      | -2.47875200 | -1.06290700   | -3.19907000 |
| Н      | -2.77104400 | -1.63669200   | -4.08945900 |
| Н      | -3.14828100 | -1.34598800   | -2.38237300 |
| Н      | -2.64253200 | -0.00381400   | -3.41190700 |
| С      | -1.43189200 | -3.65574600   | -1.65956400 |
| Н      | -1.04799700 | -4.13421100   | -0.75528000 |
| Н      | -2.47172900 | -3.37109800   | -1.47427700 |
| Н      | -1.43309300 | -4.40692000   | -2.46217600 |
| С      | 6.16243200  | -0.87302900   | -0.33521700 |
| Ċ      | 4 16690200  | -0 75126900   | 0 81098400  |
| C      | 4 74477600  | 0.12988800    | 1 77945400  |
| C      | 6 10/05000  | 0.12200000    | 1 63/96900  |
| C      | 6 82373700  | 0.1/35100     | 0.57484200  |
|        | 6 71240200  | 1 27870400    | 1 18400100  |
| п      | 0./1249500  | -1.2/8/0400   | -1.18409100 |
| C II   | 3.90218100  | 0.59092900    | 2.82398000  |
| Н      | 0.30228200  | 1.15880/00    | 2.301/8500  |
| Н      | /.8/061600  | 0.23169600    | 0.42650000  |
| С      | 2.60322600  | 0.16135700    | 2.87178800  |
| С      | 2.11109100  | -0.74703500   | 1.87655100  |
| Н      | 4.29390500  | 1.28265800    | 3.56632100  |
| Η      | 1.93174800  | 0.51414300    | 3.64689600  |
| Ν      | 4.89532100  | -1.23212900   | -0.23796700 |
| Ν      | 2.87462500  | -1.16717800   | 0.87770500  |
| С      | 0.73428900  | -1.29801900   | 2.02617500  |

| С       | 0.42100200               | -1.76710500 3.31490200                              |
|---------|--------------------------|-----------------------------------------------------|
| С       | -0.79321700              | -2.37194400 3.63399900                              |
| С       | -1.74005300              | -2.50882000 2.61707800                              |
| С       | -1.44422900              | -2.03581600 1.32918300                              |
| С       | -0.23288900              | -1.41638900 0.98115300                              |
| Н       | 1.16997500               | -1.68715100 4.09921100                              |
| Н       | -0.97434800              | -2.72750800 4.64184800                              |
| Н       | -2.22526900              | -2.15270400 0.58511300                              |
| Ir      | -0.10162000              | -0.71339900 -0.97098900                             |
| Н       | -2.64166900              | 0.10324700 1.04789300                               |
| 0       | -2.97518800              | -3.07077700 2.77084200                              |
| С       | -3.34420200              | -3.53805200 4.06175300                              |
| Н       | -3.34462400              | -2.72669600 4.80137400                              |
| Н       | -4.35916000              | -3.92865700 3.96078700                              |
| Н       | -2.68087300              | -4.34270300 4.40578600                              |
| С       | -3.68817700              | 2.36202800 -1.07592100                              |
| С       | -3.79479000              | 1.37014200 -0.07358300                              |
| С       | -5.00064300              | 1.30952300 0.69299600                               |
| С       | -6.02585200              | 2.24020800 0.43743500                               |
| С       | -5.90648500              | 3.21073100 -0.54429300                              |
| С       | -4.72421500              | 3.25742300 -1.30039600                              |
| Н       | -2.77515800              | 2.40867400 -1.65472600                              |
| Н       | -6.92328500              | 2.16260600 1.04410000                               |
| Н       | -6.70975900              | 3.91821100 -0.72731700                              |
| Н       | -4.60879000              | 4.01171000 -2.07583000                              |
| С       | -5.23604500              | 0.29797200 1.73161500                               |
| Н       | -4.44784800              | -0.47041700 1.86735000                              |
| 0       | -6.23980600              | 0.24123600 2.43207400                               |
| Ν       | -2.77529300              | 0.45579300 0.10614500                               |
| 0       | -1.54522500              | 0.79961300 -0.45757600                              |
| С       | 1.37786000               | 2.20682500 -0.83149700                              |
| 0       | 0.80459700               | 1.17766600 0.00875100                               |
| Н       | -0.15124800              | 1.42051200 0.18816400                               |
| Н       | 2.33890000               | 1.81593300 -1.17029200                              |
| Н       | 0.73320900               | 2.35629500 -1.70593300                              |
| С       | 1.55884000               | 3.50145900 -0.07459000                              |
| С       | 2.82393300               | 3.90594500 0.36887600                               |
| С       | 0.45097600               | 4.31608500 0.20318500                               |
| С       | 2.98190700               | 5.10071300 1.07453300                               |
| Н       | 3.68984600               | 3.28286600 0.15810100                               |
| С       | 0.60457400               | 5.50585200 0.91489300                               |
| Н       | -0.53749700              | 4.01663500 -0.13940200                              |
| С       | 1.87216400               | 5.90173100 1.35069700                               |
| Н       | 3.97058700               | 5.40537800 1.40816200                               |
| Н       | -0.26270800              | 6.12653300 1.12383400                               |
| Н       | 1.99371400               | 6.83157800 1.90013000                               |
| . –     |                          |                                                     |
| 87      |                          | $(\mathbf{D}, \mathbf{M}_{0}) = 2070, 102, 4750, 4$ |
| 189     | SCF Done: E              | (RM06) = -20/9.1834/504                             |
| C       | 0.08890000               | -3.30008800 -1.13983300                             |
| C       | 1.43623800               | -2.8/952800 -1.03/30900                             |
| C       | 1./138/800               | -2.040/9800 -2.20911300                             |
| C       | -0.50143200              | -2.70955400 -2.28045700                             |
|         | 0.32327200               | -1.95/40200 -2.9/35/100                             |
| U<br>11 | 2.47738800<br>2.05262400 | -3.41210600 -0.10332700                             |
| П<br>U  | 2.03203400               | -3.73307300 0.84138300                              |
| П<br>U  | 2.77200/00               | -4.2045/100 -0.35/9/000                             |
| 11      | 5.25059100               | -2.00173400 0.13223100                              |

| С      | 3.04889900  | -1.44421000 | -2.53028800 |
|--------|-------------|-------------|-------------|
| Н      | 3.65747800  | -2.18791500 | -3.06434400 |
| Н      | 2.96568400  | -0.56466800 | -3.17446500 |
| Н      | 3.59451500  | -1.16916600 | -1.62319700 |
| С      | 0.31973300  | -1.19152600 | -4.25882700 |
| Н      | 0.27948300  | -1.88398400 | -5.11122300 |
| Н      | -0.61868300 | -0 62753900 | -4 25072400 |
| н      | 1 13267300  | -0.48493100 | -4 44905800 |
| C      | -1 90249600 | -2 89565700 | -2 77779200 |
| н      | -1 92745500 | -3 69111200 | -3 53579200 |
| н      | -2 58364500 | -3 18059300 | -1 97180500 |
| п<br>п | -2.38304300 | -3.18039300 | -1.9/180500 |
| п      | -2.28833100 | -1.98180300 | -3.23083300 |
| C<br>H | -0.52/10000 | -4.43504100 | -0.29660100 |
| Н      | -0.21918900 | -4.35593300 | 0.74903700  |
| H      | -1.61950100 | -4.40464/00 | -0.32/01100 |
| H      | -0.21353200 | -5.42111/00 | -0.66659100 |
| C      | 5.91408300  | -0.13401800 | 0.86421000  |
| С      | 3.72780800  | 0.0297/000  | 1.57445300  |
| С      | 4.02584800  | 1.22216400  | 2.30748100  |
| С      | 5.35352800  | 1.70943200  | 2.29075500  |
| С      | 6.30850400  | 1.02734200  | 1.57010200  |
| Н      | 6.65379600  | -0.68079300 | 0.27965700  |
| С      | 2.95248800  | 1.85080300  | 2.98957900  |
| Н      | 5.59966200  | 2.61354200  | 2.84325200  |
| Н      | 7.34031200  | 1.36241300  | 1.53065200  |
| С      | 1.70595300  | 1.28748700  | 2.93693600  |
| С      | 1.50156800  | 0.06775900  | 2.21023400  |
| Н      | 3.12836100  | 2.77764100  | 3.53064900  |
| Н      | 0.86347600  | 1.76653600  | 3.42322800  |
| Ν      | 4.68705700  | -0.62264800 | 0.85385100  |
| Ν      | 2.48696600  | -0.52154800 | 1.54889100  |
| С      | 0.16375200  | -0.58647600 | 2.26552300  |
| С      | -0.44947900 | -0.60778400 | 3.53102400  |
| С      | -1.68976500 | -1.19656400 | 3.77154200  |
| С      | -2.34893800 | -1.79776200 | 2.69769000  |
| С      | -1.74421000 | -1.79579100 | 1.42977300  |
| С      | -0.50161200 | -1.19889500 | 1.15872800  |
| Н      | 0.07274200  | -0.16608200 | 4.37590000  |
| Н      | -2.11128000 | -1.18427400 | 4.77003600  |
| Н      | -2.30894600 | -2.26474800 | 0.62967000  |
| Ir     | 0.10325700  | -1.22118800 | -0.82228900 |
| Н      | -2.54181400 | 0.20757700  | 0.46610500  |
| 0      | -3.57329300 | -2.39592600 | 2.76706800  |
| С      | -4.28502100 | -2.33018100 | 3.99783100  |
| Н      | -4.47683500 | -1.29177400 | 4.29616600  |
| Н      | -5.23836000 | -2.83225100 | 3.81890100  |
| Н      | -3.75087200 | -2.85119600 | 4.80323700  |
| С      | -3.39083900 | 2.35309800  | -1.86248100 |
| С      | -3.56096900 | 1.55459200  | -0.71150700 |
| С      | -4.62164500 | 1.87445800  | 0.18911800  |
| C      | -5.43078800 | 2.99514800  | -0.07147500 |
| С      | -5.24232900 | 3.78555100  | -1.19518400 |
| C      | -4.21833000 | 3.44581000  | -2.09164600 |
| Н      | -2.60305200 | 2.09815700  | -2.55992600 |
| Н      | -6.22181600 | 3.21017100  | 0.64089700  |
| Н      | -5.87983600 | 4.64424800  | -1.38317800 |
| Н      | -4.06012000 | 4.04584500  | -2.98478900 |
| C      | -4.93271000 | 1.04601600  | 1.36348400  |
|        |             |             |             |

| Н      | -4.37464400             | 0.09327600    | 1.45530100  |
|--------|-------------------------|---------------|-------------|
| 0      | -5.77329400             | 1.32553300    | 2.20932800  |
| Ν      | -2.75938500             | 0.44635900    | -0.49608400 |
| 0      | -1.59510100             | 0.35863200    | -1.28352300 |
| С      | 1.37845400              | 1.57455700    | -1.41163000 |
| 0      | 0.52673900              | 0.88749600    | -0.49686700 |
| Н      | -0.65947400             | 0.93895600    | -0.84572800 |
| Н      | 2.37063600              | 1.11375000    | -1.38929200 |
| Н      | 0.99123000              | 1.46410000    | -2.43854500 |
| C      | 1 50534400              | 3 04757100    | -1 07156000 |
| C      | 2 76648300              | 3 62450600    | -0.87954600 |
| C<br>C | 0.37146500              | 3 86803100    | -0.97667200 |
| C<br>C | 2 89764500              | 4 98794800    | -0.60247000 |
| ч      | 3 65/198900             | 3 00033300    | -0.94516300 |
| C II   | 0.40726200              | 5.00055500    | 0.60141100  |
|        | 0.49720300              | 2 44262000    | 1 12745500  |
| п      | -0.01/98300             | 5.44502900    | -1.12/43300 |
| U U    | 1.76220700              | 5./9526300    | -0.50545200 |
| H      | 3.88595700              | 5.41/61900    | -0.45803300 |
| Н      | -0.39286800             | 5.84/38200    | -0.618/4900 |
| Н      | 1.85986200              | 6.85358100    | -0.28659300 |
|        |                         |               |             |
| 17     | ~~~~                    |               |             |
| 1a-3   | SCF Done: E             | (RM06) = -475 | 5.918672462 |
| С      | -1.25635900             | -1.13751100   | -0.04698200 |
| С      | -0.65583400             | 0.12972000    | -0.02729600 |
| С      | 0.76166800              | 0.22292700    | -0.00250400 |
| С      | 1.52658500              | -0.95610400   | 0.03599200  |
| С      | 0.92677900              | -2.20727400   | 0.02847500  |
| С      | -0.47040600             | -2.28647000   | -0.01978100 |
| Н      | -2.33651600             | -1.20595200   | -0.06169600 |
| Н      | 2.60680700              | -0.84983000   | 0.05981700  |
| Н      | 1.53020600              | -3.10962000   | 0.05354100  |
| Н      | -0.95854200             | -3.25774700   | -0.02749900 |
| С      | 1.46815100              | 1.51562300    | -0.06162700 |
| Н      | 0.83576900              | 2.41352400    | -0.22015000 |
| 0      | 2.67975600              | 1.64534900    | 0.02643300  |
| Ν      | -1.43287300             | 1.30456200    | -0.09655900 |
| Н      | -1.13781200             | 2.01863700    | 0.56302300  |
| 0      | -2.81425400             | 1.08637100    | 0.16716500  |
| Ĥ      | -3 23732600             | 1 31982300    | -0 67757000 |
|        | 5.25752000              | 1.51702500    | 0.07757000  |
| 70     |                         |               |             |
| TS10   | SCF Done <sup>.</sup> I | F(RM06) = -16 | 03 22749750 |
| C      | -1 45744300             | 0 70661000    | 2 39596000  |
| C<br>C | 0.12445800              | 0.12102000    | 2.55500000  |
| C      | 0.12445800              | 1 27622800    | 2.33090900  |
| C      | -0.22893200             | -1.2/023800   | 2.27490900  |
| C      | -2.34/03000             | -0.36993200   | 2.02546800  |
| C      | -1.59523100             | -1.59339400   | 1.96326600  |
| C      | 1.08085100              | 0.84345300    | 3.08899700  |
| Н      | 1.02385000              | 1.91820500    | 2.89399700  |
| H<br>  | 1.14968600              | 0.70493200    | 4.17/99200  |
| H      | 1.99965600              | 0.47585500    | 2.62768800  |
| С      | 0.88694300              | -2.27180900   | 2.35670000  |
| Н      | 1.86663300              | -1.79922000   | 2.25813200  |
| Н      | 0.85243300              | -2.78700700   | 3.32785800  |
| Н      | 0.79996600              | -3.03660400   | 1.57801700  |
| С      | -2 14722600             | -2.96552700   | 1.71228300  |

Н -2.40790400 -3.46081900 2.65902500

| Н      | -3 05295400             | -2 93439100   | 1 09997200  | С      | 0 77871700  | 2 97355300  | 1 19831900  |
|--------|-------------------------|---------------|-------------|--------|-------------|-------------|-------------|
| н      | -1 42335700             | -3 60579000   | 1 19962000  | C      | -0.62981600 | 2 58037500  | 1 15139000  |
| C      | -3 83092400             | -0 24915400   | 1.82742700  | C<br>C | -1 12373900 | 2.89285100  | -0 17772300 |
| н      | -4 35754700             | -0.45134400   | 2 77046900  | C<br>C | 1 15260200  | 3 39735800  | -0.09466200 |
| и<br>П | 4 11340400              | 0.75407700    | 1 40002600  | C<br>C | 0.01780300  | 3.37735800  | 0.06730000  |
| п      | -4.11340400             | 0.73497700    | 1.49902000  | C      | -0.01/80300 | 3.34303300  | -0.90730900 |
| п      | -4.19855100             | -0.90184300   | 1.08505000  |        | -1.4/301200 | 2.28283000  | 2.55707700  |
| U<br>U | -1.80539300             | 2.08655100    | 2.82032900  | Н      | -0.90166400 | 1./3832400  | 3.11458500  |
| Н      | -1.0932/400             | 2.82551900    | 2.592/4400  | Н      | -1.82/90800 | 3.21825800  | 2.81631200  |
| Н      | -2.78806400             | 2.40809000    | 2.32828500  | Н      | -2.33921500 | 1.66911900  | 2.10156300  |
| Н      | -2.04339000             | 2.11112500    | 3.90493100  | С      | -2.563/0000 | 2.86448200  | -0.59946900 |
| С      | 5.06735000              | -2.11422100   | 1.27171400  | Н      | -3.03157000 | 3.84011900  | -0.40128100 |
| С      | 3.74079300              | -0.63984200   | 0.10000300  | Н      | -2.67025900 | 2.65766100  | -1.66912900 |
| С      | 4.44964100              | -0.92066700   | -1.11108700 | Н      | -3.12723300 | 2.10706000  | -0.04898900 |
| С      | 5.51072700              | -1.85490800   | -1.06928000 | С      | -0.10014500 | 3.94346700  | -2.34646900 |
| С      | 5.82657500              | -2.45721300   | 0.12784900  | Н      | -0.33482800 | 5.01747100  | -2.29736900 |
| Н      | 5.30125300              | -2.58149000   | 2.22828500  | Н      | 0.84656300  | 3.86231800  | -2.89434900 |
| С      | 4.03706800              | -0.23420000   | -2.28228800 | Н      | -0.88065400 | 3.47076300  | -2.95135900 |
| Н      | 6.06022300              | -2.08291200   | -1.98010400 | С      | 2.50482600  | 3.88353500  | -0.53291100 |
| Н      | 6.63409400              | -3.17848400   | 0.20780300  | Н      | 2.49580300  | 4.97120800  | -0.68947200 |
| С      | 3.00262000              | 0.65865500    | -2.20091300 | Н      | 3.27702500  | 3.66489700  | 0.21036500  |
| С      | 2.35195500              | 0.88765700    | -0.94403000 | Н      | 2.81309500  | 3.42329100  | -1.47799100 |
| Н      | 4.54078000              | -0.42996500   | -3.22639000 | С      | 1.62520200  | 2.96152600  | 2.43682500  |
| Н      | 2.65267200              | 1.18695600    | -3.08138800 | Н      | 1.46067900  | 2.05716900  | 3.03005000  |
| Ν      | 4.06956200              | -1.24945300   | 1.27551100  | Н      | 2.69347300  | 3.01740700  | 2.20573200  |
| Ν      | 2.71660300              | 0.25182300    | 0.15882500  | Н      | 1.38323700  | 3.82138400  | 3.07816500  |
| С      | 1.29969200              | 1.94370600    | -0.87130600 | С      | -5.80963600 | -0.09481200 | 0.78576700  |
| С      | 1.66943800              | 3.19293800    | -1.39890600 | С      | -3.68584200 | -0.98194100 | 0.84624800  |
| С      | 0.82529300              | 4.30257000    | -1.38950500 | С      | -4.15431400 | -2.21810100 | 0.29713300  |
| С      | -0.45221500             | 4.14857600    | -0.84689500 | С      | -5.53271400 | -2.34441500 | 0.00206800  |
| С      | -0.84025900             | 2.90176700    | -0.33505800 | С      | -6.36953300 | -1.28014200 | 0.24934800  |
| С      | -0.00195600             | 1.77639300    | -0.31367500 | Н      | -6.45674500 | 0.76016500  | 0.98124000  |
| Н      | 2.66961400              | 3.31403100    | -1.80928400 | С      | -3.19373300 | -3.23822600 | 0.07895900  |
| Н      | 1.16852900              | 5.24801400    | -1.79401200 | Н      | -5.90919000 | -3.27618600 | -0.41450600 |
| Н      | -1.85314300             | 2.83316800    | 0.04962100  | Н      | -7.43380500 | -1.33135900 | 0.04104800  |
| Ir     | -0.79465500             | 0.01101200    | 0.44394400  | С      | -1.88328300 | -3.00401000 | 0.40602600  |
| 0      | -1.39373700             | 5.13806200    | -0.77683400 | С      | -1.50165300 | -1.74135900 | 0.96769100  |
| С      | -1.05860700             | 6.41659600    | -1.29414600 | Н      | -3.50563800 | -4.18699200 | -0.35244200 |
| Н      | -0.83187300             | 6.37512200    | -2.36819300 | Н      | -1.12293300 | -3.75686700 | 0.22772000  |
| Н      | -1.93953000             | 7.04465700    | -1.14037000 | Ν      | -4.53197800 | 0.06465100  | 1.07525600  |
| Н      | -0.20582100             | 6.86071900    | -0.76309200 | Ν      | -2.38493400 | -0.77477900 | 1.17320400  |
| С      | -4.07902700             | -2.60879300   | -2.92371100 | С      | -0.08206600 | -1.54078800 | 1.38113900  |
| С      | -3.23502800             | -1.55039800   | -2.58975900 | С      | 0.46313900  | -2.56128200 | 2.17834100  |
| С      | -1.96214800             | -1.79745200   | -2.05658500 | С      | 1.77288500  | -2.53772200 | 2.65718200  |
| С      | -1.53748700             | -3.11983300   | -1.88141200 | С      | 2.57473400  | -1.44728600 | 2.31475500  |
| С      | -2.38005800             | -4.17966500   | -2.22288500 | С      | 2.04175100  | -0.42532000 | 1.51257700  |
| С      | -3.65309500             | -3.92830200   | -2.74013600 | С      | 0.72662900  | -0.42174900 | 1.01064900  |
| Н      | -5.06570200             | -2.40612800   | -3.33233700 | Н      | -0.16581500 | -3.40406100 | 2.45678800  |
| Н      | -2.03945400             | -5.20359200   | -2.09052600 | Н      | 2.13914200  | -3.34922200 | 3.27544100  |
| Н      | -4.30742500             | -4.75430100   | -3.00643300 | Н      | 2.71563200  | 0.39798600  | 1.28224100  |
| С      | -1.02907400             | -0.65479600   | -1.75955700 | Ir     | 0.26336000  | 1.16213400  | -0.24476600 |
| Н      | -1.82846600             | 0.23830200    | -0.87711200 | 0      | 3,87607400  | -1.28466100 | 2.69527400  |
| Н      | -1.06616600             | 0.13489800    | -2.53045200 | Ċ      | 4.50059500  | -2.34340100 | 3,40869400  |
| 0      | 0 16252100              | -0.89653200   | -1 24632200 | Н      | 4 49532500  | -3 27569000 | 2 82941000  |
| H      | -0.54071500             | -3,29989200   | -1.49170300 | Н      | 5.53408400  | -2.02821000 | 3.57112700  |
| Н      | -3.56415800             | -0.52387400   | -2.74233000 | Н      | 4.02284400  | -2.51579800 | 4.38236600  |
|        |                         |               |             | Н      | -0.80199000 | 0.16820200  | -0.87490200 |
| 73     |                         |               |             | C      | 0.25381000  | -1.22719000 | -3.06456300 |
| IN12   | SCF Done <sup>-</sup> F | E(RM06) = -17 | 33,74794620 | Č      | 1.35470000  | -1.13166600 | -2.20912800 |
|        |                         | , ,           |             | -      |             |             |             |

| С    | 2 11385900   | -2.27872500   | -1 90172600 |
|------|--------------|---------------|-------------|
| C    | 1 71398100   | -3 51613900   | -2 44298500 |
| C    | 0.61998000   | -3 61075900   | -3 28925400 |
| C    | 0.01778000   | 2 45561400    | 2 60728000  |
| п    | -0.1000/100  | -2.43301400   | -3.00738000 |
| п    | -0.32204300  | -0.330/3/00   | -5.28/24000 |
| п    | 2.30511100   | -4.38934900   | -2.1800/400 |
| Н    | 0.3315/900   | -4.5/136300   | -3./0612600 |
| Н    | -0.96312600  | -2.51438500   | -4.27232200 |
| С    | 3.34205400   | -2.27111000   | -1.06892800 |
| Н    | 3.73465000   | -1.28639100   | -0.75192000 |
| 0    | 3.94681700   | -3.28031700   | -0.75080400 |
| Ν    | 1.66354700   | 0.17488500    | -1.65305900 |
| 0    | 1.97728500   | 1.07526000    | -2.74939200 |
| Н    | 2.54073400   | 0.12986100    | -1.13865000 |
| Н    | 1.22824500   | 1.69879400    | -2.69701900 |
|      |              |               |             |
| 73   |              |               |             |
| TS11 | SCF Done: E( | RM06) = -1733 | 3.71965832  |
| С    | -1 16676400  | 0 32320400    | 2 58041800  |
| C    | 0 14907100   | -0.27639500   | 2 58307800  |
| C    | -0.00264800  | -1 63788500   | 2 14025800  |
| C    | -2 11650400  | -0.67405800   | 2.17625666  |
| C    | 1 30028200   | 1 88600800    | 1 80278000  |
| C    | -1.39928200  | -1.88090800   | 2 15216600  |
|      | 1.39803400   | 1.42506000    | 2 120000    |
| п    | 1.555/8400   | 1.42506000    | 3.12888500  |
| Н    | 1.52/14800   | 0.027/6900    | 4.20066500  |
| Н    | 2.282/5300   | 0.02826500    | 2.58893200  |
| С    | 1.08611300   | -2.669/9200   | 2.10159700  |
| Н    | 1.12242300   | -3.20794700   | 3.05990400  |
| Н    | 0.91346900   | -3.41169800   | 1.31605400  |
| Н    | 2.06729700   | -2.21831900   | 1.93366600  |
| С    | -2.00779400  | -3.22281400   | 1.58522600  |
| Н    | -2.25984100  | -3.74471400   | 2.52004300  |
| Н    | -2.92967000  | -3.13292100   | 1.00463300  |
| Н    | -1.32495600  | -3.86637200   | 1.02624000  |
| С    | -3.60688300  | -0.50788500   | 2.10971800  |
| Н    | -3.89667600  | 0.51927900    | 1.86941800  |
| Н    | -4.06762700  | -1.16790600   | 1.36948100  |
| Н    | -4.04966800  | -0.75253200   | 3.08612000  |
| С    | -1.50572300  | 1.67226700    | 3.14058500  |
| Н    | -0.70989600  | 2.39863300    | 2.96051300  |
| Н    | -2.43038800  | 2.07591000    | 2.71747000  |
| Н    | -1 64816400  | 1 59789400    | 4 22837700  |
| C    | 5 39457000   | -2 30816700   | 0.72190700  |
| C    | 4 07344700   | 0.61060000    | 0.11075000  |
| C    | 4.07344700   | -0.01900900   | -0.11073000 |
| C    | 4.79302200   | -0.01841300   | -1.34337700 |
| C    | 5.80009100   | -1.33140400   | -1.49818000 |
| U    | 0.1/230200   | -2.38001100   | -0.439/0100 |
| Н    | 5.6204/800   | -2.9//25000   | 1.551/2/00  |
| C    | 4.3/890100   | 0.29702500    | -2.344/5900 |
| Н    | 6.42810300   | -1.54917100   | -2.42946500 |
| Н    | 6.98496700   | -3.09692400   | -0.53024300 |
| С    | 3.32754500   | 1.13887700    | -2.08680400 |
| С    | 2.66882400   | 1.08395600    | -0.81634100 |
| Н    | 4.88766000   | 0.31267600    | -3.30576400 |
| Н    | 2.97048400   | 1.83025600    | -2.84204000 |
| Ν    | 4.38870600   | -1.47327700   | 0.90480400  |
| Ν    | 3.03614200   | 0.22620900    | 0.12581200  |

| С    | 1.56327000  | 2.04936400    | -0.54443800 |
|------|-------------|---------------|-------------|
| С    | 1.85948600  | 3.39295800    | -0.83573500 |
| С    | 0.94848300  | 4.43231800    | -0.66221800 |
| С    | -0.33136900 | 4.11358600    | -0.20406500 |
| С    | -0.64811700 | 2.77562000    | 0.07504000  |
| С    | 0.26401500  | 1.71993200    | -0.05744500 |
| Н    | 2 85507000  | 3 64134000    | -1 19503700 |
| Н    | 1 24081100  | 5 45140500    | -0.88763600 |
| н    | -1 66298600 | 2 58082000    | 0.40727300  |
| Ir   | -0.50999900 | -0.1/387800   | 0.42199600  |
| 0    | 1 33580700  | 5 01423700    | 0.42177000  |
| C    | -1.33380700 | 6 28220000    | -0.00230200 |
| U    | -1.0/33/000 | 0.58229900    | -0.28/3/200 |
| п    | -0.82060200 | 6.53441800    | -1.34440400 |
| Н    | -2.00094200 | 6.91/4/400    | -0.06229100 |
| Н    | -0.26848400 | 6.78094400    | 0.34131800  |
| C    | -2.79673700 | -1.98568100   | -1.8168/400 |
| С    | -2.60418600 | -0.59601900   | -1.66976100 |
| С    | -3.68753400 | 0.27744100    | -1.84309200 |
| С    | -4.96084700 | -0.22711700   | -2.10515500 |
| С    | -5.16709600 | -1.60684300   | -2.21095100 |
| С    | -4.08638700 | -2.47330100   | -2.07502100 |
| Н    | -5.79309600 | 0.46090400    | -2.22756800 |
| Н    | -6.15957300 | -1.99739500   | -2.41716800 |
| Н    | -4.20817600 | -3.54603700   | -2.19312700 |
| Ν    | -1.34967800 | -0.03545000   | -1.30179700 |
| Н    | -0.97455900 | 0.58699300    | -2.03259800 |
| 0    | -0.18150300 | -0.51367100   | -3.09872200 |
| Н    | 0.61671700  | -0.62918400   | -2.55396100 |
| Н    | 0.88577600  | -0.57286600   | -0.16438800 |
| Н    | -3.52429600 | 1.34729200    | -1.74798300 |
| С    | -1.64980700 | -2.93251700   | -1.82885000 |
| Н    | -0.67076300 | -2.46489400   | -2.01634300 |
| 0    | -1.78418200 | -4.14301200   | -1.71962900 |
|      |             |               |             |
| 73   |             |               |             |
| IN13 | SCF Done: I | E(RM06) = -17 | 33.78227305 |
| С    | -0.90059000 | -2.52363600   | 1.57523300  |
| С    | 0.50600200  | -2.53087000   | 1.28780100  |
| С    | 0.65267900  | -2.94256700   | -0.08301100 |
| С    | -1.61708100 | -3.03214200   | 0.41953100  |
| С    | -0.66538500 | -3.28142700   | -0.60378700 |
| С    | 1.61004000  | -2.32003500   | 2.28153300  |
| Н    | 1.31099100  | -1.62137300   | 3.06855500  |
| Н    | 1.86854500  | -3.27316600   | 2.76586300  |
| Н    | 2.50740700  | -1.91672800   | 1.80988700  |
| С    | 1.95512600  | -3.21145200   | -0.77892000 |
| Н    | 2.25259700  | -4.25860900   | -0.62322700 |
| Н    | 1.87749600  | -3.04979800   | -1.85844000 |
| Н    | 2.75568100  | -2.57284000   | -0.39596000 |
| С    | -0.95978600 | -3.86613900   | -1.95402500 |
| Н    | -1.09440700 | -4.95459100   | -1.87651100 |
| Н    | -1.87537800 | -3.44283000   | -2.38050000 |
| Н    | -0.13911600 | -3.68859100   | -2.65541100 |
| С    | -3.08988600 | -3.30293900   | 0.33654100  |
| Н    | -3.29696700 | -4.35788800   | 0.56891200  |
| Н    | -3.65435500 | -2.69809300   | 1.05258700  |
| Н    | -3.48246600 | -3.09829900   | -0.66386100 |
| С    | -1.50831700 | -2.25603200   | 2.91913700  |
|      |             |               |             |

| Н      | -0.94391500           | -1.50417900   | 3.47588200   |
|--------|-----------------------|---------------|--------------|
| Н      | -2.54339000           | -1.91111300   | 2.84364300   |
| Н      | -1.51373300           | -3.17843900   | 3.51728800   |
| С      | 5.81644100            | -0.86937200   | -0.26527200  |
| С      | 3.97188300            | 0.41837800    | 0.22016400   |
| C      | 4 63943200            | 1 60090100    | -0 22883400  |
| C      | 5 96678500            | 1 48379500    | -0.70554600  |
| C      | 6 56351100            | 0.24257800    | 0.70171000   |
|        | 0.30331100            | 1 95049500    | -0.72171000  |
| П      | 0.2/120/00            | -1.85948500   | -0.2/6/6900  |
| C<br>H | 5.91550000            | 2.81808400    | -0.1/120200  |
| H      | 6.49438800            | 2.3/060900    | -1.04938000  |
| Н      | 7.58059200            | 0.10540800    | -1.0/49/300  |
| С      | 2.63524800            | 2.81512100    | 0.32317800   |
| С      | 2.05069100            | 1.58896400    | 0.78447000   |
| Н      | 4.37416400            | 3.73598500    | -0.52905200  |
| Н      | 2.05112800            | 3.72812800    | 0.34857600   |
| Ν      | 4.57784700            | -0.80320700   | 0.18668500   |
| Ν      | 2.70691900            | 0.43903900    | 0.71456400   |
| С      | 0.69018200            | 1.62664000    | 1.39089200   |
| С      | 0.45486300            | 2.69601900    | 2.27476100   |
| С      | -0.75777500           | 2.90087800    | 2.92777800   |
| С      | -1.80024500           | 2.00640100    | 2.67638000   |
| С      | -1.58518800           | 0.93200900    | 1.79994700   |
| С      | -0.36746600           | 0.69876600    | 1.14758400   |
| Н      | 1.26561400            | 3.38871300    | 2.48436900   |
| Н      | -0.87032700           | 3.73668500    | 3.60873700   |
| Н      | -2.43297100           | 0.27628200    | 1.62849500   |
| Ir     | -0.43310100           | -0.93463000   | -0.12001400  |
| 0      | -3.04387100           | 2.08134300    | 3.22512800   |
| С      | -3.33519600           | 3.17735800    | 4.08289400   |
| Н      | -3.22233700           | 4.13755500    | 3.56307300   |
| Н      | -4.37788000           | 3.05349000    | 4.38346400   |
| Н      | -2.69951100           | 3.17139900    | 4.97824700   |
| Н      | 0.89160400            | -0.24908100   | -0.60088300  |
| С      | -0.04420500           | 1.48839700    | -2.63996100  |
| С      | -1.28084100           | 1.09768600    | -2.06708200  |
| С      | -2.39251900           | 1.98437700    | -2.22637700  |
| С      | -2.22508100           | 3.20804300    | -2.89148300  |
| С      | -1.00358400           | 3.56815900    | -3.44632000  |
| С      | 0.08309700            | 2.69038300    | -3.32459200  |
| Н      | 0.79656000            | 0.80795800    | -2.55426800  |
| Н      | -3.08905600           | 3.86227300    | -2.96290300  |
| Н      | -0.89177600           | 4.51349600    | -3.96949500  |
| Н      | 1.04428000            | 2.95267700    | -3.76045200  |
| С      | -3.72345700           | 1.64636700    | -1.68418800  |
| Н      | -3.81891300           | 0.63739200    | -1.24452200  |
| 0      | -4.68848700           | 2.39680800    | -1.72511400  |
| N      | -1.45112700           | -0.12431400   | -1.44970900  |
| 0      | -3.52663000           | -1.73792400   | -2.59120000  |
| Н      | -2.79672200           | -1.18990800   | -2.20961300  |
| Н      | -3 52992400           | -1 51111600   | -3 53430800  |
|        | 0.02//2.00            | 1.011110000   | 2.22 120000  |
| 73     |                       |               |              |
| TS11'  | SCF Done <sup>-</sup> | E(RM06) = -12 | 733.67223992 |
| С      | 0.51144400            | 2.74310500    | 1.48971500   |
| Ċ      | -0.87353600           | 2.36576600    | 1.21476800   |
| Ċ      | -1.17752500           | 2.75764500    | -0.15037900  |
| С      | 1.05073100            | 3.26142000    | 0.28777600   |

| С      | 0.00256100  | 3.34976200        | -0.70931800 |
|--------|-------------|-------------------|-------------|
| С      | -1.87724300 | 1.98489600        | 2.26178700  |
| Н      | -1.40827100 | 1.41630400        | 3.07070900  |
| Н      | -2.32149600 | 2.88887800        | 2.70371800  |
| Н      | -2.67495700 | 1.36924500        | 1.84229600  |
| С      | -2.54155700 | 2.75645700        | -0.77776500 |
| Н      | -3.03300400 | 3.72594200        | -0.61005300 |
| Н      | -2.48657900 | 2.59534500        | -1.85896600 |
| Н      | -3.18276300 | 1.98008200        | -0.35537900 |
| С      | 0.18401700  | 3.84523100        | -2.10003400 |
| Н      | 0.79779400  | 4,75371400        | -2.13520900 |
| н      | 0 71358300  | 3 07192400        | -2 69346900 |
| н      | -0 77276300 | 4 06123500        | -2 58514800 |
| C II   | 2 45867900  | 3 72878200        | 0.06072900  |
| с<br>u | 2.43807300  | <i>4</i> 82403200 | 0.11060000  |
| п<br>п | 2.31703100  | 4.82493200        | 0.11009900  |
| п      | 3.14600600  | 2 42260200        | 0.02014500  |
| п      | 2.82018500  | 3.43269300        | -0.93014500 |
| C      | 1.1/395600  | 2.6/8/9000        | 2.83220800  |
| H      | 0.90/1//00  | 1.76787800        | 3.3/653500  |
| Н      | 2.26542200  | 2.71114700        | 2.75235500  |
| Н      | 0.86834000  | 3.53218400        | 3.45562500  |
| С      | -6.07570900 | 0.07008100        | -0.83127800 |
| С      | -4.08744200 | -0.88581800       | -0.17604000 |
| С      | -4.42874300 | -2.11425300       | -0.82605500 |
| С      | -5.67091300 | -2.19715400       | -1.50008700 |
| С      | -6.50293800 | -1.10147700       | -1.50358200 |
| Η      | -6.72169800 | 0.94778800        | -0.82528600 |
| С      | -3.49060100 | -3.17383600       | -0.74995200 |
| Η      | -5.94861900 | -3.12123700       | -2.00219200 |
| Н      | -7.46549000 | -1.11833500       | -2.00521500 |
| С      | -2.32225800 | -2.98280200       | -0.05822000 |
| С      | -2.06099800 | -1.72139700       | 0.57175000  |
| Н      | -3.70611400 | -4.11994900       | -1.24167500 |
| Н      | -1.58134400 | -3.77245800       | 0.00940700  |
| Ν      | -4.92640800 | 0.18944500        | -0.19425500 |
| Ν      | -2.92053500 | -0.71546500       | 0.49896500  |
| C      | -0.80770700 | -1.58142800       | 1.37075800  |
| C      | -0 58253500 | -2.60264500       | 2 30867700  |
| C      | 0 55242200  | -2.66307200       | 3 11747500  |
| C      | 1 52350800  | -1 67287100       | 2 95883700  |
| C      | 1 31956600  | -0.65277200       | 2.01702800  |
| C<br>C | 0.1739/100  | -0.55512200       | 1 208/13000 |
| с<br>u | 1 33467500  | 3 37028700        | 2 42787100  |
| н<br>ц | -1.33407300 | -3.37928700       | 2.42/8/100  |
| п      | 0.00022200  | -3.40394400       | 1.02(20100  |
| H<br>L | 2.113/8600  | 0.08219900        | 0.11220400  |
| II     | 0.22155000  | 1.005/5600        | -0.11338400 |
| 0      | 2.69121500  | -1.60606000       | 3.66239100  |
| C      | 2.95468500  | -2.62290800       | 4.61888800  |
| Н      | 3.00305200  | -3.61584/00       | 4.15243100  |
| Н      | 3.92894000  | -2.38381400       | 5.05164400  |
| H      | 2.20082900  | -2.63453500       | 5.41735000  |
| Η      | -0.67456600 | 0.03044200        | -0.99641800 |
| С      | 1.37984800  | -2.14435400       | -1.65015800 |
| С      | 2.39691800  | -1.16368500       | -1.50868000 |
| С      | 3.70539700  | -1.45887500       | -2.02357700 |
| С      | 3.95464100  | -2.72759300       | -2.56812600 |
| С      | 2.95045700  | -3.68164000       | -2.67433100 |
| С      | 1.65456700  | -3.37349500       | -2.22445600 |

0.39280200 -1.91004400 -1.27142900 Η 4.95940600 -2.93112000 -2.92567000 Н 3.16278600 -4.65394100 -3.10911400 Η Η 0.86096300 -4.11073000 -2.31341900 С 4.80653200 -0.48145200 -2.03157100 4.57253600 0.53972800 -1.66803900 Н 5.93895500 -0.72286900 -2.42600900 0 2.09280100 0.01557600 -0.89620700 Ν 0 1.54305300 1.21454400 -2.31229700 Η 2.89609000 0.61758400 -0.76008500 Η 0.83162900 0.68025900 -2.71536600 73 IN13' SCF Done: E(RM06) = -1733.77494719 С  $0.68379400 \quad 2.78410500 \quad 1.18380100$ С -0.72829500 2.41575100 1.16500900 С -1.25532900 2.84003800 -0.09442300 С 0.99762800 3.48088700 -0.02593400 С -0.18181000 3.52947600 -0.80904700 С -1.51370100 1.97467300 2.36276700  $-0.91996200 \quad 1.33455100 \quad 3.02053800$ Η Η -1.81978700 2.85795000 2.94167800Η -2.40399200 1.41606400 2.07354300 С -2.68816900 2.81839600 -0.53569000Η -3.16271000 3.79168500 -0.34519500 Η -2.75766200 2.61389600 -1.60836700 Η -3.26002600 2.05043500 -0.00851200 С -0.34329100 4.11507700 -2.16431400 Η 0.54044900 4.67066600 -2.48902400 Η -0.53106900 3.28127500 -2.86214500 -1.21156000 4.78353000 -2.20519300 Н С 2.33485200 4.05963200 -0.38856900 Η 2.42454200 5.09769500 -0.04008500 Η 3.15547300 3.49626400 0.06671600 2.49429700 4.06224700 -1.47090700 Н С 1.55863600 2.72712100 2.39629600 Η 1.34345400 1.85844600 3.02073400 Η 2.62314100 2.71513900 2.14577200 Η 1.37707300 3.62574600 3.00407200 С -5.87472900 -0.42055400 0.30920800 С -3.72331700 -1.16631200 0.62992300 С -4.09501500 -2.49942300 0.27096400 С -5.44318000 -2.74819900 -0.08146800С -6.34089000 -1.70548100 -0.06222300Н -6.57279400 0.41589800 0.32905200 С -3.07629600 -3.48596100 0.28559300 Η -5.74836500 -3.75406400 -0.36073600 Η -7.38481800 -1.84809100 -0.32345800 С -1.80278900 -3.13283000 0.65035000С -1.51813600 -1.77615300 1.01339200 Η -3.31284800 -4.50713700 -0.00435800 Η -1.00010100 -3.86140700 0.63805800 Ν -4.62753300 -0.14582200 0.64260200Ν -2.45471100 -0.83841100 0.98888000 С -0.13534900 -1.42873800 1.45767200 С 0.43438700 - 2.32730800 2.37949600С 1.72557400 -2.19737900 2.88146600 С 2.50342100 -1.13320300 2.42110700

| C                                                                                                                                                                                                                                                                   | 1.95510100                                                                                                                                                                                                                                                                                                                                | -0.23415500                                                                                                                                                                                                                                                                                                                                                                             | 1.49532000                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С                                                                                                                                                                                                                                                                   | 0.64696200                                                                                                                                                                                                                                                                                                                                | -0.32291900                                                                                                                                                                                                                                                                                                                                                                             | 1.00791400                                                                                                                                                                                                                                                                                                                                                                |
| Н                                                                                                                                                                                                                                                                   | -0.16799900                                                                                                                                                                                                                                                                                                                               | -3.15907600                                                                                                                                                                                                                                                                                                                                                                             | 2.73479300                                                                                                                                                                                                                                                                                                                                                                |
| Н                                                                                                                                                                                                                                                                   | 2.10238500                                                                                                                                                                                                                                                                                                                                | -2.91677200                                                                                                                                                                                                                                                                                                                                                                             | 3.59922900                                                                                                                                                                                                                                                                                                                                                                |
| Н                                                                                                                                                                                                                                                                   | 2 61842300                                                                                                                                                                                                                                                                                                                                | 0 55223200                                                                                                                                                                                                                                                                                                                                                                              | 1 15322400                                                                                                                                                                                                                                                                                                                                                                |
| Ir                                                                                                                                                                                                                                                                  | 0 10654800                                                                                                                                                                                                                                                                                                                                | 1.09654500                                                                                                                                                                                                                                                                                                                                                                              | -0.45534600                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                     | 2 78716500                                                                                                                                                                                                                                                                                                                                | 0.87052000                                                                                                                                                                                                                                                                                                                                                                              | 2 70882200                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                                                                                                                                                                                                                                   | 3.78710300                                                                                                                                                                                                                                                                                                                                | -0.8/933000                                                                                                                                                                                                                                                                                                                                                                             | 2.79883200                                                                                                                                                                                                                                                                                                                                                                |
| C                                                                                                                                                                                                                                                                   | 4.42368800                                                                                                                                                                                                                                                                                                                                | -1.80196800                                                                                                                                                                                                                                                                                                                                                                             | 3.6/505400                                                                                                                                                                                                                                                                                                                                                                |
| Н                                                                                                                                                                                                                                                                   | 4.47044200                                                                                                                                                                                                                                                                                                                                | -2.80698000                                                                                                                                                                                                                                                                                                                                                                             | 3.23677600                                                                                                                                                                                                                                                                                                                                                                |
| Н                                                                                                                                                                                                                                                                   | 5.43915300                                                                                                                                                                                                                                                                                                                                | -1.42654400                                                                                                                                                                                                                                                                                                                                                                             | 3.81875700                                                                                                                                                                                                                                                                                                                                                                |
| Н                                                                                                                                                                                                                                                                   | 3.91738400                                                                                                                                                                                                                                                                                                                                | -1.85120900                                                                                                                                                                                                                                                                                                                                                                             | 4.64815000                                                                                                                                                                                                                                                                                                                                                                |
| Η                                                                                                                                                                                                                                                                   | -0.98502900                                                                                                                                                                                                                                                                                                                               | -0.00037600                                                                                                                                                                                                                                                                                                                                                                             | -0.51954400                                                                                                                                                                                                                                                                                                                                                               |
| С                                                                                                                                                                                                                                                                   | 0.52700800                                                                                                                                                                                                                                                                                                                                | -1.83684900                                                                                                                                                                                                                                                                                                                                                                             | -2.34427500                                                                                                                                                                                                                                                                                                                                                               |
| С                                                                                                                                                                                                                                                                   | 1.70866200                                                                                                                                                                                                                                                                                                                                | -1.19595300                                                                                                                                                                                                                                                                                                                                                                             | -1.87563800                                                                                                                                                                                                                                                                                                                                                               |
| Ċ                                                                                                                                                                                                                                                                   | 2 92048000                                                                                                                                                                                                                                                                                                                                | -1 96454800                                                                                                                                                                                                                                                                                                                                                                             | -1 91342900                                                                                                                                                                                                                                                                                                                                                               |
| C                                                                                                                                                                                                                                                                   | 2,926,16600                                                                                                                                                                                                                                                                                                                               | -3 27819300                                                                                                                                                                                                                                                                                                                                                                             | -2 /3/16300                                                                                                                                                                                                                                                                                                                                                               |
| C                                                                                                                                                                                                                                                                   | 1 74620600                                                                                                                                                                                                                                                                                                                                | -3.2781/300                                                                                                                                                                                                                                                                                                                                                                             | 2 80170100                                                                                                                                                                                                                                                                                                                                                                |
| C                                                                                                                                                                                                                                                                   | 1.74639600                                                                                                                                                                                                                                                                                                                                | -3.8/083400                                                                                                                                                                                                                                                                                                                                                                             | -2.891/9100                                                                                                                                                                                                                                                                                                                                                               |
| C                                                                                                                                                                                                                                                                   | 0.55001500                                                                                                                                                                                                                                                                                                                                | -3.12884/00                                                                                                                                                                                                                                                                                                                                                                             | -2.83568400                                                                                                                                                                                                                                                                                                                                                               |
| Н                                                                                                                                                                                                                                                                   | -0.39334900                                                                                                                                                                                                                                                                                                                               | -1.26416900                                                                                                                                                                                                                                                                                                                                                                             | -2.34796400                                                                                                                                                                                                                                                                                                                                                               |
| Н                                                                                                                                                                                                                                                                   | 3.85369500                                                                                                                                                                                                                                                                                                                                | -3.81061800                                                                                                                                                                                                                                                                                                                                                                             | -2.44814600                                                                                                                                                                                                                                                                                                                                                               |
| Н                                                                                                                                                                                                                                                                   | 1.75360400                                                                                                                                                                                                                                                                                                                                | -4.88294600                                                                                                                                                                                                                                                                                                                                                                             | -3.28624200                                                                                                                                                                                                                                                                                                                                                               |
| Н                                                                                                                                                                                                                                                                   | -0.37725500                                                                                                                                                                                                                                                                                                                               | -3.57106700                                                                                                                                                                                                                                                                                                                                                                             | -3.19425300                                                                                                                                                                                                                                                                                                                                                               |
| С                                                                                                                                                                                                                                                                   | 4.19992300                                                                                                                                                                                                                                                                                                                                | -1.46213900                                                                                                                                                                                                                                                                                                                                                                             | -1.41073200                                                                                                                                                                                                                                                                                                                                                               |
| Н                                                                                                                                                                                                                                                                   | 4 19051900                                                                                                                                                                                                                                                                                                                                | -0 45132700                                                                                                                                                                                                                                                                                                                                                                             | -0 94985800                                                                                                                                                                                                                                                                                                                                                               |
| 0                                                                                                                                                                                                                                                                   | 5 26451400                                                                                                                                                                                                                                                                                                                                | -2 07040400                                                                                                                                                                                                                                                                                                                                                                             | -1 45024600                                                                                                                                                                                                                                                                                                                                                               |
| N                                                                                                                                                                                                                                                                   | 1 65660600                                                                                                                                                                                                                                                                                                                                | 0.12106000                                                                                                                                                                                                                                                                                                                                                                              | 1.13021000                                                                                                                                                                                                                                                                                                                                                                |
| N O                                                                                                                                                                                                                                                                 | 0.54(95900                                                                                                                                                                                                                                                                                                                                | 1 19952000                                                                                                                                                                                                                                                                                                                                                                              | 2 27011100                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                                                                                                                                                                                                                                   | -0.34083800                                                                                                                                                                                                                                                                                                                               | 1.18833900                                                                                                                                                                                                                                                                                                                                                                              | -2.3/911100                                                                                                                                                                                                                                                                                                                                                               |
| Н                                                                                                                                                                                                                                                                   | 2.55022600                                                                                                                                                                                                                                                                                                                                | 0.454/2400                                                                                                                                                                                                                                                                                                                                                                              | -1.14108400                                                                                                                                                                                                                                                                                                                                                               |
| Н                                                                                                                                                                                                                                                                   | 0.27265600                                                                                                                                                                                                                                                                                                                                | 0.96311000                                                                                                                                                                                                                                                                                                                                                                              | -2.85796400                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                           |
| 86                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                           |
| IN14                                                                                                                                                                                                                                                                | SCF Done: I                                                                                                                                                                                                                                                                                                                               | E(RM06) = -20                                                                                                                                                                                                                                                                                                                                                                           | 03.98849307                                                                                                                                                                                                                                                                                                                                                               |
| IN14<br>C                                                                                                                                                                                                                                                           | SCF Done: H<br>-1.21366300                                                                                                                                                                                                                                                                                                                | E(RM06) = -20<br>0.27128100                                                                                                                                                                                                                                                                                                                                                             | 03.98849307<br>2.81043500                                                                                                                                                                                                                                                                                                                                                 |
| IN14<br>C<br>C                                                                                                                                                                                                                                                      | SCF Done: H<br>-1.21366300<br>0.11273600                                                                                                                                                                                                                                                                                                  | E(RM06) = -20<br>0.27128100<br>0.81232700                                                                                                                                                                                                                                                                                                                                               | 03.98849307<br>2.81043500<br>2.84211700                                                                                                                                                                                                                                                                                                                                   |
| IN14<br>C<br>C<br>C                                                                                                                                                                                                                                                 | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800                                                                                                                                                                                                                                                                                    | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200                                                                                                                                                                                                                                                                                                                                | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900                                                                                                                                                                                                                                                                                                                     |
| IN14<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                            | SCF Done: F<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100                                                                                                                                                                                                                                                                     | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000                                                                                                                                                                                                                                                                                                                 | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500                                                                                                                                                                                                                                                                                                       |
| IN14<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                       | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200                                                                                                                                                                                                                                                       | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>1.49629500                                                                                                                                                                                                                                                                                                   | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.8066900                                                                                                                                                                                                                                                                                          |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                  | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200                                                                                                                                                                                                                                                       | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25556400                                                                                                                                                                                                                                                                                    | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.0012(200)                                                                                                                                                                                                                                                                          |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                  | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000                                                                                                                                                                                                                                         | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400                                                                                                                                                                                                                                                                                    | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200                                                                                                                                                                                                                                                                           |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>H                                                                                                                                                                                                                             | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900                                                                                                                                                                                                                          | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800                                                                                                                                                                                                                                                                      | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000                                                                                                                                                                                                                                                             |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H                                                                                                                                                                                                                        | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900                                                                                                                                                                                                            | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900                                                                                                                                                                                                                                                        | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400                                                                                                                                                                                                                                               |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H                                                                                                                                                                                                                   | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200                                                                                                                                                                                              | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100                                                                                                                                                                                                                                          | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000                                                                                                                                                                                                                                 |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C                                                                                                                                                                                                              | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600                                                                                                                                                                                | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500                                                                                                                                                                                                                           | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800                                                                                                                                                                                                                   |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H                                                                                                                                                                                                         | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100                                                                                                                                                                  | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500                                                                                                                                                                                               | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100                                                                                                                                                                                                     |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H                                                                                                                                                                                               | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000                                                                                                                                                    | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100                                                                                                                                                                                | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700                                                                                                                                                                                       |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900                                                                                                                                      | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000                                                                                                                                                                  | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900                                                                                                                                                                         |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>C                                                                                                                                                       | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.89039200                                                                                                                        | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>2 88617300                                                                                                                                                    | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500                                                                                                                                                           |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>U<br>U                                                                                                                                                                 | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.89039200<br>1.0026000                                                                                                           | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>2.20277700                                                                                                                                     | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>2.02300600                                                                                                                                             |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.89039200<br>1.00296900                                                                                                          | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>2.110(200)                                                                                                                                    | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.3026000                                                                                                                                |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H                                                                                                                                   | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.89039200<br>1.00296900<br>0.23440000                                                                                            | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200                                                                                                                                   | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000                                                                                                                               |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.89039200<br>1.00296900<br>0.23440000<br>1.87377100                                                                              | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.61106200<br>-2.95564800                                                                                                                     | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900                                                                                                                 |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>H<br>H<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                              | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.89039200<br>1.00296900<br>0.23440000<br>1.87377100<br>-2.20809000                                                               | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700                                                                                                     | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900                                                                                                   |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                 | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.89039200<br>1.00296900<br>0.23440000<br>1.87377100<br>-2.20809000<br>-2.42063300                                                | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700<br>-2.43261400                                                                                      | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900<br>3.80081300                                                                                     |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                 | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.23440000<br>1.87377100<br>-2.20809000<br>-2.42063300<br>-3.12483500                                                             | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700<br>-2.43261400<br>-1.73622600                                                                       | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900<br>3.80081300<br>2.33260200                                                                       |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                 | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.23440000<br>1.87377100<br>-2.20809000<br>-2.42063300<br>-3.12483500<br>-1.97078900                                              | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>-1.49629500<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700<br>-2.43261400<br>-1.73622600<br>-3.06691100                                                        | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900<br>3.80081300<br>2.33260200<br>2.21129300                                                         |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                 | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.23440000<br>1.87377100<br>-2.20809000<br>-2.42063300<br>-3.12483500<br>-1.97078900<br>-2.49520500                               | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700<br>-2.43261400<br>-1.73622600<br>-3.06691100<br>1.01809900                                                         | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900<br>3.80081300<br>2.33260200<br>2.21129300<br>3.04545100                                           |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                 | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.23440000<br>1.87377100<br>-2.20809000<br>-2.42063300<br>-3.12483500<br>-1.97078900<br>-2.49520500<br>-2.42650600                | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700<br>-2.43261400<br>-1.73622600<br>-3.06691100<br>1.01809900<br>2.05857400                                           | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900<br>3.80081300<br>2.33260200<br>2.21129300<br>3.04545100<br>2.71919700                                           |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                 | SCF Done: H<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.23440000<br>1.87377100<br>-2.20809000<br>-2.42063300<br>-3.12483500<br>-1.97078900<br>-2.42650600<br>3.32085200                 | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>2.25656400<br>2.91696800<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700<br>-2.43261400<br>-1.73622600<br>-3.06691100<br>1.01809900<br>2.05857400<br>0.55927100                             | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900<br>3.80081300<br>2.33260200<br>2.21129300<br>3.04545100<br>2.71919700<br>2.52252000               |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                 | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.23440000<br>1.87377100<br>-2.20809000<br>-2.42063300<br>-3.12483500<br>-1.97078900<br>-2.49520500<br>-2.42650600<br>-3.33985200 | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>2.25656400<br>2.91696800<br>2.47988900<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700<br>-2.43261400<br>-1.73622600<br>-3.06691100<br>1.01809900<br>2.05857400<br>0.55927100               | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900<br>3.80081300<br>2.33260200<br>2.21129300<br>3.04545100<br>2.71919700<br>2.52252900<br>4.11709602 |
| IN14<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                 | SCF Done: I<br>-1.21366300<br>0.11273600<br>1.05969800<br>-1.07831100<br>0.33171200<br>0.48799000<br>-0.33017900<br>0.73495900<br>1.35991200<br>2.52274600<br>2.66644100<br>3.06012000<br>2.99881900<br>0.23440000<br>1.87377100<br>-2.20809000<br>-2.42063300<br>-3.12483500<br>-1.97078900<br>-2.49520500<br>-2.42650600<br>-3.33985200 | E(RM06) = -20<br>0.27128100<br>0.81232700<br>-0.28386200<br>-1.16175000<br>2.25656400<br>2.91696800<br>2.47988900<br>2.47988900<br>2.49866100<br>-0.13043500<br>0.17971500<br>-1.07361100<br>0.62812000<br>-2.88617300<br>-3.20277700<br>-3.61106200<br>-2.95564800<br>-2.15050700<br>-2.43261400<br>-1.73622600<br>-3.06691100<br>1.01809900<br>2.05857400<br>0.55927100<br>1.02414000 | 03.98849307<br>2.81043500<br>2.84211700<br>2.91186900<br>2.71043500<br>2.80868000<br>2.99126200<br>2.69365000<br>4.03900400<br>2.37717000<br>3.19359800<br>4.23955100<br>3.06041700<br>2.56385900<br>2.88629500<br>3.93290600<br>2.39566000<br>2.41227900<br>2.75969900<br>3.80081300<br>2.33260200<br>2.21129300<br>3.04545100<br>2.71919700<br>2.52252900<br>4.11798600 |

| С      | 3.82924300  | 1.67423400  | -0.28789400 | Н        | -5.76967800 | 1.25990500    | -0.60363300 |
|--------|-------------|-------------|-------------|----------|-------------|---------------|-------------|
| С      | 4.43906700  | 1.67460600  | -1.58184400 | Н        | -6.96776500 | -0.53384500   | 0.64830600  |
| С      | 5.84617000  | 1.54648100  | -1.66198800 |          |             |               |             |
| С      | 6.57415100  | 1.42383000  | -0.50040700 | 86       |             |               |             |
| Н      | 6.43586800  | 1.31623600  | 1.66188800  | TS12     | SCF Done:   | E(RM06) = -20 | 03.95986019 |
| С      | 3.58404700  | 1.78904400  | -2.70726300 | С        | 1.09030800  | -1.30137500   | 2.58060000  |
| Н      | 6.32921700  | 1.54421100  | -2.63630400 | C        | -0.27281700 | -1.73358700   | 2.58479500  |
| Н      | 7 65505700  | 1 32470300  | -0 51289900 | Ċ        | -1 11185200 | -0.63817000   | 3 04343500  |
| С      | 2 23472500  | 1 92400100  | -2 51021600 | Ċ        | 1 07572100  | 0 11831000    | 2 84679900  |
| C      | 1 70889800  | 1 94939900  | -1 17830700 | C        | -0 29475600 | 0 50270500    | 3 17662200  |
| н      | 4 00632400  | 1.76368200  | -3 70909700 | C        | -0 76504300 | -3 13284300   | 2 37170300  |
| н      | 1 55197800  | 2 00101900  | -3 34926300 | н        | -0.05802400 | -3 72300900   | 1 78353900  |
| N      | 4 56747000  | 1 53699300  | 0.85007600  | н        | -0.05302400 | -3.64015900   | 3 33718300  |
| N      | 2 48538100  | 1.80361000  | 0.11300000  | П<br>Ц   | 1 72620200  | 3 13/18/00    | 1 85011200  |
| C      | 2.48558100  | 2 26441000  | -0.11300900 | II<br>C  | -1.72029200 | -3.13418400   | 2 26000500  |
| C      | 0.20340900  | 2.20441000  | -0.99030900 | C U      | -2.30733400 | -0.70320900   | 3.30090300  |
| C      | -0.1601/800 | 3.44306200  | -1.03012100 | п        | -2.72721700 | -1.58189400   | 4.07819000  |
| C      | -1.45249800 | 3.94926800  | -1.51963400 | Н        | -2.95967000 | 0.15048500    | 3.81328700  |
| C      | -2.3/128100 | 3.23221500  | -0./5190800 | Н        | -3.1/1/2800 | -0.98416200   | 2.4/216500  |
| С      | -1.97448700 | 2.03815100  | -0.13328200 | С        | -0.687/9000 | 1.86672800    | 3.66264300  |
| С      | -0.67576800 | 1.52412000  | -0.22042400 | Н        | -0.30710200 | 2.03533400    | 4.67965000  |
| Н      | 0.56269100  | 4.00669600  | -2.21466800 | Н        | -0.27357300 | 2.65862200    | 3.03001200  |
| Н      | -1.71789700 | 4.87220600  | -2.02196800 | Н        | -1.77257500 | 1.99657900    | 3.68968600  |
| Н      | -2.74195100 | 1.49727900  | 0.40450700  | С        | 2.28361900  | 0.97630200    | 3.08817200  |
| Ir     | -0.30032300 | -0.26982200 | 0.76998500  | Н        | 2.58657500  | 0.91046000    | 4.14344800  |
| 0      | -3.67389000 | 3.59547800  | -0.55497800 | Н        | 3.13299800  | 0.66274700    | 2.47629300  |
| С      | -4.13807700 | 4.78201100  | -1.18509600 | Н        | 2.08192800  | 2.02825400    | 2.86702100  |
| Н      | -4 06315300 | 4 71622500  | -2 27849300 | С        | 2 31148700  | -2 17368300   | 2 56196000  |
| н      | -5 18912800 | 4 88033800  | -0.90410500 | н        | 2.14649600  | -3 10132200   | 2.00967300  |
| н      | -3 58969100 | 5 66750000  | -0.83711700 | н        | 3 17336400  | -1.66561400   | 2.00907500  |
| п<br>п | 1 71222600  | 0.52056300  | -0.83711700 | 11<br>11 | 2 58208400  | -1.00501400   | 2.11993000  |
| п      | -1./1552000 | -0.32030300 | 0.13/14000  | П        | 2.38398400  | -2.44344800   | 5.59181100  |
| C      | 2.63503700  | -1.65883800 | -0.06663100 | C        | -5.86290900 | -0.24422/00   | 0.58906200  |
| C      | 1.46931900  | -1.89617000 | -0.84172000 | С        | -3.95110200 | -0.8/9/4400   | -0.527/4200 |
| С      | 1.49463000  | -3.02943200 | -1.71788100 | С        | -4.58589400 | -0.66554900   | -1.79165800 |
| С      | 2.58622500  | -3.90934700 | -1.70523300 | С        | -5.92815100 | -0.21900700   | -1.80562900 |
| С      | 3.70237000  | -3.66445500 | -0.91368800 | С        | -6.57641400 | -0.00879400   | -0.60999300 |
| С      | 3.72835600  | -2.51510400 | -0.11173800 | Н        | -6.35726200 | -0.08192600   | 1.54667500  |
| Н      | 2.67065000  | -0.76550400 | 0.54377500  | С        | -3.81620400 | -0.90342900   | -2.95742400 |
| Н      | 2.54282700  | -4.77378700 | -2.36133200 | Н        | -6.42549500 | -0.04862000   | -2.75758300 |
| Н      | 4.55184300  | -4.34139000 | -0.93425000 | Н        | -7.60643300 | 0.33138100    | -0.57153200 |
| Н      | 4.60789100  | -2.28698200 | 0.48565900  | С        | -2.52725600 | -1.34740300   | -2.82680300 |
| С      | 0.41526400  | -3.28540600 | -2.69533600 | С        | -1.97464600 | -1.56775400   | -1.52263300 |
| Н      | -0.24992000 | -2.43352800 | -2.90295500 | H        | -4.25143800 | -0.72174200   | -3.93725000 |
| 0      | 0.27920500  | -4 34401600 | -3 29554300 | Н        | -1 90809300 | -1 51246100   | -3 70112200 |
| N      | 0.27920500  | -1.06471100 | -0.80792100 | N        | -4 60980100 | -0 65598200   | 0.64393800  |
| C      | 2 87347000  | 1 70200000  | -0.80792100 | N        | -4.00580100 | -0.05578200   | 0.04373800  |
| C      | -2.8/34/900 | -1.79309900 | -2.0/403900 | IN<br>C  | -2.00390000 | -1.51559500   | -0.41/92300 |
| 0      | -1.88210300 | -0.79284200 | -2.84200700 | C        | -0.60357200 | -2.14028/00   | -1.42952600 |
| H      | -1.24435800 | -0.82/10900 | -2.094/0400 | C        | -0.32664900 | -3.2008/000   | -2.31265000 |
| Н      | -3.30180900 | -1.95412400 | -3.67367600 | С        | 0.90546000  | -3.84462200   | -2.37271300 |
| Н      | -2.43316800 | -2.75497700 | -2.37091600 | С        | 1.92816700  | -3.38679700   | -1.53888900 |
| С      | -3.99443700 | -1.43087500 | -1.71345300 | С        | 1.67879900  | -2.32129600   | -0.66164900 |
| С      | -4.66683600 | -2.43151800 | -0.99903300 | С        | 0.43275300  | -1.69954500   | -0.55772200 |
| С      | -4.41090700 | -0.10208000 | -1.56463000 | Н        | -1.11986500 | -3.55619000   | -2.96482600 |
| С      | -5.73537400 | -2.11391200 | -0.15675200 | Н        | 1.05164200  | -4.66984200   | -3.05989800 |
| Н      | -4.35217000 | -3.46833800 | -1.10402600 | Н        | 2.51775100  | -1.97566300   | -0.07178000 |
| С      | -5.47226700 | 0.22053200  | -0.71615200 | Ir       | 0.21326700  | -0.16813100   | 0.81995600  |
| Н      | -3.88449900 | 0.67657900  | -2.10661000 | 0        | 3.19045800  | -3.89578800   | -1.50211300 |
| С      | -6.13987200 | -0.78435400 | -0.01037100 | Č        | 3,52283000  | -4.93486200   | -2.41390700 |
| H      | -6.24693800 | -2,90341100 | 0.38869700  | H        | 3.39623800  | -4.61365500   | -3.45583100 |
| -      |             |             |             |          |             |               |             |

| Н       | -5./696/800   | 1.23990300    | -0.60363300 |
|---------|---------------|---------------|-------------|
| Н       | -6.96776500   | -0.53384500   | 0.64830600  |
|         |               |               |             |
| 86      |               |               |             |
| TS12    | SCF Done: 1   | E(RM06) = -20 | 03.95986019 |
| С       | 1.09030800    | -1.30137500   | 2.58060000  |
| С       | -0.27281700   | -1.73358700   | 2.58479500  |
| С       | -1.11185200   | -0.63817000   | 3.04343500  |
| С       | 1.07572100    | 0.11831000    | 2.84679900  |
| С       | -0.29475600   | 0.50270500    | 3.17662200  |
| С       | -0.76504300   | -3.13284300   | 2.37170300  |
| Н       | -0.05802400   | -3.72300900   | 1.78353900  |
| Н       | -0.90340500   | -3.64015900   | 3.33718300  |
| Н       | -1.72629200   | -3.13418400   | 1.85011200  |
| С       | -2.56755400   | -0.76526900   | 3.36090500  |
| Н       | -2.72721700   | -1.58189400   | 4.07819000  |
| Н       | -2.95967000   | 0.15048500    | 3.81328700  |
| Н       | -3.17172800   | -0.98416200   | 2.47216500  |
| С       | -0.68779000   | 1.86672800    | 3.66264300  |
| Н       | -0.30710200   | 2.03533400    | 4.67965000  |
| Н       | -0.27357300   | 2.65862200    | 3.03001200  |
| Н       | -1.77257500   | 1.99657900    | 3.68968600  |
| С       | 2.28361900    | 0.97630200    | 3.08817200  |
| Н       | 2.58657500    | 0.91046000    | 4.14344800  |
| Н       | 3.13299800    | 0.66274700    | 2.47629300  |
| Н       | 2.08192800    | 2.02825400    | 2.86702100  |
| С       | 2.31148700    | -2.17368300   | 2.56196000  |
| Н       | 2 14649600    | -3 10132200   | 2,00967300  |
| Н       | 3 17336400    | -1 66561400   | 2 11995600  |
| н       | 2 58398400    | -2 44544800   | 3 59181100  |
| C       | -5 86290900   | -0 24422700   | 0 58906200  |
| C       | -3 95110200   | -0 87974400   | -0 52774200 |
| C       | -4 58589400   | -0.66554900   | -1 79165800 |
| C       | -5 92815100   | -0 21900700   | -1 80562900 |
| C       | -6 57641400   | -0.00879400   | -0.60999300 |
| н       | -6 35726200   | -0.08192600   | 1 54667500  |
| C       | -3 81620400   | -0.90342900   | -2 95742400 |
| н       | -6 42 549 500 | -0.04862000   | -2.75758300 |
| н       | -0.42545500   | 0 33138100    | -0.57153200 |
| C       | -7.00043300   | -1 34740300   | -2 82680300 |
| C       | 1 97464600    | 1 56775400    | 1 52263300  |
| ч       | -1.27404000   | -0.72174200   | -3.93725000 |
| н<br>ц  | 1 00800300    | -0.72174200   | 3 70112200  |
| N N     | -1.90809300   | -1.51240100   | -5.70112200 |
| N       | -4.00980100   | -0.03398200   | 0.04393800  |
| IN<br>C | -2.00390000   | -1.31339300   | -0.41/92300 |
| C       | -0.0033/200   | -2.14028/00   | -1.42932000 |
| C       | -0.52004900   | -5.2008/000   | -2.51205000 |
| C       | 0.90546000    | -3.84462200   | -2.3/2/1300 |
| C       | 1.92816700    | -3.386/9/00   | -1.55888900 |
| C       | 1.6/8/9900    | -2.32129600   | -0.66164900 |
| U<br>U  | 0.452/5500    | -1.09934300   | -0.33//2200 |
| п       | -1.11986500   | -3.33019000   | -2.90482600 |
| н<br>п  | 1.00104200    | -4.00984200   | -3.03989800 |
| H       | 2.51//5100    | -1.9/566300   | -0.0/1/8000 |
| Ir      | 0.21326700    | -0.16813100   | 0.81995600  |
| 0       | 3.19045800    | -3.895/8800   | -1.50211300 |
| U<br>U  | 3.52283000    | -4.93486200   | -2.41390/00 |
| н       | 3.39623800    | -4.01365500   | -3.43383100 |

| Η       | 4.57559900  | -5.16449400 -2.23533200                          |
|---------|-------------|--------------------------------------------------|
| Н       | 2.92359100  | -5.83767300 -2.23582500                          |
| Н       | 1.60450000  | 0.13546700 0.11069400                            |
| С       | -2.23703400 | 2.20085400 0.46934400                            |
| С       | -1.18216000 | 2.17773300 -0.47587800                           |
| С       | -1.17768400 | 3.18698600 -1.49147700                           |
| С       | -2.17483500 | 4.17388100 -1.48961900                           |
| С       | -3.17978400 | 4.19348200 -0.53115600                           |
| C       | -3.20885400 | 3.18987000 0.44801200                            |
| Н       | -2.28519100 | 1.41208300 1.21070300                            |
| Н       | -2.13580400 | 4 92066400 -2 27662100                           |
| н       | -3 94321800 | 4 96609600 -0 54993500                           |
| н       | -4 00307400 | 3 17520500 1 19000700                            |
| C       | -0 17979100 | 3 23706000 -2 59744000                           |
| н       | 0.62249200  | 2 47948000 -2 59441000                           |
| 0       | -0 23364400 | 4 07734500 -3 48603700                           |
| N       | -0.21338100 | 1 18870700 -0.45338500                           |
| C       | 2 78246000  | 2 32910100 0 95141400                            |
| C<br>O  | 2.78240000  | 1 26460200 1 46752200                            |
| U<br>11 | 2.07408000  | 1.20400200 -1.40733200                           |
| п       | 0.73851700  | 2 22700000 1 50265000                            |
| п       | 2.09203100  | 3.23700900 -1.39263900<br>2.66076800 -0.04240000 |
| П       | 2.40051900  | 2.660/6800 0.04349900                            |
| C       | 4.27/05200  | 2.05/62400 -0./8688600                           |
| C       | 5.10823400  | 2.98111/00 -0.13525200                           |
| C       | 4.84940500  | 0.88859700 -1.29893600                           |
| C       | 6.47612500  | 2.74326600 0.00222400                            |
| Н       | 4.67/61500  | 3.89784000 0.26670700                            |
| С       | 6.21962000  | 0.64534600 -1.16236900                           |
| Н       | 4.19863800  | 0.18313100 -1.80533700                           |
| С       | 7.03877600  | 1.57015000 -0.51181200                           |
| Н       | 7.10458600  | 3.47119500 0.51094600                            |
| Н       | 6.64832100  | -0.26887600 -1.56780300                          |
| Н       | 8.10456500  | 1.38195200 -0.40556000                           |
|         |             |                                                  |
| 86      |             |                                                  |
| IN15    | SCF Done: I | E(RM06) = -2004.03664376                         |
| С       | -1.39447900 | -2.04740300 -2.07294600                          |
| С       | 0.05676600  | -2.13927300 -2.19354800                          |
| С       | 0.50583900  | -0.91766200 -2.77829800                          |
| С       | -1.80969300 | -0.80321100 -2.72141100                          |
| С       | -0.65242100 | -0.10653300 -3.14084200                          |
| С       | 0.90071200  | -3.33237900 -1.85883200                          |
| Н       | 0.43474300  | -3.94312800 -1.08044000                          |
| Н       | 1.02771000  | -3.96580100 -2.74849000                          |
| Н       | 1.88654700  | -3.03101000 -1.49855100                          |
| С       | 1.91188300  | -0.58108900 -3.16550900                          |
| Н       | 2.06561000  | -0.83312400 -4.22550800                          |
| Н       | 2.11521300  | 0.48972300 -3.06033100                           |
| Н       | 2.65081000  | -1.12734300 -2.57729200                          |
| С       | -0.59338300 | 1.16684300 -3.93332600                           |
| Н       | -0.43530800 | 0.95068000 -4.99974400                           |
| Н       | -1.52068200 | 1.74042700 -3.85279100                           |
| Н       | 0.23222000  | 1.81137800 -3.61402200                           |
| C       | -3.23720800 | -0.41281400 -2.95076600                          |
| Н       | -3.61677700 | -0.92517400 -3.84615200                          |
| Н       | -3.87647500 | -0.70370500 -2.11229800                          |
| Н       | -3 35599000 | 0 66179400 -3 10331200                           |
| C       | -2 31781700 | -3 17703800 -1 72402100                          |

| п        | 1 97452500  | 2 85050000  | 0.09677100  |
|----------|-------------|-------------|-------------|
| п        | -1.8/433300 | -3.83039900 | -0.9807/100 |
| п        | -3.20823000 | -2.81551100 | -1.319/1900 |
| Н        | -2.54485200 | -3./6862100 | -2.62259100 |
| С        | 5.87496400  | -0.96814000 | -1.49107500 |
| С        | 4.11010100  | -0.97153000 | -0.01036900 |
| С        | 4.88535200  | -0.25927100 | 0.95906300  |
| С        | 6.21654400  | 0.09138500  | 0.63150700  |
| С        | 6.71967900  | -0.26478500 | -0.59944100 |
| Н        | 6.25448900  | -1.25865900 | -2.47053500 |
| С        | 4.25852000  | 0.05183100  | 2.19369800  |
| Н        | 6.82203500  | 0.63203000  | 1.35571700  |
| Н        | 7.73599500  | -0.02036000 | -0.89246300 |
| С        | 2.97046700  | -0.35900200 | 2.40894700  |
| C        | 2 27392700  | -1.09659100 | 1 39464400  |
| н        | 4 80476800  | 0.61200700  | 2 94936300  |
| н        | 2 46021500  | -0.12429900 | 3 33666700  |
| N        | 4 62812100  | 1 21164000  | 1 22525000  |
| IN<br>NI | 4.02813100  | -1.31104900 | -1.22323000 |
| N        | 2.82869000  | -1.30012900 | 0.22214600  |
| C        | 0.93815200  | -1.6/083600 | 1./2//4400  |
| С        | 0.90737200  | -2.39016200 | 2.93673000  |
| С        | -0.22352200 | -3.05586600 | 3.40481900  |
| С        | -1.38614100 | -2.98358200 | 2.63629400  |
| С        | -1.37725100 | -2.24666800 | 1.44192000  |
| С        | -0.24758700 | -1.57767000 | 0.93840900  |
| Н        | 1.81823300  | -2.46075200 | 3.52663600  |
| Н        | -0.17984600 | -3.61104500 | 4.33479900  |
| Н        | -2.31704600 | -2.21210100 | 0.89938900  |
| Ir       | -0.57473600 | -0.52252300 | -0.82509600 |
| Н        | -2.04890000 | 0.08733600  | 1.27706400  |
| 0        | -2.57119600 | -3.58019000 | 2,95510400  |
| C        | -2 64375900 | -4 32141300 | 4 16509600  |
| н        | -2 44832000 | -3 68853100 | 5 04087400  |
| н        | -3 66536900 | -4 70392400 | 4 22257200  |
| и<br>Ц   | 1 04202200  | 5 16697000  | 4.16560800  |
| n<br>C   | -1.94292200 | -3.10097000 | 4.10300800  |
| C        | -2.70108300 | 2.39091100  | -0.97207800 |
| C        | -2.86150000 | 1.49051/00  | 0.11/43300  |
| C        | -4.0/41/000 | 1.61315000  | 0.8/502/00  |
| С        | -5.00834400 | 2.62218000  | 0.55608000  |
| С        | -4.81287500 | 3.49665800  | -0.49706600 |
| С        | -3.64187600 | 3.36345900  | -1.26631900 |
| Η        | -1.79615400 | 2.31176300  | -1.56579200 |
| Н        | -5.90196100 | 2.67579900  | 1.17143200  |
| Н        | -5.54449900 | 4.26497000  | -0.72905700 |
| Н        | -3.46406700 | 4.03768300  | -2.10172100 |
| С        | -4.42283200 | 0.70431100  | 1.97365200  |
| Н        | -3.73356600 | -0.14553800 | 2.15469400  |
| 0        | -5.42206700 | 0.80867500  | 2.67670400  |
| N        | -1 84632500 | 0.61514000  | 0 43483200  |
| C        | 1 18152200  | 2 34042900  | -0 46864000 |
| õ        | 0.69511200  | 1 17544400  | 0 23538800  |
| ч        | -0 17870400 | 1 38776700  | 0.66240000  |
| и<br>ц   | 2 08222000  | 2 01005200  | 0.00249000  |
| п        | 2.06222900  | 2.01083000  | 1 21502200  |
| п        | 0.44313300  | 2.03304900  | -1.21388200 |
| C        | 1.486/4600  | 5.4/941/00  | 0.4/594500  |
| C        | 0.47284200  | 4.37181200  | 0.85340700  |
| С        | 2.77205900  | 3.65203500  | 1.00640300  |
| С        | 0.73590600  | 5.40955300  | 1.74883000  |
| Н        | -0.52765100 | 4.25480800  | 0.44209300  |

| ~      |                           |               |              |             |             |                            |             |
|--------|---------------------------|---------------|--------------|-------------|-------------|----------------------------|-------------|
| С      | 3.03914500                | 4.69210200    | 1.89810500   | lr          | -0.62088200 | -0.32540100                | -0.82627800 |
| Н      | 3.56585400                | 2.96844300    | 0.71612700   | Н           | -1.92979500 | 0.25952700                 | 1.43987100  |
| С      | 2.02054600                | 5.57165100    | 2.27293500   | 0           | -2.85336000 | -3.61127200                | 2.63647900  |
| Н      | -0.05977200               | 6.09328200    | 2.03256700   | С           | -2.97512900 | -4.46566700                | 3.76467600  |
| Н      | 4.04182700                | 4.81790700    | 2.29866100   | Н           | -2.72409700 | -3.94452900                | 4.69812700  |
| Н      | 2.22781100                | 6.38211800    | 2.96685400   | Н           | -4.02326200 | -4.77174500                | 3.79837600  |
|        |                           |               |              | Н           | -2.34321100 | -5.35870100                | 3.66779500  |
| 86     |                           |               |              | С           | -2.50004500 | 2.89555200                 | -0.43135300 |
| TS13   | SCF Done: 1               | E(RM06) = -20 | 004.03045835 | С           | -2.75693100 | 1.78634300                 | 0.40339800  |
| С      | -1.65257800               | -1.59177800   | -2.24718800  | С           | -4.06071100 | 1.67241500                 | 0.96359400  |
| С      | -0.22235700               | -1.82832100   | -2.37252100  | С           | -5.03040200 | 2.65824900                 | 0.68759300  |
| С      | 0.37688500                | -0.59953600   | -2.80941500  | С           | -4.75407000 | 3.74167500                 | -0.12887900 |
| С      | -1.90952300               | -0.23589400   | -2.71580600  | С           | -3.47235700 | 3.85226200                 | -0.68966900 |
| С      | -0.67607500               | 0.37648800    | -3.05652600  | Н           | -1.51035600 | 3.00075000                 | -0.86412800 |
| С      | 0.48752700                | -3.13396200   | -2.17426500  | Н           | -6.00864300 | 2.53220200                 | 1.14174200  |
| Н      | -0.07838700               | -3.79695500   | -1.51375500  | Н           | -5.51217300 | 4.49290800                 | -0.32968600 |
| Η      | 0.61260400                | -3.64771000   | -3.13808300  | Н           | -3.22899900 | 4.69900600                 | -1.32701700 |
| Н      | 1.47238500                | -2.97864700   | -1.72736200  | С           | -4.47228000 | 0.55149100                 | 1.83071000  |
| С      | 1.81444300                | -0.40247600   | -3.17654500  | Н           | -3.72171200 | -0.24077700                | 2.01731400  |
| Н      | 1.93200000                | -0.54218900   | -4.26151300  | 0           | -5.58150100 | 0.44590800                 | 2.33511700  |
| Н      | 2.15993200                | 0.61044000    | -2.94515000  | Ν           | -1.71314900 | 0.88278200                 | 0.66676000  |
| Н      | 2.47435600                | -1.10920200   | -2.67099600  | С           | 1.31640800  | 2.14682900                 | -0.23991600 |
| С      | -0.47798800               | 1.73003000    | -3.67403000  | 0           | 0.64640600  | 1.05901300                 | 0.38076000  |
| Н      | -0.43810900               | 1.65613700    | -4.77048600  | Н           | -0.48285700 | 1.27912300                 | 0.74674400  |
| Н      | -1.29336600               | 2.41540300    | -3.42480600  | Н           | 2.09809000  | 1.74900700                 | -0.89626500 |
| Н      | 0.45987800                | 2.19097100    | -3.34948900  | Н           | 0.62168500  | 2.71483800                 | -0.88127600 |
| C      | -3 27452700               | 0 36240500    | -2.86452200  | C           | 1 93972600  | 3 08520000                 | 0 77723200  |
| Н      | -3 70054000               | 0.06728900    | -3 83382100  | C           | 1 15188000  | 3 70450500                 | 1 75887700  |
| н      | -3 95949700               | 0.01088700    | -2.08781800  | C           | 3 30899700  | 3 37355400                 | 0 73833800  |
| н      | -3 25517000               | 1 45386000    | -2 82671300  | C<br>C      | 1 72023300  | 4 58429000                 | 2 67975600  |
| C      | -2 70097600               | -2 64092700   | -2.02071500  | н           | 0.08532300  | 3 49727300                 | 1 80408500  |
| н      | -2.70057000               | -3.42649100   | -1 3/821700  | C II        | 3 88171600  | <i>A</i> 2601 <i>4</i> 400 | 1.65451700  |
| и<br>П | 2.54504800                | 2 21777000    | 1 58609600   | с<br>ц      | 3.03330100  | 2 80635200                 | 0.01307700  |
| и<br>П | 2 07042000                | -2.21///000   | 2 97088400   | C II        | 3.08863300  | 4 86673600                 | 2 620/1300  |
| C II   | -2.97942000<br>5 74242600 | -3.11045000   | 1 65518200   | с<br>ц      | 1.09475500  | 5.05388300                 | 2.02941300  |
| C      | 3.00001700                | 1 20005000    | -1.05518200  | и<br>П      | 1.09475500  | <i>A A</i> 7245800         | 1 60702500  |
| C      | 3.99091700                | -1.29993000   | -0.13998000  | п<br>ц      | 4.94/04900  | 4.47243800                 | 2 24520000  |
| C      | 4.81428900                | -0.08398900   | 0.85515700   | п           | 5.55102000  | 5.55487000                 | 5.54520000  |
| C      | 0.10213100                | -0.40033900   | 0.31149000   | 102         |             |                            |             |
| C II   | 0.03433200                | -0.72803800   | -0./396//00  | 102<br>D116 |             |                            | 50 (0259(25 |
| Н      | 6.09/02100                | -1.60206700   | -2.650/9000  | INIO        | SCF Done: I | E(RM06) = -23              | 50.69258635 |
| C      | 4.21/25300                | -0.39444900   | 2.08937200   | C           | 0.5/823/00  | -2.93450100                | -0.48/80100 |
| Н      | 6.80399700                | 0.0686/000    | 1.25393300   | C           | 1.85507400  | -3.1/118300                | 0.16966900  |
| Н      | /.661/0600                | -0.53189400   | -1.030/1100  | C           | 2.91283/00  | -2.8042/300                | -0./82/1900 |
| C      | 2.90651100                | -0./3039600   | 2.29604500   | C           | 0.85539900  | -2.22430900                | -1.69840300 |
| С      | 2.15694200                | -1.36291100   | 1.25098500   | C           | 2.31271500  | -2.20265600                | -1.89977200 |
| Н      | 4.80321600                | 0.09369300    | 2.86471500   | С           | 2.06128100  | -4.01248100                | 1.39629400  |
| Н      | 2.41736400                | -0.51084900   | 3.23875700   | Н           | 1.22152000  | -3.91435200                | 2.08996500  |
| Ν      | 4.47826400                | -1.61373800   | -1.39430300  | Н           | 2.15116400  | -5.07539700                | 1.12996100  |
| Ν      | 2.68612800                | -1.61768500   | 0.06337400   | Н           | 2.97214800  | -3.72762900                | 1.93270300  |
| С      | 0.78473500                | -1.86094300   | 1.55921700   | С           | 4.36659400  | -3.08737900                | -0.56301200 |
| С      | 0.70791000                | -2.68952700   | 2.69200900   | Н           | 4.56499100  | -4.14904800                | -0.76842700 |
| С      | -0.47015900               | -3.30935200   | 3.10734900   | Н           | 5.00810200  | -2.49301100                | -1.21540200 |
| С      | -1.62715200               | -3.07685400   | 2.36263000   | Н           | 4.66802000  | -2.90112400                | 0.47210400  |
| С      | -1.56869300               | -2.22894700   | 1.24483900   | С           | 2.98684700  | -1.61559900                | -3.10358100 |
| С      | -0.39304800               | -1.60057800   | 0.79934900   | Н           | 2.73391400  | -2.18655600                | -4.00706200 |
| Н      | 1.61458300                | -2.88482700   | 3.26025500   | Н           | 2.67194900  | -0.58014700                | -3.27539200 |
| Н      | -0.46552100               | -3.95343600   | 3.97917000   | Н           | 4.07473000  | -1.61992500                | -2.99921800 |
| Н      | -2.50324700               | -2.07301200   | 0.71451400   | С           | -0.15611700 | -1.77545300                | -2.70944700 |

| )   | -2.85336000 | -3.61127200   | 2.63647900  |
|-----|-------------|---------------|-------------|
| 2   | -2.97512900 | -4.46566700   | 3.76467600  |
| ł   | -2.72409700 | -3.94452900   | 4.69812700  |
| ł   | -4.02326200 | -4.77174500   | 3.79837600  |
| ł   | -2.34321100 | -5.35870100   | 3.66779500  |
| 2   | -2.50004500 | 2.89555200    | -0.43135300 |
| 2   | -2.75693100 | 1.78634300    | 0.40339800  |
| 2   | -4.06071100 | 1.67241500    | 0.96359400  |
| 2   | -5.03040200 | 2.65824900    | 0.68759300  |
| 2   | -4.75407000 | 3.74167500    | -0.12887900 |
| 2   | -3.47235700 | 3.85226200    | -0.68966900 |
| ł   | -1.51035600 | 3.00075000    | -0.86412800 |
| ł   | -6.00864300 | 2.53220200    | 1.14174200  |
| ł   | -5.51217300 | 4.49290800    | -0.32968600 |
| ł   | -3.22899900 | 4.69900600    | -1.32701700 |
| 2   | -4.47228000 | 0.55149100    | 1.83071000  |
| ł   | -3.72171200 | -0.24077700   | 2.01731400  |
| )   | -5.58150100 | 0.44590800    | 2.33511700  |
| J   | -1.71314900 | 0.88278200    | 0.66676000  |
| 2   | 1.31640800  | 2.14682900    | -0.23991600 |
| )   | 0.64640600  | 1.05901300    | 0.38076000  |
| ł   | -0.48285700 | 1.27912300    | 0.74674400  |
| ł   | 2.09809000  | 1.74900700    | -0.89626500 |
| ł   | 0.62168500  | 2.71483800    | -0.88127600 |
| 2   | 1.93972600  | 3.08520000    | 0.77723200  |
| 2   | 1.15188000  | 3.70450500    | 1.75887700  |
| 2   | 3.30899700  | 3.37355400    | 0.73833800  |
| 2   | 1.72023300  | 4.58429000    | 2.67975600  |
| ł   | 0.08532300  | 3.49727300    | 1.80408500  |
| 2   | 3.88171600  | 4.26014400    | 1.65451700  |
| ł   | 3.93330100  | 2.89635200    | -0.01397700 |
| 2   | 3.08863300  | 4.86673600    | 2.62941300  |
| ł   | 1.09475500  | 5.05388300    | 3.43485900  |
| ł   | 4.94704900  | 4.47245800    | 1.60792500  |
| ł   | 3.53102600  | 5.55487600    | 3.34520000  |
|     |             |               |             |
| 2   |             |               |             |
| 116 | SCF Done: H | E(RM06) = -23 | 50.69258635 |
| 2   | 0.57823700  | -2.93450100   | -0.48780100 |
| 2   | 1.85507400  | -3.17118300   | 0.16966900  |
| 2   | 2.91283700  | -2.80427300   | -0.78271900 |
| 2   | 0.85539900  | -2.22430900   | -1.69840300 |
| 2   | 2.31271500  | -2.20265600   | -1.89977200 |
| 2   | 2.06128100  | -4.01248100   | 1.39629400  |
| ł   | 1.22152000  | -3.91435200   | 2.08996500  |
| ł   | 2.15116400  | -5.07539700   | 1.12996100  |
| ł   | 2.97214800  | -3.72762900   | 1.93270300  |
| 2   | 4.36659400  | -3.08737900   | -0.56301200 |

| Н      | -0.36552100 | -2.59452500 | -3.41338100 |
|--------|-------------|-------------|-------------|
| Н      | -1.10204900 | -1.48136500 | -2.22717700 |
| Н      | 0.22043000  | -0.93285800 | -3.29948400 |
| С      | -0.76080500 | -3.43681700 | -0.04613300 |
| Н      | -0.83436000 | -3.50047100 | 1.04287900  |
| Н      | -1.57659300 | -2.80575400 | -0.41949500 |
| Н      | -0.90078300 | -4.45256200 | -0.44494100 |
| С      | 5 82361400  | 0 53871300  | -0 64763600 |
| C      | 4 18844400  | 0.42159600  | 0.96175300  |
| C      | 5.03503000  | 1.06836100  | 1 91497500  |
| C      | 6 34026500  | 1 42216200  | 1.51240500  |
| C      | 674575600   | 1.42210200  | 0.22100000  |
|        | 6.11107200  | 0.22214100  | 1 67774000  |
| п      | 0.1110/800  | 0.33214100  | -1.0///4000 |
| C<br>H | 4.50933200  | 1.340/1/00  | 3.20704400  |
| H      | 7.00274000  | 1.90/15400  | 2.22486500  |
| H      | 7.73914100  | 1.41515900  | -0.13040400 |
| С      | 3.21176100  | 1.02199500  | 3.48596400  |
| С      | 2.39909000  | 0.38248900  | 2.50183500  |
| Н      | 5.14017500  | 1.82261800  | 3.94944000  |
| Н      | 2.78516200  | 1.25840800  | 4.45316100  |
| Ν      | 4.59529200  | 0.17608600  | -0.30494300 |
| Ν      | 2.91296000  | 0.03993700  | 1.29856100  |
| С      | 0.98843800  | 0.10870100  | 2.66296900  |
| С      | 0.25086200  | 0.46881900  | 3.80473600  |
| С      | -1.12755700 | 0.31832000  | 3.83712700  |
| С      | -1.78153100 | -0.18377600 | 2.69654400  |
| С      | -1.05287900 | -0.56389400 | 1.55296800  |
| С      | 0.33648600  | -0.45614600 | 1.52283000  |
| Н      | 0.74445900  | 0.88380800  | 4.67892900  |
| Н      | -1.68133900 | 0.60510100  | 4.72306900  |
| Н      | -1.62771800 | -0.91597300 | 0.70017400  |
| Ir     | 1.57839200  | -1.04038300 | 0.02059700  |
| 0      | -3.12423700 | -0.34854900 | 2.61320500  |
| С      | -3.94806400 | 0.10797700  | 3.68133900  |
| Н      | -3.82213900 | 1.18421700  | 3.84999800  |
| Н      | -4.97454700 | -0.08899400 | 3.36673500  |
| Н      | -3.74476200 | -0.43954200 | 4.61080300  |
| С      | -0.96929100 | 4.13905200  | -3.58809700 |
| С      | -0.89296600 | 3.10233700  | -2.67905900 |
| С      | 0.36295200  | 2.57934400  | -2.27025900 |
| С      | 1.57485800  | 3.12517700  | -2.81461400 |
| С      | 1.46325900  | 4.18612300  | -3.74404400 |
| С      | 0.22229000  | 4.67545600  | -4.11430300 |
| Н      | -1.93204100 | 4.53456900  | -3.89556900 |
| Н      | 2.37133000  | 4.61125300  | -4.16506200 |
| Н      | 0.17341900  | 5.49167500  | -4.83134900 |
| Н      | -1.78948400 | 2.65142200  | -2.25259100 |
| С      | 0.34767100  | 1.48653500  | -1.34390200 |
| Н      | -0.63242000 | 1.12210000  | -1.01399000 |
| 0      | 1.39917200  | 0.94489500  | -0.90538100 |
| С      | -6.12445100 | -3.14408500 | 0.62244900  |
| С      | -5.06597000 | -2.45417500 | 0.02218600  |
| С      | -4.97728500 | -2.35194200 | -1.36954200 |
| С      | -5.97521000 | -2.95688800 | -2.14862600 |
| С      | -7.03368700 | -3.64533600 | -1.55532300 |
| С      | -7.11255000 | -3.74277800 | -0.16162500 |
| Н      | -6.17731200 | -3.21519500 | 1.70746500  |
| Н      | -4.29005500 | -1.98028400 | 0.61553000  |

| Н | -5.91931000 | -2.88741000 | -3.23500500 |
|---|-------------|-------------|-------------|
| Н | -7.79733500 | -4.10827000 | -2.17730200 |
| Н | -7.93552900 | -4.28015600 | 0.30427600  |
| С | -3.81739600 | -1.59263500 | -2.02627800 |
| Н | -3.39452300 | -2.28036000 | -2.79745800 |
| Н | -4.27926200 | -0.77230200 | -2.62542400 |
| 0 | -2.85691900 | -1.12851900 | -1.16034300 |
| Н | -2.92995600 | 0.29997200  | -1.07000200 |
| С | -5.19997000 | 4.84029500  | 1.56229900  |
| С | -5.25555700 | 3.68190700  | 0.78540500  |
| С | -4.09448000 | 2.95396100  | 0.48692600  |
| С | -2.87110600 | 3.42184200  | 0.98216600  |
| С | -2.80967600 | 4.58334300  | 1.75626100  |
| С | -3.97323500 | 5.29757600  | 2.05163000  |
| Н | -6.11270900 | 5.39137900  | 1.77780600  |
| Н | -6.21347900 | 3.33819500  | 0.39825700  |
| Н | -1.96898800 | 2.86808700  | 0.74439700  |
| Н | -1.84861800 | 4.93312600  | 2.12735600  |
| Н | -3.92518400 | 6.20376400  | 2.65080500  |
| С | -4.18120900 | 1.66938600  | -0.32021700 |
| Н | -4.46435500 | 0.84988000  | 0.36307000  |
| Н | -5.02640400 | 1.77171100  | -1.02855500 |
| 0 | -2.98634100 | 1.35883700  | -0.98217900 |
| Ν | 2.79672100  | 2.65047400  | -2.46112700 |
| Н | 3.62698500  | 3.01809700  | -2.90190700 |
| Н | 2.87231600  | 1.86742500  | -1.82414600 |
|   |             |             |             |
|   |             |             |             |

## 

| IN17 | SCF Done: I | E(RM06) = -229 | 95.33599550 |
|------|-------------|----------------|-------------|
| С    | -0.74249800 | -2.89916900    | 0.39712600  |
| С    | -2.04360400 | -3.04647800    | -0.23843700 |
| С    | -3.06308600 | -2.71613100    | 0.76780400  |
| С    | -0.96364300 | -2.26139600    | 1.65841500  |
| С    | -2.41406200 | -2.20598500    | 1.90195100  |
| С    | -2.31166600 | -3.78463700    | -1.51847700 |
| Η    | -1.48998200 | -3.65504600    | -2.22842100 |
| Η    | -2.42750900 | -4.86207100    | -1.33322300 |
| Η    | -3.22809900 | -3.42935700    | -2.00047600 |
| С    | -4.52866700 | -2.94839000    | 0.57249500  |
| Н    | -4.73874600 | -4.02408300    | 0.65955900  |
| Н    | -5.13337600 | -2.42616300    | 1.31536300  |
| Н    | -4.86335300 | -2.63573300    | -0.42075000 |
| С    | -3.03775700 | -1.69340200    | 3.16467900  |
| Η    | -2.87413200 | -2.39718900    | 3.99243300  |
| Η    | -2.60248100 | -0.73434000    | 3.46421800  |
| Η    | -4.11524200 | -1.54888100    | 3.05434900  |
| С    | 0.09212400  | -1.92884300    | 2.66904200  |
| Н    | 0.29273300  | -2.80992700    | 3.29648800  |
| Н    | 1.03387400  | -1.63117900    | 2.18085200  |
| Н    | -0.23448200 | -1.12685500    | 3.34030400  |
| С    | 0.56441400  | -3.42149500    | -0.11232800 |
| Н    | 0.60776500  | -3.41893700    | -1.20484700 |
| Н    | 1.41397500  | -2.84729800    | 0.27669500  |
| Н    | 0.67421000  | -4.46516000    | 0.21818900  |
| С    | -5.91303700 | 0.63106600     | 0.83166400  |
| С    | -4.28249000 | 0.62144600     | -0.78458000 |
| С    | -5.10825900 | 1.38417800     | -1.66816700 |
| С    | -6.39751700 | 1.74892700     | -1.22458000 |

| С        | -6.80889100                                 | 1.37569800  | 0.03716700  |
|----------|---------------------------------------------|-------------|-------------|
| Н        | -6.21024900                                 | 0.32645700  | 1.83412900  |
| С        | -4.58283600                                 | 1.74904700  | -2.93635000 |
| Н        | -7.04207200                                 | 2.32601400  | -1.88278400 |
| Н        | -7.78887900                                 | 1.64056400  | 0.42042300  |
| C        | -3 30306200                                 | 1 40081500  | -3 25854900 |
| C        | -2 50643200                                 | 0.65444500  | -2 33988000 |
| ч        | 5 10030300                                  | 2 31870200  | 3 62675200  |
| 11<br>11 | -3.19939300                                 | 2.31879200  | -3.02073200 |
| п<br>N   | -2.87031700                                 | 1.096/4600  | -4.20840000 |
| IN<br>N  | -4./0200000                                 | 0.23393900  | 0.44029900  |
| N        | -3.01625800                                 | 0.23848300  | -1.15863800 |
| C        | -1.10896800                                 | 0.34298800  | -2.54/86100 |
| С        | -0.38058600                                 | 0.75349800  | -3.67786900 |
| С        | 0.99095800                                  | 0.55702200  | -3.75006700 |
| С        | 1.64761100                                  | -0.04241000 | -2.65993500 |
| С        | 0.92649000                                  | -0.47293000 | -1.52883200 |
| С        | -0.45758500                                 | -0.32080900 | -1.46338700 |
| Н        | -0.87566000                                 | 1.24313200  | -4.51172600 |
| Н        | 1.53782700                                  | 0.88275700  | -4.62687300 |
| Н        | 1.50346300                                  | -0.90223200 | -0.71365100 |
| Ir       | -1.68763600                                 | -0.94493700 | 0.03218800  |
| 0        | 2,98497400                                  | -0.25797700 | -2.61583900 |
| C        | 3 80260200                                  | 0 22834100  | -3 67536500 |
| н        | 3 71667700                                  | 1 31672400  | -3 77853600 |
| н        | 4 82703100                                  | -0.02639500 | -3 39773800 |
| н<br>ц   | 3 55600800                                  | 0.25544000  | 4 62958400  |
| n<br>C   | 1 17856700                                  | 4 07002600  | -4.02938400 |
| C        | 1.1/830/00                                  | 4.07902000  | 3.03398000  |
| C        | 1.0/485300                                  | 2.9942/100  | 2.78336000  |
| C        | -0.196/6800                                 | 2.58414500  | 2.33985400  |
| C        | -1.35531100                                 | 3.26279700  | 2.76936500  |
| С        | -1.23846100                                 | 4.34187500  | 3.63496000  |
| С        | 0.02887600                                  | 4.74912000  | 4.07754000  |
| Н        | 2.15611200                                  | 4.40263700  | 3.99973800  |
| Н        | -2.32735200                                 | 2.93057700  | 2.41797500  |
| Н        | -2.12639800                                 | 4.87018400  | 3.97109900  |
| Н        | 0.11451300                                  | 5.59391400  | 4.75632600  |
| Н        | 1.95594200                                  | 2.45887200  | 2.42802700  |
| С        | -0.27882900                                 | 1.43074400  | 1.45132400  |
| Н        | 0.66342700                                  | 0.94605400  | 1.16657200  |
| 0        | -1.36797000                                 | 1.00022200  | 1.02754100  |
| С        | 5.93961200                                  | -3.20655600 | -0.95455500 |
| С        | 4.91408800                                  | -2.55226900 | -0.26390900 |
| С        | 4.85607500                                  | -2.59003200 | 1.13274700  |
| C        | 5 84896300                                  | -3 30126100 | 1 82348200  |
| C        | 6 87401100                                  | -3 95560100 | 1 13955000  |
| C        | 6.92390700                                  | -3 910/8800 | -0.25811100 |
| с<br>u   | 5.96936200                                  | 3 16744100  | 2 04207500  |
| п<br>п   | <i>J.JOJJOJOJOJOJOJODOJODODDDDDDDDDDDDD</i> | 1 000/0000  | -2.04207500 |
| п        | 4.14102400                                  | -1.99940000 | -0.78939000 |
| н        | 5.81658700                                  | -3.34203400 | 2.91225900  |
| н        | 7.03449500                                  | -4.50193400 | 1.09401100  |
| H        | /./2124100                                  | -4.419/6/00 | -0./94/4800 |
| C        | 5.73647800                                  | -1.86371300 | 1.88916200  |
| H        | 3.29959800                                  | -2.61167800 | 2.59279100  |
| Н        | 4.23834800                                  | -1.12668000 | 2.55959100  |
| 0        | 2.77930200                                  | -1.27723600 | 1.09547800  |
| Н        | 2.95248800                                  | 0.13779400  | 1.11021600  |
| С        | 5.35075600                                  | 4.79697200  | -1.17685400 |
| С        | 5.38245900                                  | 3.58553800  | -0.48329400 |

| С      | 4.21052600  | 2.84858800    | -0.26097100 |
|--------|-------------|---------------|-------------|
| С      | 3.00074300  | 3.36103000    | -0.74618600 |
| С      | 2.96298400  | 4.57450700    | -1.43706700 |
| С      | 4.13787800  | 5.29781500    | -1.65727700 |
| Н      | 6.27139700  | 5.35453000    | -1.33404800 |
| Н      | 6.32961900  | 3.20728000    | -0.10215200 |
| Н      | 2.09040900  | 2.79923000    | -0.56478200 |
| Н      | 2.01242400  | 4.95784900    | -1.80192200 |
| Н      | 4.10863300  | 6.24461900    | -2.19128000 |
| С      | 4.26563800  | 1.50920600    | 0.45522400  |
| Н      | 4.50597100  | 0.72901700    | -0.28782500 |
| Н      | 5.12614300  | 1.53221800    | 1.15182500  |
| 0      | 3 07138800  | 1 19746300    | 1 11763600  |
| -      |             |               |             |
| 16     |             |               |             |
| 1a-4   | SCF Done: F | (RM06) = -400 | ) 767869235 |
| н      | -0.70556100 | 2 98650300    | 0 18566300  |
| C      | -1 76681400 | 0.68457300    | -0.01979800 |
| C      | -0.38824400 | 0.08502300    | -0.01979800 |
| C      | 0.53467800  | -0.09692900   | 0.00350600  |
| C      | 0.05185200  | 1 42045800    | 0.00330000  |
| C      | 1 20450500  | 1 60050600    | 0.02392700  |
| C      | -1.30439300 | -1.09939000   | 0.01332000  |
| с<br>u | -2.21280000 | -0.02931400   | -0.01403300 |
| п      | -2.46223900 | 1.30370100    | -0.03183000 |
| п      | 1 66061100  | -2.21/28200   | 0.03383000  |
| п      | -1.00001100 | -2.72522800   | 0.02615500  |
| п      | -5.28218/00 | -0.82492500   | -0.02454600 |
| C II   | 1.9883/500  | 0.11250900    | -0.049/9100 |
| Н      | 2.32/84/00  | 1.16148200    | -0.18150500 |
| U<br>N | 2.82422100  | -0.///86900   | 0.015/1800  |
| N      | 0.01515600  | 2.31135300    | -0.03899000 |
| н      | 0.89868900  | 2.54432600    | 0.39354500  |
| 4      |             |               |             |
| 4      |             |               | 5205147200  |
| NH3    | SCF Done: E | k(RM06) = -56 | .539514/280 |
| N      | 0.00000000  | 0.00000000    | 0.12054200  |
| H      | 0.00000000  | 0.93/51400    | -0.28126500 |
| Н      | -0.81191100 | -0.468/5/00   | -0.28126500 |
| Н      | 0.81191100  | -0.468/5/00   | -0.28126500 |
|        |             |               |             |
| 73     |             |               | 50 07540(20 |
| 1814   | SCF Done: I | E(RM06) = -16 | 59.07548630 |
| C      | 1.41923100  | -0.92533400   | 2.45367400  |
| С      | 0.57348700  | -2.05527500   | 2.15298200  |
| С      | -0.80409400 | -1.69633100   | 2.51748000  |
| С      | 0.55288700  | 0.18810200    | 2.75635000  |
| С      | -0.81906600 | -0.33531200   | 2.84769300  |
| С      | 1.04339700  | -3.45219100   | 1.86840300  |
| Н      | 1.99829000  | -3.45270700   | 1.33528900  |
| Н      | 1.18209500  | -4.01216000   | 2.80374300  |
| Н      | 0.31885600  | -4.00218700   | 1.26012600  |
| С      | -1.94231400 | -2.66456400   | 2.58760300  |
| Н      | -1.88797200 | -3.22264200   | 3.53347000  |
| Н      | -2.91091400 | -2.16086500   | 2.55416300  |
| Н      | -1.91128600 | -3.39349900   | 1.77495700  |
| С      | -2.00401800 | 0.49789700    | 3.22677300  |
| Н      | -1.98781500 | 0.72467600    | 4.30148000  |

Н -2.00492500 1.45416700 2.69287600

| Н      | -2.94586900 | -0.00927700 | 3.00334700  |
|--------|-------------|-------------|-------------|
| С      | 0.98155500  | 1.53264600  | 3.26987700  |
| Н      | 1.12315700  | 1.50625100  | 4.35938300  |
| Н      | 1.92879700  | 1.85414300  | 2.82580800  |
| Н      | 0.22985200  | 2.30059200  | 3.06073000  |
| С      | 2 91367700  | -0.96282700 | 2 55844800  |
| н      | 3 36355100  | -1 60547000 | 1 79699800  |
| н      | 3 36253300  | 0.02872100  | 2 47214300  |
| п<br>u | 2 10060800  | 1 26555700  | 2.47214500  |
| п      | 2 70270200  | -1.30333700 | 5.54258900  |
| C      | -5.70579500 | -2.4204/900 | -0.02/8//00 |
| C      | -1.56836400 | -2.02854100 | -1.36/02300 |
| С      | -1.82727300 | -2.71595100 | -2.59322000 |
| С      | -3.11145900 | -3.27533200 | -2.78185000 |
| С      | -4.06223100 | -3.12645300 | -1.79652500 |
| Н      | -4.43716400 | -2.28698700 | 0.16557000  |
| С      | -0.79071700 | -2.78758000 | -3.55946200 |
| Н      | -3.32951700 | -3.80759500 | -3.70406200 |
| Н      | -5.06193900 | -3.53469200 | -1.90157100 |
| С      | 0.40382700  | -2.17130600 | -3.31024200 |
| С      | 0.61142500  | -1.48673400 | -2.07929400 |
| Н      | -0.96432000 | -3.31656700 | -4.49283600 |
| Н      | 1,19882800  | -2.19493900 | -4.04555300 |
| N      | -2 50879400 | -1 89506400 | -0 40756800 |
| N      | -0 33930300 | -1 46318400 | -1 12359800 |
| C      | 1 80929100  | -0 72607400 | -1 76562700 |
| C      | 2 89262300  | -0.57168400 | -1.70502700 |
| C      | 2.07202300  | 0.25528600  | 2 22144700  |
| C      | 3.90494700  | 0.23338000  | -2.33144700 |
| C      | 3.94423900  | 0.95909900  | -1.114/0800 |
| C      | 2.86146400  | 0.80423500  | -0.22660500 |
| С      | 1./9480600  | -0.05591100 | -0.50684300 |
| Н      | 2.91034900  | -1.09331400 | -3.59855100 |
| Н      | 4.79120000  | 0.35303400  | -3.02495600 |
| Н      | 2.90267800  | 1.36630800  | 0.70170800  |
| Ir     | 0.21939700  | -0.45697700 | 0.69459100  |
| 0      | 4.91607700  | 1.81098700  | -0.70719300 |
| С      | 6.06039100  | 2.00103200  | -1.53915800 |
| Н      | 5.78409700  | 2.43051100  | -2.51007200 |
| Н      | 6.70153700  | 2.70422600  | -1.00446900 |
| Н      | 6.60345500  | 1.06123800  | -1.69335600 |
| Ν      | 0.54153200  | 2.90673200  | -1.49780800 |
| Н      | 0.09707000  | 2.66156000  | -2.38351900 |
| Н      | 0 79066400  | 3 89703400  | -1 51784900 |
| н      | 1 38521000  | 2 33880900  | -1 38277600 |
| C      | -2 75106700 | 5 56321700  | -0.09876100 |
| C      | 1 70645700  | 1 66546000  | -0.07870100 |
| C      | -1.70043700 | 4.00340000  | 0.12193800  |
| C      | -1./90//500 | 3.34783800  | -0.54/11400 |
| C      | -2.945/0500 | 2.93295300  | -1.03290700 |
| C      | -3.98822500 | 3.83239700  | -1.25411600 |
| C      | -3.89223900 | 5.14/56600  | -0./899/300 |
| H      | -2.6/835500 | 6.58188000  | 0.2/1/9500  |
| Н      | -3.01552500 | 1.90501800  | -1.37451300 |
| Н      | -4.87930300 | 3.50722500  | -1.78415600 |
| Н      | -4.70754400 | 5.84520800  | -0.96054200 |
| С      | -0.66843100 | 2.39136600  | -0.09716500 |
| Н      | 0.02337000  | 2.71479300  | 0.69092600  |
| 0      | -0.88620100 | 1.14113600  | -0.25396300 |
| Н      | -0.82052100 | 4.98599400  | 0.66720000  |
|        |             |             |             |

| 73     |             |               |             |
|--------|-------------|---------------|-------------|
| IN18   | SCF Done: I | E(RM06) = -16 | 59.07752042 |
| С      | 1.29494200  | -0.80364200   | 2.53848300  |
| С      | 0.45769600  | -1.94666800   | 2.27374600  |
| С      | -0.93073000 | -1.55721100   | 2.54974100  |
| С      | 0.42481700  | 0.33106200    | 2.73146300  |
| C      | -0.95374600 | -0.17894800   | 2.79567400  |
| Ċ      | 0.92829300  | -3.36285100   | 2.10663000  |
| Н      | 1.92389400  | -3.40464000   | 1.65558600  |
| Н      | 0.97992200  | -3.87199300   | 3.07923300  |
| Н      | 0 24849900  | -3 93870000   | 1 47076600  |
| C      | -2.07311200 | -2 52003100   | 2 63010300  |
| Н      | -2.05294300 | -3 02594200   | 3 60622100  |
| Н      | -3 03982600 | -2.02171500   | 2 53311500  |
| н      | -2.01129500 | -3 29283300   | 1 86068500  |
| C      | -2 15036100 | 0.67742900    | 3 07441700  |
| н      | -2.15854200 | 1 00024700    | 4 12433600  |
| н      | -2.14821800 | 1 58080900    | 2 45545300  |
| н      | -3 08447000 | 0.14511800    | 2.87891600  |
| C      | 0.84570900  | 1 69849200    | 3 18893900  |
| н      | 0.07740500  | 1.72000200    | 1 27980800  |
| н      | 1 79580100  | 2 00/32000    | 2 73972100  |
| н      | 0.0938/1300 | 2.00432000    | 2.73772100  |
| C      | 2 78085400  | -0.83847200   | 2.74054500  |
| ч      | 2.78083400  | 1 51522500    | 2.75051500  |
| п<br>п | 2 22707200  | -1.31322300   | 2.02709500  |
| п<br>u | 2 00706200  | 1 10599700    | 2.02930800  |
| С      | 2.99790300  | -1.19388700   | 0.61264200  |
| C      | -3./3894800 | -2.30447000   | -0.01204300 |
| C      | -1.00308300 | -2.04849100   | -1.55095000 |
| C      | -1.80343400 | -2./648/200   | -2.54048200 |
| C      | -3.158/4/00 | -3.29/44500   | -2.73130300 |
| C II   | -4.11891/00 | -3.09646200   | -1./6468200 |
| Н      | -4.49941300 | -2.18900600   | 0.16588000  |
| C II   | -0.81686200 | -2.89099900   | -3.48996500 |
| Н      | -3.3//46/00 | -3.85089400   | -3.64080600 |
| Н      | -5.12685300 | -3.48331300   | -1.8/202200 |
| C      | 0.39129600  | -2.30299400   | -3.23862/00 |
| С      | 0.6008/000  | -1.59275600   | -2.02265200 |
| H      | -0.99286700 | -3.43914200   | -4.411/5800 |
| H      | 1.19581500  | -2.36/86200   | -3.96096500 |
| N      | -2.55439400 | -1.862/4300   | -0.39094200 |
| N      | -0.3634/200 | -1.50856000   | -1.08477800 |
| C      | 1.82058200  | -0.86758200   | -1.70882700 |
| C      | 2.92756700  | -0.79142100   | -2.56888200 |
| С      | 4.02925600  | -0.00090500   | -2.26184100 |
| С      | 4.01482400  | 0.74571000    | -1.07149300 |
| С      | 2.90741600  | 0.67077200    | -0.20242600 |
| С      | 1.80764500  | -0.15470800   | -0.47205000 |
| Н      | 2.94217900  | -1.34803800   | -3.50180200 |
| Н      | 4.87302400  | 0.03482600    | -2.94014600 |
| Н      | 2.96189600  | 1.25835900    | 0.70916700  |
| Ir     | 0.18201100  | -0.43108300   | 0.69432500  |
| 0      | 5.01534500  | 1.56770000    | -0.67266600 |
| С      | 6.19126300  | 1.66131500    | -1.47706800 |
| Η      | 5.96543500  | 2.06186100    | -2.47305500 |
| Η      | 6.85410100  | 2.35231100    | -0.95308800 |
| Η      | 6.68649800  | 0.68805100    | -1.57535800 |
| Ν      | 0.61627300  | 2.72276600    | -1.49732300 |

| Н      | 0.18866800  | 2.45044000    | -2.38673200  |
|--------|-------------|---------------|--------------|
| Н      | 0.90029000  | 3.70531100    | -1.55360100  |
| Н      | 1.44151000  | 2.12961800    | -1.33554700  |
| С      | -2.45264700 | 5.67839100    | -0.35581400  |
| С      | -1.43625200 | 4.74864300    | -0.13167800  |
| С      | -1.60533900 | 3.41061600    | -0.51162200  |
| С      | -2.80487000 | 3.00789000    | -1.10914200  |
| С      | -3.82090700 | 3.93836100    | -1.33223900  |
| С      | -3.64619300 | 5.27353400    | -0.95912100  |
| Н      | -2.31794300 | 6.71288800    | -0.05223500  |
| Н      | -2.93498500 | 1.96415700    | -1.37621800  |
| Н      | -4.75277800 | 3.62031600    | -1.79193900  |
| Н      | -4.44074800 | 5.99486600    | -1.12912000  |
| С      | -0.49210600 | 2.40661900    | -0.27301100  |
| Н      | 0.12802100  | 2.69721500    | 0.58840100   |
| 0      | -0.83208700 | 1.14277100    | -0.36011000  |
| Н      | -0.51417000 | 5.06383700    | 0.35459000   |
|        |             |               |              |
| 75     |             |               |              |
| TS14'  | SCF Done:   | E(RM06) = -17 | 714.41743282 |
| С      | 1.55945800  | -0.18579000   | 2.54091400   |
| С      | 1.15700800  | -1.55815500   | 2.37444600   |
| С      | -0.28263600 | -1.63966900   | 2.64812400   |
| С      | 0.35581500  | 0.60345900    | 2.67832500   |
| C      | -0.76801100 | -0.33449800   | 2.80310600   |
| C      | 2.07843200  | -2.73985300   | 2.27868700   |
| Н      | 3.02135100  | -2.47296100   | 1.79281100   |
| Н      | 2 31519900  | -3 12968500   | 3 27847600   |
| н      | 1 62672800  | -3 55631700   | 1 70661100   |
| C      | -1 04467200 | -2.91682200   | 2 81682800   |
| Н      | -0.91018600 | -3 29125600   | 3 84204000   |
| н      | -2 11578200 | -2 78054700   | 2 65171900   |
| н      | -0.69430700 | -3 69584700   | 2 13635300   |
| C      | -2 18450000 | 0.08022500    | 3 05700600   |
| н      | -2 32063400 | 0.35216300    | 4 11288800   |
| н      | -2 46152700 | 0.95467100    | 2 45963800   |
| н      | -2.40152700 | -0.72028400   | 2.45905000   |
| C      | 0.29524900  | 2 06001600    | 3 0/100200   |
| н      | 0.27324700  | 2.00001000    | 1 1202000    |
| и<br>Ц | 1 11208200  | 2.17272400    | 2 58427800   |
| н<br>ц | 0.64718400  | 2.02018000    | 2.38427800   |
| C II   | 2 07075800  | 0.20703700    | 2.72047800   |
| с<br>u | 2.97073800  | 0.29793700    | 2.08302800   |
| п<br>п | 3.00073000  | -0.23470300   | 2.03983200   |
| п      | 2 20470200  | 0.15202100    | 2.43287100   |
| П      | 3.294/9300  | 0.15392100    | 3.72293400   |
| C      | -2.49030600 | -3./0400000   | -0.49020000  |
| C      | -0.36851800 | -2.66/94900   | -1.19352300  |
| C      | -0.4/901300 | -3.52/68200   | -2.33207700  |
| C      | -1.4/306100 | -4.51902300   | -2.49566100  |
| U      | -2.49116000 | -4.61092200   | -1.5/2/5300  |
| H      | -3.28523300 | -5./5296900   | 0.25226100   |
| C      | 0.58887500  | -3.33084200   | -3.24507200  |
| H      | -1.42176500 | -5.18732500   | -3.35131900  |
| Н      | -3.27779900 | -5.35287300   | -1.66235800  |
| С      | 1.47186300  | -2.30873800   | -3.03469800  |
| С      | 1.33323500  | -1.46821600   | -1.89345700  |
| Н      | 0.68119100  | -3.98289600   | -4.10970100  |
| Н      | 2.27745800  | -2.12615700   | -3.73557600  |

| Ν      | -1.56994200 | -2.77368900   | -0.29427700 |
|--------|-------------|---------------|-------------|
| Ν      | 0.36743700  | -1.68444400   | -0.97804900 |
| С      | 2.15919500  | -0.29842500   | -1.64168800 |
| С      | 3.19298900  | 0.12901200    | -2.48948600 |
| С      | 3.88369900  | 1.31189700    | -2.24956800 |
| С      | 3.51809500  | 2.09589800    | -1.14284600 |
| С      | 2.48434900  | 1.66921100    | -0.28481600 |
| С      | 1.80853800  | 0.45826100    | -0.48334700 |
| Н      | 3.47263700  | -0.45668900   | -3.36049000 |
| Н      | 4.68208300  | 1.61428000    | -2.91621200 |
| Н      | 2.26073500  | 2.30557800    | 0.56702600  |
| Ir     | 0.38856500  | -0.34512400   | 0.70528900  |
| 0      | 4.09803900  | 3.27692100    | -0.81733600 |
| Č      | 5.17730300  | 3.75732800    | -1.61876100 |
| н      | 4 85962500  | 3 93889100    | -2.65295600 |
| н      | 5 48492200  | 4 70142200    | -1 16557100 |
| н      | 6.02299100  | 3 05956000    | -1 61036200 |
| N      | -0.42541100 | 2 65034300    | -1 54986400 |
| и<br>Ц | -0.42341100 | 2.03034300    | 2 40025600  |
| п      | -0.08202000 | 2.55728900    | -2.49023000 |
| п      | -0.408/0100 | 3.0/120000    | -1.30404000 |
| п      | 0.34120000  | 2.55192900    | -1.55/55400 |
| C      | -4./1//6900 | 3.76453200    | -0.6/546500 |
| C      | -3.34//5100 | 3.53016400    | -0.49591600 |
| C      | -2.82826900 | 2.246/4100    | -0./6533500 |
| C      | -3.68211400 | 1.24746200    | -1.24893400 |
| C      | -5.0387/000 | 1.497/0500    | -1.44752200 |
| С      | -5.56022100 | 2.75718500    | -1.14349600 |
| Н      | -5.11835900 | 4.75116600    | -0.45255200 |
| Н      | -5.68934000 | 0.70964700    | -1.81609000 |
| Н      | -6.61955800 | 2.95955800    | -1.27645400 |
| С      | -1.39088200 | 1.88707300    | -0.42426300 |
| Н      | -1.05847800 | 2.43309300    | 0.46848900  |
| 0      | -1.11335200 | 0.60072300    | -0.48565000 |
| Н      | -3.26720700 | 0.26064400    | -1.42410000 |
| Ν      | -2.47337700 | 4.55655000    | -0.00596600 |
| Н      | -2.03804100 | 5.06747200    | -0.77530800 |
| Н      | -3.00549900 | 5.25343100    | 0.51283700  |
|        |             |               |             |
| 75     |             |               |             |
| IN18'  | SCF Done:   | E(RM06) = -17 | 14.42821239 |
| С      | 1.75865400  | -0.56590700   | 2.41150300  |
| С      | 1.34759800  | -1.90649600   | 2.08791000  |
| С      | -0.06450900 | -2.04550600   | 2.46157000  |
| С      | 0.56870700  | 0.17909400    | 2.75844700  |
| С      | -0.53844500 | -0.78385000   | 2.84411900  |
| С      | 2.25879800  | -3.05076500   | 1.75135400  |
| Н      | 3.16370100  | -2.70573300   | 1.24320800  |
| Н      | 2.56876000  | -3.58101900   | 2.66274000  |
| Н      | 1.76483500  | -3.77894800   | 1.10047500  |
| С      | -0.80560200 | -3.34540500   | 2,49918600  |
| Н      | -0.56871500 | -3.87618700   | 3.43269000  |
| Н      | -1 88749300 | -3 20113600   | 2 46312700  |
| н      | -0 52492700 | _3 99947100   | 1 67082500  |
| C      | -0.52+92700 | -0 /2102100   | 3 25006500  |
| U      | -1.75000200 | -0.72172100   | 5.25770500  |

 C
 -1.93080200
 -0.42192100
 3.25996500

 H
 -1.96527600
 -0.18868600
 4.33277600

 H
 -2.29009300
 0.46116200
 2.72120600

 H
 -2.63517500
 -1.23551200
 3.06997700

 C
 0.52769600
 1.56972800
 3.32535800

| Н        | 0.65124200  | 1.55010600  | 4.41736600  | 77     |                |
|----------|-------------|-------------|-------------|--------|----------------|
| Н        | 1.32634900  | 2.19913900  | 2.91965900  | IN19   | SCF            |
| Н        | -0.42897400 | 2.06022500  | 3.11732900  | С      | -1.70          |
| С        | 3.17719800  | -0.09118700 | 2.50228800  | С      | -1.14          |
| Н        | 3.80470300  | -0.51588900 | 1.71416900  | С      | 0.271          |
| Н        | 3.25735500  | 0.99642100  | 2.44885100  | С      | -0.60          |
| Н        | 3.59665400  | -0.40371100 | 3.46845600  | С      | 0.603          |
| С        | -2.59961700 | -3.62966900 | -0.71057700 | С      | -1.92          |
| С        | -0.74273000 | -2.49516200 | -1.43646400 | Н      | -2.86          |
| С        | -0.77316000 | -3.17795900 | -2.69224400 | Н      | -2.17          |
| С        | -1.79139700 | -4.13504200 | -2.90387300 | Н      | -1.35          |
| С        | -2.71789900 | -4.36330100 | -1.91100700 | С      | 1.150          |
| Н        | -3.31856400 | -3.79161800 | 0.09086100  | Н      | 0.976          |
| С        | 0.20644900  | -2.84956300 | -3.66414700 | Н      | 2.209          |
| Н        | -1.83013000 | -4.66938800 | -3.84953200 | Н      | 0.938          |
| Н        | -3.51974900 | -5.08398300 | -2.03311100 | С      | 1.948          |
| С        | 1.11859100  | -1.86834400 | -3.39244400 | Н      | 1.938          |
| С        | 1.09877900  | -1.20262100 | -2.13395900 | Н      | 2.241          |
| Н        | 0.20920100  | -3.36873700 | -4.61884600 | Н      | 2.724          |
| Н        | 1.85767100  | -1.58729800 | -4.13263900 | С      | -0.71          |
| Ν        | -1.65257700 | -2.73714400 | -0.46848800 | Н      | -0.88          |
| Ν        | 0.21939400  | -1.54978700 | -1.17215000 | Н      | -1.54          |
| С        | 1.96189700  | -0.08211200 | -1.79583400 | Н      | 0.206          |
| C        | 2.91146100  | 0.47028600  | -2.67078800 | С      | -3.16          |
| C        | 3.63762600  | 1.60573900  | -2.32814000 | Н      | -3.74          |
| C        | 3.39415800  | 2.21452900  | -1.08515700 | Н      | -3.35          |
| Ċ        | 2.44052700  | 1.66652000  | -0.20438000 | Н      | -3.54          |
| C        | 1 73382100  | 0 49629900  | -0 51070800 | C      | 3 029          |
| н        | 3 09550900  | 0.02173800  | -3 64291200 | C      | 1.047          |
| н        | 4 36898500  | 2 00722200  | -3 01907400 | C      | 1 1 7 4        |
| н        | 2 30410300  | 2 17302200  | 0 74660900  | C      | 2 310          |
| Ir       | 0 42444900  | -0.47160400 | 0 67958700  | C      | 3 250          |
| 0        | 4 02259300  | 3 33050600  | -0.64276900 | н      | 3 75           |
| C        | 5 02952200  | 3 92493800  | -1 46145000 | C II   | 0.169          |
| н        | 4 61715600  | 4 26905500  | -2 41802900 | н      | 2 424          |
| н        | 5 39910500  | 4 78421500  | -0.89879200 | н      | 4 13           |
| н        | 5 85732200  | 3 22983000  | -1 64589700 | C II   | -0.86          |
| N        | -0 55424600 | 2 64055700  | -1 29527800 | C<br>C | -0.00          |
| н        | -0.86704500 | 2.04033700  | -1.27327800 | н      | 0.243          |
| н        | -0.75966900 | 3 65728000  | -1 27719700 | н      | -1.62          |
| н        | 0.45178300  | 2 45835600  | -1 18431600 | N      | 1 974          |
| C        | -4 43027700 | 4 18339300  | -0.45804000 | N      | -0.03          |
| C        | -3 10493500 | 3 78029700  | -0.25869600 | C      | -0.05          |
| C        | -2 79317600 | 2 40348500  | -0.23003000 | C<br>C | -1.95          |
| C        | 2.77317000  | 2.40348500  | 0.30010000  | C<br>C | 2.90           |
| C        | 5 14003400  | 1.40053500  | -0.39019000 | C<br>C | -5.04          |
| C        | -5.14003400 | 3 23606600  | -0.57953900 | C<br>C | -5.00          |
| с<br>u   | -5.44107200 | 5 24534800  | -0.02291400 | C<br>C | 1 70           |
| п<br>u   | -4.00370900 | 1 12414700  | -0.47713700 | С<br>ц | -1./9          |
| п<br>Ц   | -5.72055900 | 3 56711500  | -0.09/02/00 | п      | -3.12          |
| п<br>С   | 1 25201500  | 1 02511/00  | 0.08520100  | п      | -+.03<br>2 5 5 |
| с<br>ц   | -1.33281300 | 2 10220000  | 0.000002100 | П<br>Т | -2.33          |
| п<br>0   | -0.00304000 | 2.40020000  | 0.16920600  |        | -0.38          |
| U<br>Ц   | -1.20331300 | 0.01212200  | -0.10850000 | 0      | -4.41          |
| п<br>N   | -3.33308200 | 4 72800200  | -0.30100000 |        | -3.30          |
| IN<br>LT | -2.0322/100 | 4./3890300  | -0.10550000 | п      | -3.13          |
| п<br>u   | -2.40480300 | J.0904/000  | -0.23/3/000 | H      | -3.96          |
| н        | -1.53640300 | 4.00/09000  | 0./1382400  | Н      | -0.24          |

| 77      |                          |               |             |
|---------|--------------------------|---------------|-------------|
| IN19    | SCF Done: H              | E(RM06) = -17 | 15.63825136 |
| С       | -1.70138500              | 0.68806100    | 2.46481400  |
| С       | -1.14638500              | 1.97890700    | 2.15326400  |
| С       | 0.27116800               | 1.96063900    | 2.53540800  |
| С       | -0.60030700              | -0.18466700   | 2.80477400  |
| С       | 0.60396600               | 0.65268600    | 2.90838100  |
| С       | -1.92597200              | 3.22110900    | 1.83038100  |
| Н       | -2.86624500              | 2.98552700    | 1.32357600  |
| Н       | -2.17045800              | 3.77660300    | 2.74669400  |
| Н       | -1.35555400              | 3.89319000    | 1.18149300  |
| С       | 1.15033300               | 3.17161500    | 2.58003900  |
| Н       | 0.97671400               | 3.71724900    | 3.51882600  |
| Н       | 2.20980400               | 2.91055500    | 2.53632300  |
| Н       | 0.93861900               | 3.86007600    | 1.75874800  |
| С       | 1.94881800               | 0.13782400    | 3.31919000  |
| Н       | 1.93852900               | -0.17762100   | 4.37102200  |
| Н       | 2.24164600               | -0.72946600   | 2.71786100  |
| Н       | 2.72486300               | 0.89872100    | 3.20402200  |
| C       | -0 71053000              | -1 57973900   | 3 35178500  |
| Н       | -0.88133800              | -1 56073900   | 4 43750700  |
| н       | -1 54203900              | -2 13159700   | 2 90144500  |
| н       | 0.20661300               | -2.15177600   | 3 17889400  |
| C       | -3 16263400              | 0.36835300    | 2 55769700  |
| н       | -3 74496900              | 0.85925700    | 1 77353600  |
| н       | -3.35864200              | -0.70448500   | 2 50330800  |
| н       | -3.53804200              | 0 72112700    | 3 52641800  |
| C       | 3.02071400               | 3 21656700    | 0.60683300  |
| C       | 1.04722200               | 2 22067200    | 1 25740700  |
| C       | 1.04723300               | 2.33907300    | -1.55749700 |
| C       | 2 21005000               | 3.02304300    | 2 70018000  |
| C       | 2.31003000               | 3.84390700    | 1 70721600  |
| с<br>u  | 3.23002000               | 3.94323100    | -1./9/21000 |
| п       | 5.75775100<br>0.16007700 | 3.27423000    | 2 58825700  |
|         | 0.10997700               | 2.83240000    | -3.38823700 |
| п       | 2.42443000               | 4.58141500    | -3./3818300 |
| п       | 4.13/92200               | 4.33/34000    | -1.90499500 |
| C       | -0.86466800              | 1.97655900    | -3.33108100 |
| U<br>U  | -0.94624400              | 1.50851000    | -2.0/526100 |
| п       | 0.24316000               | 3.35320200    | -4.53939800 |
| п       | -1.62426200              | 1.79542900    | -4.08200800 |
| IN<br>N | 1.9/42/300               | 2.45048800    | -0.381/1/00 |
| N       | -0.03140/00              | 1.52598000    | -1.10/96200 |
| C       | -1.95356900              | 0.3135/800    | -1./4/33200 |
| C       | -2.981/5600              | -0.08353900   | -2.6181/800 |
| C       | -3.84560000              | -1.12239900   | -2.29019900 |
| C       | -3.66321200              | -1./9360600   | -1.06821500 |
| C       | -2.64282900              | -1.39169800   | -0.18559600 |
| С       | -1.79528600              | -0.31515300   | -0.47386000 |
| Н       | -3.12352600              | 0.41659100    | -3.57202100 |
| H       | -4.63493600              | -1.40499700   | -2.97647600 |
| Н       | -2.55782000              | -1.93622200   | 0.74983900  |
| Ir      | -0.38179400              | 0.46577100    | 0.73396200  |
| 0       | -4.41905800              | -2.83829900   | -0.64977700 |
| С       | -5.50331200              | -3.27404300   | -1.46823600 |
| Н       | -5.15202500              | -3.63293400   | -2.44376000 |
| Н       | -5.96939500              | -4.09986700   | -0.92770600 |
| Н       | -6.24049000              | -2.47537500   | -1.61387200 |
| Ν       | 0.30174500               | -2.67367600   | -1.30521500 |

| Н     | 0.84227900  | -2.38037900   | -2.17711200 |
|-------|-------------|---------------|-------------|
| Н     | 0.19575700  | -3.69283600   | -1.31055400 |
| Н     | -0.63313100 | -2.24784400   | -1.31627700 |
| С     | 3.72458200  | -4.85109700   | 0.37416600  |
| С     | 2.48920600  | -4.20057000   | 0.37123300  |
| С     | 2.40032100  | -2.84636600   | 0.02484800  |
| С     | 3.56570500  | -2.14395000   | -0.30235000 |
| С     | 4.80179600  | -2.79400200   | -0.29806600 |
| С     | 4.88359100  | -4.14845000   | 0.03579700  |
| Н     | 3.78340000  | -5.90077400   | 0.64901500  |
| Н     | 3.48866300  | -1.08710300   | -0.53611400 |
| Н     | 5.70387400  | -2.24080400   | -0.54677200 |
| Н     | 5.84650500  | -4.65175500   | 0.04300100  |
| С     | 1.04484000  | -2.14533400   | 0.00205700  |
| Н     | 0.40263200  | -2.55186100   | 0.80045600  |
| 0     | 1.11761000  | -0.81563600   | -0.05806100 |
| Н     | 1.59197100  | -4.75072600   | 0.65208000  |
| Н     | 2.82481300  | -2.08313600   | -3.28363800 |
| Ν     | 1.85503300  | -1.95979100   | -3.57614000 |
| Н     | 1.73516600  | -2.50313600   | -4.43112300 |
| Н     | 1 75615700  | -0 97846800   | -3 83592600 |
|       | 1.,0010,00  | 0.570.0000    | 2.02072000  |
| 79    |             |               |             |
| IN19' | SCF Done: ] | E(RM06) = -17 | 70.98835794 |
| С     | 1.09729400  | 1.42282200    | 2.52302500  |
| С     | 2.25477500  | 0.62689300    | 2.21072700  |
| С     | 1.94541300  | -0.76972000   | 2.54283300  |
| C     | 0.01224100  | 0.50883800    | 2.80930800  |
| C     | 0.58824500  | -0.84217400   | 2.87875400  |
| C     | 3.63329900  | 1.15047400    | 1.92840200  |
| Н     | 3.59702300  | 2.12215500    | 1.42766900  |
| Н     | 4.20177700  | 1.27609900    | 2.86069800  |
| Н     | 4.19939800  | 0.46567800    | 1.28923800  |
| C     | 2.95382100  | -1.87463100   | 2.58208700  |
| Н     | 3.50332200  | -1.83796000   | 3.53390000  |
| Н     | 2.48552100  | -2.85867100   | 2.50638400  |
| Н     | 3.68721900  | -1.78730400   | 1.77740700  |
| C     | -0 20058500 | -2.06524800   | 3 23123600  |
| Н     | -0 52244800 | -2.03029200   | 4 28070200  |
| Н     | -1.10132900 | -2.14414400   | 2.61328200  |
| Н     | 0.38229500  | -2.97899400   | 3.08888200  |
| С     | -1.34052200 | 0.87609800    | 3.34947300  |
| Н     | -1.31312500 | 0.96822600    | 4.44451100  |
| Н     | -1.69131800 | 1.83373800    | 2,95202500  |
| Н     | -2.08864900 | 0.11394700    | 3.10758400  |
| C     | 1.07693200  | 2.91585700    | 2.65802600  |
| Н     | 1.70985000  | 3.40494700    | 1.91232000  |
| Н     | 0.06948600  | 3 32666900    | 2 56520700  |
| Н     | 1.45541000  | 3,19195500    | 3.65185400  |
| C     | 2.85834000  | -3.48710700   | -0.72206300 |
| č     | 2.30195900  | -1.36388400   | -1.39272700 |
| č     | 2.98255100  | -1.54217100   | -2.63768900 |
| č     | 3.62570300  | -2.77825100   | -2.87292800 |
| č     | 3.56343200  | -3.76415800   | -1.91308900 |
| н     | 2,79338600  | -4.24833600   | 0.05373200  |
| C     | 2.96502800  | -0.47788500   | -3.57584100 |
| н     | 4.15368700  | -2.93281900   | -3.81040000 |
| н     | 4 03888700  | -4 72926900   | -2.05390700 |

| С        | 2.27318900  | 0.66358600     | -3.28145800 |
|----------|-------------|----------------|-------------|
| С        | 1.59872500  | 0.79138800     | -2.03327700 |
| Н        | 3.48846200  | -0.58769500    | -4.52191400 |
| Н        | 2.23205800  | 1.47830800     | -3.99439000 |
| N        | 2 25552900  | -2 33839400    | -0.45907300 |
| N        | 1 65757900  | -0.18396400    | -1 10312700 |
| C        | 0.76902600  | 1 02715400     | 1 67222600  |
| C        | 0.70803000  | 1.92/13400     | -1.0/252000 |
| C        | 0.52799900  | 3.0246/000     | -2.51610400 |
| C        | -0.36031600 | 4.03131500     | -2.15559200 |
| С        | -1.03946800 | 3.92654900     | -0.92881300 |
| С        | -0.79796300 | 2.83320800     | -0.07646800 |
| С        | 0.12528800  | 1.83177800     | -0.39985500 |
| Н        | 1.03031400  | 3.10620300     | -3.47590600 |
| Н        | -0.52462900 | 4.87056000     | -2.82055200 |
| Н        | -1.34531400 | 2.81086700     | 0.86092300  |
| Ir       | 0.64152700  | 0.25273900     | 0.73761300  |
| 0        | -1.94980600 | 4.82622700     | -0.48062000 |
| C        | -2.23541800 | 5 97277700     | -1 28024300 |
| н        | -2 66165800 | 5 68930800     | -2 25069300 |
| н        | -2 97254500 | 6 54972500     | -0.71871400 |
| и<br>П   | 1 22071600  | 6 58 5 5 0 0 0 | 1 42672400  |
| п<br>N   | -1.559/1000 | 0.38339900     | -1.43073400 |
| IN<br>II | -2.54585100 | 0.214/8500     | -1.440/8900 |
| н        | -2.31316200 | -0.39183/00    | -2.28418200 |
| Н        | -3.55380400 | 0.44056300     | -1.43483500 |
| Н        | -1.99549600 | 1.07877900     | -1.46972100 |
| С        | -5.41075800 | -2.63329200    | -0.04776200 |
| С        | -4.54722500 | -1.53045000    | -0.04315400 |
| С        | -3.15096600 | -1.74355900    | -0.06226700 |
| С        | -2.65872700 | -3.05083900    | -0.04978300 |
| С        | -3.52398100 | -4.14695300    | -0.04589400 |
| С        | -4.90309200 | -3.93252300    | -0.05544300 |
| Н        | -6.48550800 | -2.46499700    | -0.03786700 |
| Н        | -1.58205100 | -3.18446800    | -0.04879500 |
| н        | -3 12535200 | -5 15740800    | -0.03781200 |
| н        | -5 58988200 | -4 77474600    | -0.05459400 |
| C II     | 2 17802700  | 0.56446000     | 0 11002000  |
|          | -2.1/892/00 | -0.30440000    | -0.11992900 |
| п        | -2.42033100 | 0.1/410200     | 0.00189100  |
| 0        | -0.89039000 | -0.9210/200    | -0.150//300 |
| Н        | -1.54439200 | -2.34982200    | -3.11821000 |
| Ν        | -1.95522000 | -1.54643800    | -3.59421900 |
| Н        | -2.76965500 | -1.89496900    | -4.09993500 |
| Н        | -1.27921000 | -1.24813400    | -4.29702800 |
| Ν        | -5.05798400 | -0.20454300    | -0.10598900 |
| Η        | -6.07427300 | -0.18634500    | -0.07480200 |
| Н        | -4.70854000 | 0.39184800     | 0.64306500  |
|          |             |                |             |
| 77       |             |                |             |
| TS15     | SCF Done: 1 | E(RM06) = -17  | 15.63381546 |
| С        | 0 27872100  | 1 05393200     | 2 73551000  |
| č        | 1 54471300  | 0 38834200     | 2 57165100  |
| c        | 1 30337500  | -1 05082400    | 2.57105100  |
| C        | 0.75166200  | -1.03762400    | 2.03330000  |
| C        | -0./3100300 | 1.04551400     | 2.03629800  |
| C        | -0.08168200 | -1.26553200    | 2.00442900  |
| C        | 2.89397900  | 1.03923200     | 2.67216600  |
| Н        | 2.87344700  | 2.06039600     | 2.28105500  |
| Η        | 3.22459900  | 1.08837800     | 3.71919000  |
| Н        | 3.65375600  | 0.48168600     | 2.11608100  |
| С        | 2.37895400  | -2.09679000    | 2.73566300  |

| Н      | 2.72082400  | -2.17285600 | 3.77796200  |
|--------|-------------|-------------|-------------|
| Н      | 2.02627800  | -3.08471900 | 2.43032000  |
| Н      | 3.25047800  | -1.84549900 | 2.12674100  |
| С      | -0.80917500 | -2.57397600 | 2.68342000  |
| Н      | -1.29489700 | -2.73070200 | 3.65605800  |
| Н      | -1.59097200 | -2.60245200 | 1.91799600  |
| Н      | -0.13519000 | -3 41590900 | 2 50559300  |
| C      | -2 21272600 | 0.25148200  | 2 93656600  |
| н      | -2.41425500 | 0.19287300  | 4.01566300  |
| н      | -2.41423300 | 1 23377500  | 2 59511700  |
| и<br>П | 2.33303800  | 0.50808200  | 2.37311700  |
| n<br>C | -2.82978500 | -0.30898200 | 2.44651500  |
| U<br>U | 0.08783000  | 2.30393000  | 3.00219300  |
| п      | 0.83300700  | 2.13809300  | 2.37393200  |
| п      | -0.90203100 | 2.86/03300  | 2.7775000   |
| Н      | 0.18936300  | 2.64112200  | 4.14//5000  |
| C      | 3.14233000  | -3.18460600 | -0.74291000 |
| C      | 2.60141100  | -0.98682400 | -1.12/52300 |
| C      | 3.64493200  | -0.86245400 | -2.096/8000 |
| С      | 4.46529900  | -1.98787100 | -2.33679400 |
| С      | 4.21775500  | -3.16060400 | -1.65659200 |
| Н      | 2.91381800  | -4.10242600 | -0.20388200 |
| С      | 3.78494800  | 0.37435800  | -2.78120700 |
| Н      | 5.27344300  | -1.91282000 | -3.05990900 |
| Н      | 4.82001800  | -4.04922400 | -1.81362100 |
| С      | 2.90288500  | 1.38742800  | -2.52608800 |
| С      | 1.87645100  | 1.21936700  | -1.54978900 |
| Н      | 4.58167100  | 0.49628200  | -3.51023600 |
| Н      | 2.98666300  | 2.33049600  | -3.05250100 |
| Ν      | 2.36290000  | -2.14679500 | -0.47739600 |
| Ν      | 1.77091200  | 0.07236500  | -0.84065400 |
| С      | 0.85649300  | 2.20885000  | -1.26075000 |
| С      | 0.71347600  | 3.41766400  | -1.96475300 |
| С      | -0.34491000 | 4.27897700  | -1.70725400 |
| С      | -1.29193800 | 3.91712700  | -0.73136700 |
| С      | -1.15325400 | 2.70944000  | -0.02243900 |
| С      | -0.07628100 | 1.84688200  | -0.24150700 |
| Н      | 1.42467700  | 3.69854700  | -2.73641000 |
| Н      | -0.43343300 | 5.20543900  | -2.26141200 |
| Н      | -1.91327200 | 2.48269000  | 0.71932800  |
| Ir     | 0.31681000  | 0.13522000  | 0.75574900  |
| 0      | -2.37190300 | 4.66578000  | -0.40359200 |
| С      | -2.57071000 | 5.91709000  | -1.06047300 |
| Н      | -2.71128200 | 5.78562800  | -2.14046500 |
| Н      | -3.48067000 | 6.33655700  | -0.62777800 |
| Н      | -1.73450100 | 6.60276400  | -0.87838100 |
| Ν      | -2.42694800 | 0.19638000  | -2.06076700 |
| Н      | -1.18474700 | -0.70408100 | -3.23202400 |
| Н      | -3.40570700 | 0.24877200  | -2.34043500 |
| Н      | -2.11965200 | 1.15105800  | -1.86954800 |
| С      | -5.42125600 | -2.78429500 | -1.10387000 |
| С      | -4.58311400 | -1.67390100 | -1.00150100 |
| С      | -3.19217900 | -1.83004000 | -0.89830500 |
| С      | -2.66129200 | -3.12441800 | -0.88109700 |
| С      | -3.49936100 | -4.23911600 | -0.98395400 |
| C      | -4.87993300 | -4.07299900 | -1.09976900 |
| Н      | -6.49628600 | -2.64441200 | -1.18057400 |
| Н      | -1.58951800 | -3.24868000 | -0.76653000 |
| Н      | -3.07197300 | -5.23860400 | -0.96704700 |
|        |             |             |             |

| Н | -5.53170600 | -4.93905100 | -1.17640200 |
|---|-------------|-------------|-------------|
| С | -2.28966900 | -0.59538300 | -0.79877900 |
| Н | -2.62843800 | 0.01016700  | 0.05368100  |
| 0 | -0.94772000 | -0.94594700 | -0.60451000 |
| Н | -5.01942300 | -0.67616200 | -0.99171900 |
| Н | -0.39519600 | -1.29039900 | -1.94475200 |
| Ν | -0.34441800 | -1.30687500 | -3.05732300 |
| Н | -0.46252200 | -2.24079600 | -3.45460300 |
| Н | 0.50530200  | -0.87340600 | -3.42199800 |

| 77   |             |                          |
|------|-------------|--------------------------|
| IN20 | SCF Done: I | E(RM06) = -1715.64321931 |
| С    | 0.22472500  | 1.06196500 2.74923100    |
| С    | 1.55292100  | 0.52447100 2.54841500    |
| С    | 1.45723600  | -0.94216100 2.61899200   |
| С    | -0.69485400 | -0.04134900 2.67589500   |
| С    | 0.10003500  | -1.28100900 2.65878200   |
| С    | 2.83356400  | 1.30123700 2.64726900    |
| Н    | 2.70859300  | 2.32730100 2.29041000    |
| Н    | 3.17503200  | 1.34842300 3.69070200    |
| Н    | 3.63146300  | 0.83567300 2.06113300    |
| С    | 2.63026700  | -1.86696800 2.70515800   |
| Н    | 2.98976200  | -1.90554000 3.74351500   |
| Н    | 2.37284500  | -2.88509800 2.40473500   |
| Н    | 3.46401100  | -1.53024400 2.08507600   |
| С    | -0.49637000 | -2.65364100 2.68104800   |
| Н    | -0.90518800 | -2.87664800 3.67596800   |
| Н    | -1.31914800 | -2.74196800 1.96433300   |
| Н    | 0.24465900  | -3.42092800 2.44296100   |
| С    | -2.17254700 | 0.01818500 2.93515900    |
| Н    | -2.38081200 | -0.08904500 4.00898500   |
| Н    | -2.60190200 | 0.97216600 2.61341800    |
| Н    | -2.70506500 | -0.78546400 2.41849200   |
| С    | -0.09492000 | 2.48451500 3.09050700    |
| Н    | 0.54781500  | 3.19160300 2.56009500    |
| Н    | -1.13368900 | 2.74089900 2.87351700    |
| Н    | 0.06275200  | 2.63252100 4.16785400    |
| С    | 3.33983600  | -2.99015000 -0.75974200  |
| С    | 2.66050100  | -0.83459200 -1.15662500  |
| С    | 3.65836100  | -0.66650600 -2.16540400  |
| С    | 4.53188000  | -1.74793700 -2.42043400  |
| С    | 4.37585000  | -2.92169900 -1.71555900  |
| Н    | 3.18483700  | -3.91010700 -0.19873700  |
| С    | 3.70363800  | 0.56527300 -2.87068500   |
| Н    | 5.30648900  | -1.63919700 -3.17526400  |
| Н    | 5.02052000  | -3.77787300 -1.88366800  |
| С    | 2.77563500  | 1.53073300 -2.59764600   |
| С    | 1.79611600  | 1.31852600 -1.58467100   |
| Н    | 4.46361800  | 0.71822700 -3.63242400   |
| Н    | 2.78128700  | 2.46601400 -3.14404300   |
| Ν    | 2.51411800  | -1.99318400 -0.47922600  |
| Ν    | 1.78078900  | 0.17953600 -0.85755500   |
| С    | 0.72907800  | 2.25225600 -1.27715200   |
| С    | 0.48700900  | 3.43523100 -1.99535400   |
| С    | -0.62720200 | 4.22220600 -1.72989400   |
| С    | -1.52677700 | 3.81081000 -0.73056500   |
| С    | -1.28158700 | 2.63232100 0.00056500    |
| С    | -0.15214100 | 1.84753200 -0.23286800   |

| Н     | 1.15986200  | 3.75303700         | -2.78635600  |
|-------|-------------|--------------------|--------------|
| Н     | -0.79398700 | 5.12887900         | -2.29895300  |
| Н     | -2.00545900 | 2.36739100         | 0.76523300   |
| Ir    | 0.36627700  | 0.16503400         | 0.76759400   |
| 0     | -2.65567800 | 4.48030300         | -0.39671100  |
| С     | -2.96993300 | 5.68853300         | -1.08827200  |
| Н     | -3.11412000 | 5.50958600         | -2.16083500  |
| Н     | -3.90605300 | 6.04322100         | -0.65340700  |
| Н     | -2.19239000 | 6.44769100         | -0.94185900  |
| Ν     | -2.40935700 | 0.05036300         | -2.14246500  |
| Н     | -0.84523800 | -1.31121500        | -3.48848900  |
| Н     | -3.33286500 | -0.05387800        | -2.55431100  |
| Н     | -2.22960000 | 1.04298300         | -2.00261900  |
| C     | -5 43176600 | -2.86172800        | -1 02476800  |
| C     | -4 58880800 | -1 75078700        | -1.00763800  |
| C     | -3 19900300 | -1 90662800        | -0.89021900  |
| C     | -2 67194400 | -3 19759700        | -0.77593600  |
| C     | 3 51671200  | 4 31175200         | 0.70374700   |
| C     | -3.310/1200 | -4.311/3200        | -0.79374700  |
|       | -4.89039000 | -4.14839000        | -0.9202/100  |
| п     | -0.5050/500 | -2.72279400        | -1.11511000  |
| н     | -1.60101100 | -3.32989700        | -0.66696200  |
| Н     | -3.09272500 | -5.30868300        | -0.70575800  |
| Н     | -5.55165300 | -5.01501700        | -0.93184700  |
| С     | -2.31674900 | -0.66045500        | -0.87581300  |
| Η     | -2.60146200 | -0.03393400        | -0.02293600  |
| 0     | -0.93962600 | -0.99331600        | -0.61483900  |
| Н     | -5.01635900 | -0.75264200        | -1.08095100  |
| Η     | -0.51235900 | -1.34145900        | -1.48570600  |
| Ν     | -0.15489400 | -1.89116200        | -3.00782800  |
| Н     | -0.39001000 | -2.86574100        | -3.19342900  |
| Н     | 0.75405200  | -1.71328400        | -3.43212100  |
|       |             |                    |              |
| 79    |             |                    |              |
| TS15' | SCF Done:   | $E(RM06) = -1^{2}$ | 770.98129215 |
| С     | 0.51892100  | 1.02458300         | 2.74133000   |
| С     | 1.73903700  | 0.28390000         | 2.54066400   |
| С     | 1.41445100  | -1.14827100        | 2.62128300   |
| С     | -0.56972200 | 0.07581800         | 2.68611100   |
| Ċ     | 0.02214400  | -1.27136500        | 2.68533800   |
| Ĉ     | 3 12767600  | 0.85083500         | 2 60930700   |
| н     | 3 16108300  | 1 87300700         | 2 22175600   |
| н     | 3 48539800  | 0.87482700         | 3 64824900   |
| н     | 3 83817700  | 0.2/972500         | 2 03373500   |
| C     | 2 42872700  | 2 24572200         | 2.03373300   |
|       | 2.42872700  | -2.24372200        | 2.70390000   |
| п     | 2.77764900  | -2.34642800        | 3.74183700   |
| H     | 2.01592200  | -3.21010000        | 2.39892100   |
| Н     | 3.30534900  | -2.04123500        | 2.08514900   |
| С     | -0.7/516000 | -2.53693500        | 2.75912000   |
| Н     | -1.15146200 | -2.69004600        | 3.78018800   |
| Н     | -1.64444000 | -2.50707900        | 2.09528300   |
| Н     | -0.17725700 | -3.41180000        | 2.48981500   |
| С     | -2.00882200 | 0.36451700         | 3.00452800   |
| Н     | -2.18610000 | 0.30746500         | 4.08788800   |
| Н     | -2.30246800 | 1.36769100         | 2.67965900   |
| Н     | -2.67847400 | -0.35776500        | 2.52756900   |
| С     | 0.42725700  | 2.48169400         | 3.07961700   |
| Н     | 1.18533200  | 3.07371200         | 2.55997200   |
| Н     | -0.55138100 | 2.90375900         | 2.84187000   |
|       |             |                    |              |

| Η        | 0.58763400  | 2.60694700  | 4.15945900  |
|----------|-------------|-------------|-------------|
| С        | 3.06959600  | -3.34031600 | -0.77572700 |
| С        | 2.62275800  | -1.12525200 | -1.18119600 |
| С        | 3.60402400  | -1.08090800 | -2.21979400 |
| C        | 4.34254100  | -2.25603700 | -2.48611500 |
| C        | 4 07851300  | -3 39756500 | -1 76078700 |
| н        | 2 83032700  | -4 23105300 | -0 19744200 |
| C        | 3 76638400  | 0.13088900  | -2 94218600 |
| с<br>u   | 5 10158200  | 2 24280100  | 2 26411800  |
| 11<br>11 | 4 61861400  | 4 22221200  | -3.20411800 |
| п        | 4.01601400  | -4.32221300 | -1.93331900 |
| C        | 2.97015100  | 1.20198000  | -2.64635200 |
| C<br>H   | 2.00724200  | 1.11600100  | -1.59//8100 |
| H        | 4.51181100  | 0.18893000  | -3.73099900 |
| Н        | 3.06816700  | 2.12495800  | -3.20444600 |
| Ν        | 2.36737000  | -2.25502100 | -0.48630100 |
| Ν        | 1.86955800  | -0.01562200 | -0.87124000 |
| С        | 1.07577500  | 2.17544300  | -1.25945800 |
| С        | 1.00046400  | 3.40309500  | -1.94109100 |
| С        | 0.00910900  | 4.32964800  | -1.64625300 |
| С        | -0.93990200 | 4.01603600  | -0.65614400 |
| С        | -0.85781000 | 2.79741400  | 0.04251500  |
| С        | 0.15402100  | 1.86968000  | -0.21281700 |
| Н        | 1.71567000  | 3.65160300  | -2.72001700 |
| Н        | -0.02746500 | 5.26977100  | -2.18290900 |
| Н        | -1.60773500 | 2.61527300  | 0.80611400  |
| Ir       | 0.45923700  | 0.12723000  | 0.75821200  |
| 0        | -1 96779200 | 4 82425000  | -0.30215400 |
| c        | -2 11495900 | 6.08178500  | -0.96143000 |
| н        | -2 27915700 | 5 95285300  | -2 03838000 |
| и<br>п   | 2 00570200  | 6 54788400  | 0.51605000  |
| п<br>п   | -2.99370200 | 6 72534200  | -0.31003900 |
| п<br>N   | -1.24239100 | 0.72534200  | -0.79387000 |
|          | -2.44042100 | 0.53047700  | -1.99155900 |
| п        | -1.23317000 | -0.00108200 | -3.29823700 |
| H        | -3.43933800 | 0.4492/500  | -2.18300300 |
| H        | -2.0/901500 | 1.29743600  | -1.83001600 |
| С        | -5.41704100 | -2.60015100 | -0.87171900 |
| С        | -4.58382200 | -1.47316100 | -0.80303100 |
| С        | -3.17944400 | -1.64902200 | -0.78027500 |
| С        | -2.66438100 | -2.94856300 | -0.79394200 |
| С        | -3.49789300 | -4.06758300 | -0.86252600 |
| С        | -4.88037600 | -3.88550500 | -0.91009700 |
| Η        | -6.49541500 | -2.45672600 | -0.89106600 |
| Η        | -1.58724600 | -3.06927300 | -0.73889300 |
| Н        | -3.07241700 | -5.06710800 | -0.87380600 |
| Н        | -5.54717200 | -4.74227400 | -0.96128700 |
| С        | -2.24838600 | -0.43374000 | -0.74707900 |
| Н        | -2.49338600 | 0.17704100  | 0.13603600  |
| 0        | -0.89630100 | -0.81691500 | -0.63937200 |
| H        | -0 47377100 | -1 12817800 | -1 88955300 |
| N        | -0 40641600 | -1 24084400 | -3 05935800 |
| н        | -0 52762400 | -2 1993/500 | _3 30036/00 |
| н        | 0.32702400  | _0.839//000 | -3 46457300 |
| N        | -5 14621700 | -0.12071200 | -0.82084200 |
| 1N<br>11 | 6 14051/00  | -0.100/1000 | 0.65746200  |
| п<br>u   | 4 70260000  | -0.162/4100 | -0.00/40200 |
| п        | -4.70209900 | 0.46403000  | -0.20377800 |
|          |             |             |             |

79

IN20' SCF Done: E(RM06) = -1770.99030775

| С      | 0.52219600  | 1.09342600  | 2.74138600   |
|--------|-------------|-------------|--------------|
| С      | 1.81188500  | 0.48796800  | 2.48914700   |
| С      | 1.64971600  | -0.97110100 | 2.59030200   |
| С      | -0.45276300 | 0.03461400  | 2.72671600   |
| С      | 0.28107500  | -1.24218800 | 2.69759100   |
| С      | 3.13120600  | 1.20335200  | 2.51322100   |
| н      | 3 03926400  | 2 22757200  | 2 14151000   |
| н      | 3 52190300  | 1 25280300  | 3 53913500   |
| и<br>Ц | 3 87807600  | 0.68073300  | 1 00170000   |
| C II   | 2 78000400  | 1.05058600  | 2 63 82 4000 |
| С      | 2.78009400  | -1.95058000 | 2.03834000   |
| п      | 3.1/230/00  | -2.00092300 | 3.00389300   |
| Н      | 2.46559700  | -2.95538900 | 2.34/33400   |
| Н      | 3.60/0/300  | -1.65388900 | 1.9894/800   |
| С      | -0.38040400 | -2.58274900 | 2.77573900   |
| Н      | -0.74779900 | -2.76699100 | 3.79454300   |
| Н      | -1.24262800 | -2.64203900 | 2.10397800   |
| Н      | 0.30704800  | -3.39170100 | 2.51634100   |
| С      | -1.91084900 | 0.17045700  | 3.05993100   |
| Н      | -2.06857700 | 0.09301000  | 4.14484700   |
| Н      | -2.30912000 | 1.13914800  | 2.74189400   |
| Н      | -2.50835600 | -0.61529100 | 2.58765800   |
| С      | 0.28696900  | 2.53383600  | 3.07731700   |
| Н      | 0.95411200  | 3.20084300  | 2.52540700   |
| Н      | -0.74144600 | 2.84498500  | 2.88261000   |
| Н      | 0.47875300  | 2.68143500  | 4.14922100   |
| С      | 3.30489100  | -3.10371900 | -0.84111000  |
| С      | 2.68816200  | -0.92981300 | -1.23795100  |
| С      | 3.62899500  | -0.81849700 | -2.30740500  |
| С      | 4.43984800  | -1.93962400 | -2.59596400  |
| С      | 4.27962700  | -3.09451500 | -1.86173900  |
| Н      | 3.14946100  | -4.00676300 | -0.25345300  |
| С      | 3.68331500  | 0.40068500  | -3.03331200  |
| Н      | 5.16914600  | -1.87582700 | -3.39945100  |
| Н      | 4.87542700  | -3.98034900 | -2.05497500  |
| С      | 2.81224600  | 1.40763700  | -2.72365500  |
| С      | 1.87877200  | 1.24685300  | -1.65904900  |
| Н      | 4.40450200  | 0.51253900  | -3.83867900  |
| Н      | 2.82805400  | 2.33520300  | -3.28286300  |
| Ν      | 2.53930600  | -2.06898000 | -0.52893400  |
| Ν      | 1.86368600  | 0.12143200  | -0.91113400  |
| С      | 0.85606600  | 2.21885500  | -1.31673000  |
| С      | 0.61402700  | 3.39733500  | -2.04253600  |
| С      | -0.45797900 | 4.22605700  | -1.73292900  |
| С      | -1.31682100 | 3.86118300  | -0.68145500  |
| С      | -1.07445100 | 2.68478900  | 0.05334800   |
| Ċ      | 0.01420700  | 1.85826200  | -0.22444000  |
| Н      | 1 25214100  | 3 67854600  | -2.87504300  |
| Н      | -0 62438400 | 5 12870500  | -2 30838300  |
| Н      | -1.76637900 | 2.45516200  | 0.85792100   |
| Ir     | 0 52262200  | 0 17068100  | 0 76992700   |
| 0      | -2 40304900 | 4 57441200  | -0 29893300  |
| Č      | -2 70357200 | 5 79093200  | -0.98261200  |
| Н      | -2.91148500 | 5.61227500  | -2.04456000  |
| Н      | -3.59966300 | 6.18695900  | -0.50156200  |
| Н      | -1.88833900 | 6.51756000  | -0.88320000  |
| N      | -2.37529700 | 0.09683700  | -2.04623000  |
| Н      | -0.99658700 | -1.32175800 | -3.38058100  |
| Н      | -3.35144100 | 0.10818500  | -2.33966700  |
|        |             |             |              |

| Н      | -2.07040200  | 1.06474700 -1.94911500   |
|--------|--------------|--------------------------|
| С      | -5.41294900  | -2.73921800 -0.72815300  |
| С      | -4.57274400  | -1.61480200 -0.74953500  |
| С      | -3.16983300  | -1.80014500 -0.70743600  |
| С      | -2.66228200  | -3.10005400 -0.61845200  |
| С      | -3.50400400  | -4.21397400 -0.59587000  |
| С      | -4.88522300  | -4.02612700 -0.65858900  |
| Н      | -6.49004600  | -2.59056600 -0.76501600  |
| Н      | -1.58715800  | -3.23373000 -0.56402400  |
| Н      | -3.08478100  | -5.21367500 -0.52878400  |
| Н      | -5.55775400  | -4.87967100 -0.64168600  |
| С      | -2.25000600  | -0.58377400 -0.76253100  |
| Н      | -2.47066800  | 0.07660800 0.08778000    |
| 0      | -0.87448500  | -0.95186500 -0.55820000  |
| Н      | -0.49584600  | -1.32467600 -1.44333400  |
| Ν      | -0.24509600  | -1.88473700 -2.97520300  |
| Н      | -0.46809000  | -2.86552400 -3.14180900  |
| Н      | 0.61270300   | -1.67751400 -3.48424000  |
| Ν      | -5.12778100  | -0.32907000 -0.89062700  |
| Н      | -6.12779100  | -0.30656100 -0.71568800  |
| Н      | -4.66980600  | 0.39947900 -0.35102800   |
|        |              |                          |
| 73     |              |                          |
| TS15   | -1 SCF Done: | E(RM06) = -1659.04212823 |
| С      | 0.01394400   | -0.80279100 2.73605200   |
| С      | -1.36540500  | -0.40560900 2.57226900   |
| Ċ      | -1.40446000  | 1.06333100 2.51597800    |
| Č      | 0.82389700   | 0.36972400 2.51894300    |
| Č      | -0.08549700  | 1.52615800 2.44325200    |
| Č      | -2.56336500  | -1.28087300 2.80189200   |
| Н      | -2.35486600  | -2 32186100 2 53915900   |
| н      | -2.86345300  | -1 25584800 3 85876900   |
| н      | -3 42182500  | -0.94995000 2.20914800   |
| C      | -2 65654800  | 1 87828500 2 59373700    |
| н      | -2.96668300  | 1 96998100 3 64470500    |
| н      | -2 51679600  | 2 88657600 2 19850900    |
| н      | -3 48151200  | 1 41199700 2 05073600    |
| C      | 0.37357100   | 2.94614000 2.31484200    |
| ч      | 0.81395300   | 3 29/90200 3 2588/000    |
| н      | 1 139/1500   | 3.04973300 1.53958100    |
| и<br>П | 0.45170500   | 3 61616600 2 06083600    |
| C      | 2 3085/1900  | 0.47184200 2.72080600    |
| с<br>u | 2.30854900   | 0.70818400 3.76800200    |
| и<br>П | 2.33938700   | 0.76818400 5.76899200    |
| п      | 2.81793700   | -0.40027100 2.48021100   |
| п      | 2.74708800   | 2 15828700 2 16881200    |
| U<br>U | 0.48222700   | -2.15828700 5.16881200   |
| п      | -0.11031200  | -2.95925200 2.71934400   |
| п      | 1.33133300   | -2.33430000 2.92208900   |
| н      | 0.38204200   | -2.23832700 4.23998100   |
| C      | -3.5/400800  | 2.08502400 -0.88150600   |
| C      | -2./2615500  | 0.57583100 -1.18162000   |
| C      | -3.72145400  | 0.27524900 -2.16218400   |
| C      | -4.6/53//00  | 1.2/246300 -2.46640500   |
| C      | -4.60351300  | 2.49061300 -1.82731700   |
| H      | -3.49245400  | 3.64004400 -0.36428800   |
| C      | -3.68976500  | -0.99757000 -2.78897100  |
| H      | -5.44464600  | 1.06381400 -3.20526200   |
| Н      | -5.31077900  | 3.28651100 -2.03528600   |

| С      | -2.69341600  | -1.87858900 | -2.47280700   | Н        | 3.50696800               | -2.27455800 | -0.87138000       |
|--------|--------------|-------------|---------------|----------|--------------------------|-------------|-------------------|
| С      | -1.71303600  | -1.53090500 | -1.50038000   | С        | -0.25142500              | -3.12334100 | -2.57393300       |
| Н      | -4.44772500  | -1.25046000 | -3.52548000   | Н        | -0.08949000              | -4.17863900 | -2.83627700       |
| Н      | -2.64057500  | -2.84520900 | -2.95862400   | Н        | -1.29551800              | -2.88933200 | -2.80094100       |
| Ν      | -2.67241200  | 1.77159700  | -0.55711300   | Н        | 0.37905600               | -2.52686900 | -3.24105100       |
| Ν      | -1.76784300  | -0.35130000 | -0.84448600   | С        | -2.24281000              | -3.60938100 | -0.09645800       |
| С      | -0.56399000  | -2.35717500 | -1.17027800   | Н        | -2.83241300              | -3.27680800 | 0.76192300        |
| С      | -0.26266500  | -3.57273800 | -1.80658100   | Н        | -2.74660300              | -3.26589400 | -1.00241900       |
| C      | 0.91772100   | -4.25475700 | -1.53414700   | Н        | -2.25343700              | -4.70818100 | -0.10441200       |
| C      | 1.82601600   | -3.69841700 | -0.61622500   | С        | 2.95614500               | 0.53123100  | 3.11442900        |
| Ċ      | 1.52346000   | -2.48519600 | 0.03180200    | Ċ        | 0.71319200               | 0.62044800  | 2.63689400        |
| C      | 0 32486700   | -1 80639000 | -0 19951600   | C        | 0 45696600               | 1 39145400  | 3 81276200        |
| н      | -0.94427000  | -4 00071500 | -2 53617300   | C        | 1 55030800               | 1 70775000  | 4 65053900        |
| Н      | 1 12530300   | -5 19252300 | -2.03525000   | C        | 2 81266400               | 1 28021300  | 4 30203100        |
| н      | 2 25525700   | -2 11406100 | 0.74325600    | н        | 3 94255000               | 0.18237300  | 2 81354300        |
| Ir     | -0.29061900  | -0.10179500 | 0.74525000    | C II     | -0.87598900              | 1 80556300  | 4 07068400        |
| 0      | 3 01709700   | -4 25385000 | -0.28646300   | н        | 1 37733500               | 2 28798600  | 5 55316500        |
| C      | 3 38232100   | -4.23383000 | -0.28040300   | н<br>П   | 3 68059000               | 2.28798000  | <i>A</i> 01286700 |
| с<br>u | 2 47268000   | -5.50598500 | 1 06002600    | II<br>C  | 1 86182000               | 1.30332300  | 4.91280700        |
| п      | 3.47208900   | -3.42032900 | -1.96092600   | C<br>C   | -1.80183000              | 0.74152100  | 3.1/408300        |
| п      | 4.55586500   | -5./5584200 | -0.44567600   | U U      | -1.55/09/00              | 0.74155100  | 2.00559700        |
| H      | 2.66191900   | -6.29035300 | -0.61545400   | Н        | -1.09546300              | 2.3/495900  | 4.9/001300        |
| N      | 1.98060800   | 0.16008300  | -2.45128700   | H        | -2.88091200              | 1.82119000  | 3.34/32800        |
| H      | 0.79855900   | 0.43223300  | -2.06842200   | N        | 1.95561800               | 0.20224200  | 2.31118800        |
| Н      | 2.41211700   | 0.63255700  | -3.247/1000   | N        | -0.30715800              | 0.28097800  | 1.77958900        |
| Н      | 2.22756600   | -0.83154200 | -2.43782300   | С        | -2.51467000              | 0.44567600  | 0.95370900        |
| С      | 4.99017300   | 3.36880700  | -1.11699300   | С        | -3.82741300              | 0.94768600  | 0.92139600        |
| С      | 4.27548200   | 2.17688900  | -0.99244600   | С        | -4.64950700              | 0.73545500  | -0.17884900       |
| С      | 2.89048300   | 2.15777400  | -1.20711500   | С        | -4.14157000              | 0.02080400  | -1.27831500       |
| С      | 2.22569300   | 3.34501900  | -1.53965400   | С        | -2.83361000              | -0.49661500 | -1.24472200       |
| С      | 2.94314300   | 4.53617000  | -1.66247500   | С        | -2.00858400              | -0.32404100 | -0.13458900       |
| С      | 4.32441200   | 4.55003200  | -1.45381800   | Н        | -4.22283500              | 1.52486300  | 1.75245700        |
| Η      | 6.06285700   | 3.37642100  | -0.94505100   | Н        | -5.65783800              | 1.13135700  | -0.18292200       |
| Η      | 1.15006200   | 3.33007600  | -1.68290800   | Н        | -2.50072400              | -1.05310700 | -2.11603500       |
| Η      | 2.42196400   | 5.45515100  | -1.91643100   | Ir       | -0.15468700              | -1.08074100 | 0.11785100        |
| Η      | 4.87964800   | 5.47923300  | -1.54680900   | 0        | -4.83785700              | -0.22549900 | -2.41497500       |
| С      | 2.13926200   | 0.85153100  | -1.10743800   | С        | -6.18124900              | 0.24384100  | -2.51573700       |
| Н      | 2.61496200   | 0.16200300  | -0.40732800   | Н        | -6.23035000              | 1.33782100  | -2.45234500       |
| 0      | 0.73754700   | 0.98397800  | -0.89482000   | Н        | -6.53349000              | -0.07532200 | -3.49837700       |
| Н      | 4.79543700   | 1.25925000  | -0.72492800   | Н        | -6.82040600              | -0.19882900 | -1.74207700       |
|        |              |             |               | Ν        | 0.46392400               | 1.72633800  | -3.05964600       |
| 88     |              |             |               | Н        | 0.53732900               | 2.80595300  | -2.05480200       |
| TS15   | -2 SCF Done  | E(RM06) = - | 1892.67026538 | Н        | 0.98301200               | 1.87060500  | -3.92500700       |
| С      | -0.82436800  | -3.13213900 | -0.01685000   | Н        | -0.50886300              | 1.52529600  | -3.29799800       |
| С      | -0.05361400  | -2.97582000 | 1.19143000    | С        | 4.59001000               | 0.50530300  | -3.66832900       |
| C      | 1 36310300   | -2.87352300 | 0 81755900    | C        | 3 20109400               | 0 42358700  | -3 56314100       |
| Ċ      | 0.07113000   | -2.88151700 | -1 12628000   | Ċ        | 2 56073400               | 0 66909900  | -2.33904200       |
| C      | 1 43248900   | -2 80827700 | -0 57734700   | C        | 3 33335600               | 0 98434900  | -1 21791300       |
| C      | -0 55098000  | -3 23870000 | 2 58378800    | C<br>C   | 4 72468100               | 1.06657200  | -1 32318300       |
| н      | -1.5988/1800 | -2.94820900 | 2.30370000    | C<br>C   | 5 35598800               | 0.83067400  | -2 54570500       |
| и<br>П | 0.47202000   | 4 30888200  | 2.70112100    | с<br>ч   | 5.07348000               | 0.31031500  | 4 62185400        |
| п<br>п | -0.4/292000  | -4.30888200 | 2.82009000    | 11<br>11 | 2 84005400               | 1 14405000  | -4.02183400       |
| С      | 0.00407100   | -2.070/0000 | 1 77322400    | п        | 2.04000400<br>5.31670200 | 1.14403900  | 0.20330900        |
|        | 2.31433000   | 2 0700000   | 1.77332400    | П<br>11  | 5.510/9300               | 1.31430/00  | -0.4438/100       |
| п      | 2.70337700   | -3.7/000900 | 1.70742700    | п        | 0.43/93200               | 0.07333700  | -2.02410400       |
| H      | 3.40019100   | -2.42992900 | 1.3/499900    | U        | 1.03039300               | 0.58622200  | -2.25106200       |
| H      | 2.2/131400   | -2.4/146600 | 2./3345200    | Н        | 0.09091600               | -0.35496400 | -2.69853900       |
| C      | 2.6/840200   | -2.74624800 | -1.40497500   | 0        | 0.52701500               | 0.69868000  | -0.95452200       |
| H      | 2.99053700   | -3./6545200 | -1.67480200   | H        | 2.61551500               | 0.15386200  | -4.44125300       |
| Н      | 2.52543400   | -2.19965300 | -2.33817000   | С        | -1.75644800              | 3.83431700  | -1.09415500       |

| Н    | -2.09721400 | 2.90941300    | -0.61877400 |
|------|-------------|---------------|-------------|
| Н    | -1.80837800 | 3.70794900    | -2.18160700 |
| Н    | -2.45466900 | 4.63312000    | -0.82082700 |
| С    | -0.34165400 | 4.20563600    | -0.64617300 |
| С    | 0.17986900  | 5.43844200    | -1.38575900 |
| Н    | 0.16251500  | 5.28619800    | -2.47123600 |
| Н    | -0.44703700 | 6.30714600    | -1.15835100 |
| Н    | 1.20803200  | 5.66520900    | -1.08592200 |
| С    | -0.24820200 | 4.38541700    | 0.86584700  |
| Н    | -0.63058100 | 3.50726100    | 1.39526800  |
| Н    | 0.78909600  | 4.55696000    | 1.17131800  |
| Н    | -0.84498500 | 5.24993300    | 1.17602800  |
| 0    | 0.59642100  | 3.11846600    | -1.00334800 |
| Н    | 0.44716800  | 2.06738000    | -0.67490500 |
|      |             |               |             |
| 77   |             |               |             |
| IN21 | SCF Done: H | E(RM06) = -17 | 15.66456230 |
| С    | 2.04550100  | -0.59560500   | 2.24878600  |
| С    | 1.64017300  | -1.90413100   | 1.80756200  |
| С    | 0.28300900  | -2.13729200   | 2.30823000  |
| С    | 0.88514100  | 0.05421900    | 2.81264500  |
| С    | -0.17549700 | -0.95784900   | 2.91355100  |
| С    | 2.54040800  | -2.97089200   | 1.25336400  |
| Н    | 3.38089800  | -2.54457200   | 0.69826000  |
| Н    | 2.95580000  | -3.58471800   | 2.06452000  |
| Н    | 1.99990600  | -3.64273600   | 0.57942500  |
| С    | -0.43409300 | -3.45185600   | 2.28205800  |
| Н    | -0.11467200 | -4.05965500   | 3.14101600  |
| Н    | -1.51732400 | -3.32674300   | 2.35119400  |
| Н    | -0.21220500 | -4.02755100   | 1.38013100  |
| С    | -1.49436800 | -0.78403400   | 3.61275600  |
| Н    | -1.54784800 | -1.44990200   | 4.48394200  |
| Н    | -1.62113400 | 0.23698900    | 3.98177800  |
| Н    | -2.34621200 | -1.02057300   | 2.96638400  |
| С    | 0.87457200  | 1.38705300    | 3.50508900  |
| Н    | 1.10883600  | 1.27548800    | 4.57275100  |
| Н    | 1.61626300  | 2.06791500    | 3.07661100  |
| Н    | -0.10391300 | 1.87340900    | 3.43699300  |
| C    | 3.44351300  | -0.05832800   | 2.22001000  |
| Н    | 4.00153900  | -0.40568500   | 1.34684500  |
| Н    | 3.46990000  | 1.03339900    | 2.22657000  |
| Н    | 3.97488700  | -0.40638400   | 3.11659400  |
| С    | -2.67763300 | -3.39918100   | -0.74026100 |
| С    | -0.79739400 | -2.28407700   | -1.46688500 |
| С    | -0.79279100 | -3.02170900   | -2.68967000 |
| C    | -1.78386700 | -4.01151900   | -2.87190500 |
| C    | -2.73133700 | -4.21112700   | -1.89039700 |
| Н    | -3.43421800 | -3.50326700   | 0.03454400  |
| C    | 0.19286800  | -2.70460100   | -3.66191000 |
| H    | -1.78988300 | -4.59374600   | -3.78956300 |
| Н    | -3.51228900 | -4.95674200   | -1.99401200 |
| C    | 1.07432500  | -1.68911300   | -3.41804300 |
| Č    | 1.03957600  | -0.99045900   | -2.17686300 |
| Н    | 0.22218700  | -3.26098100   | -4.59483100 |
| Н    | 1.81658500  | -1.41511600   | -4.15770200 |
| N    | -1.74759900 | -2.47770900   | -0.52421800 |
| N    | 0.15662300  | -1.33029600   | -1.21005200 |
| С    | 1.88502900  | 0.14287000    | -1.85760000 |

| C            | 2 75736800  | 0 75651500   | -2 77315100 |
|--------------|-------------|--------------|-------------|
| C            | 2.73730800  | 1 02/37000   | 2 44452600  |
| C            | 3.43417900  | 2 40082000   | 1 17840100  |
| C            | 2 26078400  | 2.49983000   | -1.17840100 |
| C            | 2.30078400  | 1.88009300   | -0.23330200 |
| U<br>U       | 1.70155800  | 0.09154400   | -0.55525400 |
| Н            | 2.90552300  | 0.33/5/300   | -3./6464100 |
| H            | 4.09979600  | 2.38269900   | -3.16593200 |
| H            | 2.24937/00  | 2.36243700   | 0.71372600  |
| lr           | 0.50283000  | -0.37450300  | 0.68895900  |
| 0            | 3.80862800  | 3.64347700   | -0.75313800 |
| С            | 4.71608900  | 4.32166900   | -1.62153600 |
| Н            | 4.21833600  | 4.65219000   | -2.54127700 |
| Η            | 5.06040300  | 5.19510700   | -1.06494800 |
| Н            | 5.57682700  | 3.69049200   | -1.87359700 |
| Ν            | -0.99510900 | 1.09572500   | 0.07951500  |
| Н            | -1.15672700 | 1.08521000   | -0.95278900 |
| Н            | -0.56439700 | 2.00483700   | 0.26161000  |
| Н            | -2.34219900 | -0.86331900  | 0.40426100  |
| С            | -4.94635800 | 3.23362900   | -0.98867500 |
| С            | -4.19449400 | 2.12245400   | -0.60042600 |
| С            | -3.18654800 | 2.25455600   | 0.36243000  |
| С            | -2.95165900 | 3.50999000   | 0.93729200  |
| С            | -3.69967700 | 4.62186200   | 0.54656800  |
| Ċ            | -4.69867200 | 4.48573600   | -0.42000800 |
| Н            | -5.73421700 | 3.11965000   | -1.72889200 |
| Н            | -2 18834200 | 3 61951000   | 1 70607000  |
| Н            | -3 51076400 | 5 58916900   | 1 00412000  |
| н            | -5 28796400 | 5 34793500   | -0 72006200 |
| C            | -2 32517700 | 1 07025600   | 0.72006200  |
| ч            | -2.02317700 | 1 16393500   | 1 8/632600  |
| 0            | 2 08387800  | 0.12100600   | 0.40343200  |
| U<br>Ц       | 4 39452300  | 1 14409400   | 1 02388800  |
| п<br>N       | -4.39432300 | 1.14409400   | -1.02388800 |
| IN<br>TT     | -1.353/3300 | 1.33892400   | -2.8234/300 |
| п            | -2.35263200 | 2.14500400   | -2./6992400 |
| п            | -1./0533500 | 0.80656600   | -3.49421200 |
| Н            | -0./9252500 | 2.09355600   | -3.25159800 |
| 70           |             |              |             |
| /9<br>[NI21] | SCE Danas   | E(DM06) = 17 | 71 01101042 |
| IN21         | SCF Done:   | E(RM06) = -1 | 2 55075700  |
| C            | 1.70020100  | 0.06233900   | 2.55975700  |
| C            | 1./3098600  | -1.33242600  | 2.20928200  |
| C            | 0.38181300  | -1.83636300  | 2.496/6400  |
| C            | 0.40095700  | 0.46919500   | 2.83519300  |
| С            | -0.41720300 | -0.75019300  | 2.87859600  |
| С            | 2.93180800  | -2.19684500  | 1.95013100  |
| Η            | 3.72791200  | -1.64112900  | 1.44672400  |
| Η            | 3.34085200  | -2.58043300  | 2.89517600  |
| Н            | 2.68323600  | -3.06277700  | 1.32923400  |
| С            | -0.01175600 | -3.28146700  | 2.50374200  |
| Н            | 0.26360000  | -3.73270400  | 3.46780200  |

Н -1.08892700 -3.41404300 2.37514000 0.49691000 -3.85221600 1.72356600

 $-1.83757900 \quad -0.81287100 \quad 3.35423900$ Н -1.85474300 -1.00628900 4.43621700

-2.37128700 0.12787000 3.19465300

-2.40597200 -1.61323200 2.87152000

-0.02392900 1.80796800 3.36965100 0.04919000 1.83136800 4.46580000

Н С

Н

Н

С

Н

| Н          | 0 60614500  | 2 61466500  | 2 98311500   |
|------------|-------------|-------------|--------------|
| н          | -1.06158300 | 2 04225600  | 3 11039800   |
| C          | 2 99252200  | 0.90029000  | 2 71496700   |
| с<br>u     | 2.77232200  | 0.50025000  | 2.714/07/00  |
| 11<br>11   | 2 70026100  | 1.06454100  | 2.01102800   |
| п          | 2.79036100  | 1.96454100  | 2.57922700   |
| H          | 3.38/92800  | 0.76518700  | 3./3121300   |
| C          | -1.29460600 | -4.08457700 | -0.93500100  |
| С          | 0.31813500  | -2.50486100 | -1.40301500  |
| С          | 0.81573500  | -3.29146000 | -2.48618100  |
| С          | 0.21477300  | -4.54619800 | -2.72893900  |
| С          | -0.84108200 | -4.95693200 | -1.94266600  |
| Н          | -2.15573700 | -4.35707400 | -0.32846200  |
| С          | 1.87304400  | -2.76046700 | -3.27206100  |
| Н          | 0.58829000  | -5.16650600 | -3.53919400  |
| Н          | -1.33195000 | -5.91150500 | -2.09835900  |
| С          | 2.35919100  | -1.51579400 | -2.98795200  |
| C          | 1 85047900  | -0 78063600 | -1 87790100  |
| н          | 2 27121300  | -3 34313500 | -4 09806600  |
| н          | 3 15041000  | -1 08437200 | -3 58869000  |
| N          | 0.74140200  | 2 00835400  | -5.566656400 |
| IN<br>NI   | -0.74149200 | -2.90833400 | 1 02007200   |
| IN<br>C    | 0.88/33100  | -1.29/18/00 | -1.08007200  |
| C          | 2.28150000  | 0.55724800  | -1.52640200  |
| C          | 3.143/8400  | 1.33853300  | -2.31536/00  |
| С          | 3.41353500  | 2.66030600  | -1.98695500  |
| С          | 2.79743300  | 3.21989000  | -0.85296100  |
| С          | 1.94524200  | 2.43670600  | -0.05097400  |
| С          | 1.69136600  | 1.09998000  | -0.34873800  |
| Н          | 3.60382600  | 0.92809500  | -3.20979400  |
| Н          | 4.07712800  | 3.24547800  | -2.61180400  |
| Н          | 1.50891800  | 2.91797300  | 0.81986900   |
| Ir         | 0.55500700  | -0.17924000 | 0.74031000   |
| 0          | 2.96751200  | 4.49941700  | -0.44755300  |
| С          | 3.81927100  | 5.35778000  | -1.20671300  |
| Н          | 3.44978800  | 5.48219600  | -2.23181300  |
| Н          | 3,79778700  | 6.32199100  | -0.69588800  |
| н          | 4 84930500  | 4 98196300  | -1 22811700  |
| N          | -1.08511100 | 0.84743200  | -0 29007800  |
| н          | -0.94997500 | 0.84696300  | -1 32360400  |
| ц          | 0.00000100  | 1 81800100  | 0.01137200   |
| п<br>п     | -0.99099100 | 1.01000100  | 0.01137200   |
| п          | -2.01030400 | -1.46303300 | -0.42020800  |
| C          | -3.91/83400 | 1.97087000  | -0.34839700  |
| C          | -4.89637400 | 1.05043600  | -0.08058600  |
| C          | -3.56083500 | 1.3/6///00  | -0.42924600  |
| С          | -3.30329200 | 2.60136400  | -1.05326500  |
| С          | -4.32583300 | 3.51353600  | -1.32374100  |
| С          | -5.63492600 | 3.19595000  | -0.95858700  |
| Н          | -6.94050400 | 1.72685100  | -0.07415400  |
| Н          | -2.28762700 | 2.86022600  | -1.33860000  |
| Н          | -4.09902600 | 4.45908400  | -1.80712600  |
| Н          | -6.44324700 | 3.89514100  | -1.15586400  |
| С          | -2.47749100 | 0.38753600  | -0.02921000  |
| Н          | -2.55647200 | 0.22359500  | 1.05103100   |
| 0          | -2.69018200 | -0.82986200 | -0.71653400  |
| Ν          | -1.37657700 | 0.70073400  | -3.24932400  |
| Н          | -2.09822100 | 0.00032900  | -3.07594500  |
| Н          | -0.76962100 | 0 32502900  | -3 97725000  |
| Н          | -1 85407100 | 1 50331800  | -3 65876200  |
| N          | -5 17005300 | -0.15005700 | 0.57661400   |
| 1 <b>1</b> | 2.1/0/2200  | 0.100/0/00  | 0.27001700   |

| Н          | -6.15729100       | -0.38328400    | 0.61594600  |
|------------|-------------------|----------------|-------------|
| Н          | -4 61447000       | -0 92952200    | 0 23704600  |
|            | 1.01117000        | 0.92982200     | 0.23701000  |
| 77         |                   |                |             |
| 77<br>TS16 | SCE Done: I       | E(PM06) = 17   | 15 61588804 |
| 1510<br>C  | 1 00677700        | D(RW100) = -17 | 2 42548000  |
| C          | 1.900///00        | -0.10/0/100    | 2.43348000  |
| C          | 1.2/148400        | -1.396/2/00    | 2.37997200  |
| C          | -0.13364500       | -1.25056400    | 2.64899700  |
| С          | 0.87310900        | 0.86659500     | 2.73479900  |
| С          | -0.37569500       | 0.15792200     | 2.84612500  |
| С          | 1.99081200        | -2.69858100    | 2.18777500  |
| Н          | 2.87903200        | -2.58386000    | 1.55983200  |
| Н          | 2.32730900        | -3.08127900    | 3.16117000  |
| Н          | 1.34735600        | -3.46013600    | 1.74088200  |
| С          | -1.12404500       | -2.35889500    | 2.85212100  |
| Н          | -1.15058400       | -2.67696300    | 3.90426500  |
| Н          | -2.13974800       | -2.04913100    | 2.58453100  |
| Н          | -0.87528400       | -3.23665900    | 2.24962300  |
| С          | -1.67013500       | 0.78139100     | 3.27733400  |
| Н          | -1 69431100       | 0 86642000     | 4 37246100  |
| н          | -1 79415300       | 1 78720900     | 2 86622600  |
| н          | -2 53583800       | 0.18365500     | 2.00022000  |
| C          | 1 10085800        | 2 20834500     | 2.98107000  |
| U<br>U     | 1.10085800        | 2.29834500     | J.11/9//00  |
| п          | 1.50280700        | 2.30007000     | 4.19030400  |
| Н          | 1.95806100        | 2./3019/00     | 2.59585800  |
| Н          | 0.22564900        | 2.92164400     | 2.91138300  |
| С          | 3.38180300        | 0.16691600     | 2.37689000  |
| Н          | 3.90317700        | -0.56180600    | 1.74864600  |
| Н          | 3.58806500        | 1.16163500     | 1.97043600  |
| Н          | 3.83030900        | 0.11899300     | 3.37915500  |
| С          | -0.54160400       | -4.32359700    | -0.71948100 |
| С          | 0.77413700        | -2.48594900    | -1.20587500 |
| С          | 1.55971900        | -3.25959200    | -2.11584200 |
| С          | 1.27729300        | -4.63790400    | -2.23555600 |
| С          | 0.23356300        | -5.18503700    | -1.51805400 |
| Н          | -1.41792400       | -4.70401500    | -0.19878300 |
| С          | 2.56149400        | -2.59297800    | -2.87132800 |
| Н          | 1.88327800        | -5.24674000    | -2.90148100 |
| Н          | -0.01433400       | -6.23889500    | -1.58351700 |
| С          | 2 72034300        | -1 24355300    | -2.72658500 |
| C          | 1 95246900        | -0 52646000    | -1 76238300 |
| н          | 3 17368700        | -3 16015000    | -3 56715300 |
| н          | 3 4 5 9 8 4 9 0 0 | -0.71253200    | -3 31410800 |
| N          | 0.28835300        | 3 02853400     | 0 55824200  |
| N          | 1.05061000        | 1 16152500     | -0.33824200 |
| N          | 1.03001000        | -1.10132300    | -0.97337300 |
| C          | 2.06133000        | 0.89988900     | -1.53690900 |
| C          | 2.78223600        | 1.//12/300     | -2.3/302600 |
| C          | 2.75664500        | 3.14414000     | -2.16/35400 |
| С          | 1.98333000        | 3.65684100     | -1.10895200 |
| С          | 1.27126800        | 2.78664400     | -0.26280500 |
| С          | 1.31028700        | 1.40354300     | -0.43285300 |
| Н          | 3.35900200        | 1.38810900     | -3.21027000 |
| Н          | 3.31514600        | 3.79872200     | -2.82575200 |
| Н          | 0.70204800        | 3.24170100     | 0.54177300  |
| Ir         | 0.43084300        | -0.00055200    | 0.74521900  |
| 0          | 1.86598900        | 4.97542300     | -0.82140100 |
| С          | 2.57788000        | 5.92360100     | -1.61385700 |
| Н          | 2.25306200        | 5.89646300     | -2.66131100 |

| Н    | 2.34082900  | 6.90113300    | -1.18970700 |
|------|-------------|---------------|-------------|
| Н    | 3.66092200  | 5.75896400    | -1.55974400 |
| Ν    | -1.31425500 | 0.51423800    | -0.30601000 |
| Н    | -1.43099500 | 0.01573700    | -3.16870100 |
| Н    | -1.41943200 | 1.51542900    | -0.42096100 |
| Н    | -1.78756900 | -1.95955500   | -0.62861900 |
| С    | -6.17996400 | 0.93904900    | 0.00025500  |
| С    | -4.98316600 | 0.27857800    | 0.27944500  |
| С    | -3.79631200 | 0.63294000    | -0.37625300 |
| С    | -3.83593300 | 1.66290100    | -1.32741900 |
| С    | -5.03218300 | 2.32611600    | -1.60842000 |
| С    | -6.20766600 | 1.96578000    | -0.94607900 |
| Н    | -7.08896100 | 0.65367500    | 0.52275400  |
| Н    | -2.92872600 | 1.95912200    | -1.84745500 |
| Н    | -5.04449400 | 3.12774900    | -2.34222200 |
| Н    | -7.13775600 | 2.48358700    | -1.16369700 |
| С    | -2.52402000 | -0.12416500   | -0.04653800 |
| Н    | -2.62095400 | -0.58509900   | 0.94239600  |
| 0    | -2.59692600 | -1.44341900   | -0.90603900 |
| Н    | -4.96791600 | -0.52386300   | 1.01324100  |
| Ν    | -2.18218700 | -0.67160100   | -3.26067800 |
| Н    | -2.40896900 | -1.11450600   | -2.05437100 |
| Н    | -1.89015300 | -1.39073800   | -3.92465400 |
| Н    | -3.00446500 | -0.20022700   | -3.64190200 |
|      |             |               |             |
| 77   |             |               |             |
| IN22 | SCF Done: I | E(RM06) = -17 | 15.65702672 |
| С    | 1.71431500  | -1.46886400   | 2.18272000  |
| С    | 0.69446400  | -2.38803600   | 1.76932100  |
| С    | -0.59366000 | -1.89593900   | 2.27432800  |
| С    | 1.05080500  | -0.31179000   | 2.74849900  |
| С    | -0.37590000 | -0.63677100   | 2.85782100  |
| С    | 0.92970800  | -3.76224900   | 1.21164300  |
| Н    | 1.84916300  | -3.80573000   | 0.62105600  |
| Н    | 1.02318900  | -4.49335500   | 2.02667700  |
| Н    | 0.10360600  | -4.09100300   | 0.57486100  |
| С    | -1.87669300 | -2.67001800   | 2.26931600  |
| Н    | -1.93263700 | -3.29490900   | 3.17261200  |
| Н    | -2.74936800 | -2.01255700   | 2.26064800  |
| Н    | -1.94326700 | -3.33819200   | 1.40731500  |
| С    | -1.39400500 | 0.22466400    | 3.54229700  |
| Н    | -1.46502100 | -0.06194100   | 4.60141400  |
| Н    | -1.10753600 | 1.28031300    | 3.51745100  |
| Н    | -2.38583900 | 0.12621500    | 3.09360100  |
| С    | 1.71818300  | 0.83226000    | 3.45765600  |
| Н    | 1.77333900  | 0.63671100    | 4.53746700  |
| Н    | 2.74085300  | 0.98651300    | 3.10266200  |
| Н    | 1.17146200  | 1.77080000    | 3.32216700  |
| С    | 3.19183200  | -1.71120100   | 2.12281700  |
| Н    | 3.47005000  | -2.32618300   | 1.26267400  |
| Н    | 3.76203200  | -0.78139000   | 2.07039000  |
| Н    | 3.50754200  | -2.24327000   | 3.03073300  |
| C    | -3.49116200 | -2.23829700   | -1.11529500 |
| C    | -1.32850300 | -1.70636700   | -1.70776100 |
| C    | -1.51194700 | -2.31028800   | -2.99221100 |
| C    | -2.75359100 | -2.91715400   | -3.27985500 |
| C    | -3.75314600 | -2.89543400   | -2.33229100 |
| Н    | -4.26888200 | -2.16842300   | -0.35741400 |

| С        | -0.44069500  | -2.26767000   | -3.92129900  |
|----------|--------------|---------------|--------------|
| Н        | -2.89979200  | -3.39017000   | -4.24737300  |
| Н        | -4.72009000  | -3.35436500   | -2.50906200  |
| С        | 0.72209700   | -1.64527800   | -3.57116000  |
| С        | 0.87339000   | -1.08488400   | -2.27047000  |
| Н        | -0.56203000  | -2.72134500   | -4.90105400  |
| Н        | 1.54584500   | -1.58692000   | -4.27150100  |
| Ν        | -2.33514100  | -1.66435900   | -0.80362500  |
| N        | -0 11952500  | -1 15318600   | -1 35343400  |
| C        | 2 07287500   | -0 38742800   | -1 84379900  |
| C        | 3 15586500   | -0.09770000   | -2 69305500  |
| C        | 4 22500200   | 0.67417800    | -2 25629500  |
| C        | 4.22300200   | 1 18739500    | -0.94761100  |
| C        | 3 12820700   | 0.88007100    | 0.08044200   |
| C        | 3.12820700   | 0.0006600     | -0.08944200  |
| U<br>U   | 2.07109300   | 0.07900000    | -0.49923300  |
| н        | 5.1/550100   | -0.460/8100   | -3./1040200  |
| н        | 5.04826800   | 0.88446800    | -2.92838600  |
| Н        | 3.16483900   | 1.30589700    | 0.91240000   |
| lr       | 0.48843600   | -0.4/051500   | 0.63950900   |
| 0        | 5.17146800   | 1.97251500    | -0.41937400  |
| С        | 6.30643000   | 2.30133400    | -1.21968700  |
| Н        | 6.01578000   | 2.86044100    | -2.11746600  |
| Н        | 6.93836200   | 2.93173000    | -0.59152500  |
| Н        | 6.86493200   | 1.40284000    | -1.50862300  |
| Ν        | -0.21885000  | 1.42255700    | 0.11290800   |
| Н        | -6.69960400  | 1.20087600    | 0.34798000   |
| Н        | 0.48769000   | 2.00640400    | -0.33661600  |
| Н        | -3.16379700  | -0.45494500   | 0.61930000   |
| С        | -3.47348900  | 5.04483600    | -0.20181000  |
| С        | -3.05027200  | 3.75942900    | 0.12946600   |
| С        | -1.71636300  | 3.36686600    | -0.08729000  |
| С        | -0.81236900  | 4.29293800    | -0.64326600  |
| С        | -1.23847700  | 5.57554400    | -0.97095200  |
| С        | -2.56821300  | 5.95461900    | -0.75129300  |
| Н        | -4.50508500  | 5.33775700    | -0.02915700  |
| Н        | 0 22626200   | 4 02302200    | -0.81849900  |
| н        | -0 53461800  | 6 28518800    | -1 39592800  |
| н        | -2 89376700  | 6 95895400    | -1 00737100  |
| C        | -1 36174700  | 1 99544300    | 0.28748300   |
| н        | -2 15367800  | 1.77571600    | 0.26746500   |
| 0        | 3 75080000   | 0.03570000    | 1 22516300   |
| О<br>П   | -3.73080000  | 2.04222000    | 0.55670800   |
| п        | -5./402/100  | 3.04232900    | 0.33070800   |
| IN<br>TT | -6.23310/00  | 0.41965200    | -0.11340/00  |
| н        | -4.60396600  | 0.1584/200    | 0./3101600   |
| Н        | -6.207/1600  | 0.65029200    | -1.10649600  |
| Н        | -6.86263900  | -0.37718800   | -0.01849000  |
|          |              |               |              |
| 79       |              |               |              |
| TS16     | 5' SCF Done: | E(RM06) = -17 | 770.96506678 |
| С        | 1.63293400   | 0.38930800    | 2.59753400   |
| С        | 1.62512900   | -1.03363500   | 2.44461000   |
| С        | 0.25032900   | -1.50044000   | 2.65649900   |
| С        | 0.25365100   | 0.82959700    | 2.72395300   |
| С        | -0.57023200  | -0.37420500   | 2.84379400   |
| С        | 2.83536700   | -1.92080800   | 2.37530500   |
| Н        | 3.67763600   | -1.41672200   | 1.89261700   |
| Н        | 3.15885800   | -2.21250100   | 3.38451300   |
| Н        | 2.63481800   | -2.84297900   | 1.82160700   |

| С      | -0.16708600 | -2.93515100 | 2.78176400  |
|--------|-------------|-------------|-------------|
| Н      | -0.08054600 | -3.26257900 | 3.82777500  |
| Н      | -1.20534900 | -3.08618700 | 2.47435600  |
| Н      | 0.46123600  | -3.59999200 | 2.18399700  |
| С      | -2.02641800 | -0.37045000 | 3.19643400  |
| Н      | -2.13923900 | -0.30315000 | 4.28793100  |
| Н      | -2.55047300 | 0.48926500  | 2.76951700  |
| Н      | -2.53939700 | -1.28054200 | 2.87256900  |
| С      | -0.20774200 | 2.21520900  | 3.07612400  |
| Н      | -0.28449500 | 2.33940000  | 4.16556800  |
| Н      | 0.48742800  | 2.97621900  | 2.71023800  |
| Н      | -1.19208000 | 2.42960700  | 2.64835100  |
| С      | 2.84889700  | 1.25966100  | 2.70560600  |
| Н      | 3.69891000  | 0.84467800  | 2.15674100  |
| Н      | 2.66771200  | 2.26818400  | 2.32681900  |
| н      | 3 14323900  | 1 34861400  | 3 76041900  |
| C      | -0.90690000 | -4 26096300 | -0 73677000 |
| C      | 0.64892200  | -2 61318600 | -1 17013900 |
| C      | 1 36903400  | -3 48582600 | -2 04440100 |
| C      | 0.91445700  | -4 81623600 | -2.04440100 |
| C      | 0.22006300  | 5 218/0100  | 1 50058200  |
| с<br>ц | -0.22090300 | -5.21849100 | -1.30938200 |
| n<br>C | -1.84032900 | -4.32779200 | -0.24538200 |
| с<br>u | 2.46377800  | -2.93/98300 | -2.74871800 |
| п      | 1.40293400  | -3.3010//00 | -2.82209800 |
| п      | -0.00182800 | -0.23118300 | -1.58695400 |
| C      | 2.80928800  | -1.63936300 | -2.59396500 |
| C      | 2.08927400  | -0.82458300 | -1.6/143/00 |
| Н      | 3.050/3400  | -3.60240300 | -3.41505800 |
| H      | 3.63883500  | -1.21110800 | -3.143/8100 |
| N      | -0.49841800 | -3.00908400 | -0.56429500 |
| N      | 1.07/961400 | -1.33295700 | -0.92/01200 |
| C      | 2.35209500  | 0.58597400  | -1.45708300 |
| C      | 3.21307700  | 1.35309700  | -2.26211000 |
| С      | 3.33073800  | 2.72514100  | -2.08073400 |
| С      | 2.56122900  | 3.34611500  | -1.07915600 |
| С      | 1.70960000  | 2.58092900  | -0.26148200 |
| С      | 1.60534000  | 1.19668000  | -0.40493600 |
| Н      | 3.79128100  | 0.88916800  | -3.05669100 |
| Н      | 3.99754200  | 3.29781000  | -2.71421800 |
| Н      | 1.14916500  | 3.11021600  | 0.50370100  |
| Ir     | 0.51213500  | -0.04997600 | 0.74756400  |
| 0      | 2.57674600  | 4.67696600  | -0.82499500 |
| С      | 3.43178300  | 5.51623100  | -1.59858000 |
| Н      | 3.16295500  | 5.49231700  | -2.66204300 |
| Н      | 3.28369100  | 6.52661700  | -1.21308500 |
| Н      | 4.48515100  | 5.23472400  | -1.47951600 |
| Ν      | -1.10522300 | 0.62122600  | -0.39544500 |
| Н      | -0.98713300 | 0.60840500  | -2.96291800 |
| Н      | -1.02467100 | 1.55825700  | -0.76694400 |
| Н      | -1.93786400 | -1.72964500 | -0.95447000 |
| С      | -5.97116200 | 1.45281400  | -0.59269000 |
| С      | -4.88759100 | 0.57477200  | -0.40612700 |
| С      | -3.56225700 | 1.07121200  | -0.54736600 |
| С      | -3.38830900 | 2.42331300  | -0.86805100 |
| С      | -4.46860900 | 3.28566800  | -1.06047300 |
| С      | -5.76589700 | 2.79024700  | -0.91503700 |
| Н      | -6.98249000 | 1.06791600  | -0.47986100 |
| Н      | -2.38600500 | 2.83647600  | -0.94286800 |

| Н | -4.29692900 | 4.33050100  | -1.30162600 |
|---|-------------|-------------|-------------|
| Н | -6.62201800 | 3.44560400  | -1.05273600 |
| С | -2.39598100 | 0.13971800  | -0.26867400 |
| Н | -2.56752600 | -0.38856000 | 0.67212700  |
| 0 | -2.62323700 | -1.09182200 | -1.26589400 |
| Ν | -1.76024100 | 0.08254400  | -3.38663800 |
| Н | -2.17857000 | -0.52564300 | -2.54074200 |
| Н | -1.41236300 | -0.49204000 | -4.15818400 |
| Н | -2.46177200 | 0.73898900  | -3.74014500 |
| Ν | -5.11107100 | -0.74805800 | -0.03125600 |
| Н | -6.06984000 | -1.05682200 | -0.14507300 |
| Н | -4.44078500 | -1.39637500 | -0.43518600 |
|   |             |             |             |

| 7 | 9 |  |
|---|---|--|
|   |   |  |

| 79    |             |               |             |
|-------|-------------|---------------|-------------|
| IN22' | SCF Done:   | E(RM06) = -17 | 71.01136503 |
| С     | -1.67545300 | -1.51502500   | -2.21160700 |
| С     | -0.72762400 | -2.45188100   | -1.68503900 |
| С     | 0.61223600  | -2.02673100   | -2.10011100 |
| С     | -0.92719000 | -0.41033300   | -2.77958100 |
| С     | 0.48568800  | -0.79309800   | -2.76444900 |
| С     | -1.06074600 | -3.78363700   | -1.07672100 |
| Н     | -1.99785000 | -3.74760900   | -0.51435800 |
| Н     | -1.17295000 | -4.54440700   | -1.86165900 |
| Н     | -0.27532500 | -4.13067500   | -0.39914900 |
| С     | 1.87022300  | -2.82594400   | -1.94436500 |
| Н     | 2.00882500  | -3.48286600   | -2.81526000 |
| Н     | 2.74743400  | -2.17878400   | -1.86841400 |
| Н     | 1.83976100  | -3.46308500   | -1.05707600 |
| С     | 1.58984700  | -0.02074100   | -3.42171800 |
| Н     | 1.77416000  | -0.42810500   | -4.42619500 |
| Н     | 1.32522500  | 1.03266300    | -3.55062700 |
| Н     | 2.52308200  | -0.07751700   | -2.85439600 |
| С     | -1.49430700 | 0.72478200    | -3.58402000 |
| Н     | -1.49191100 | 0.48032600    | -4.65531700 |
| Н     | -2.52771600 | 0.94419900    | -3.30235300 |
| Н     | -0.91331400 | 1.64330700    | -3.45456000 |
| С     | -3.16193000 | -1.70266600   | -2.25600400 |
| Н     | -3.53084400 | -2.26639700   | -1.39459100 |
| Н     | -3.69899100 | -0.75245900   | -2.28797200 |
| Н     | -3.42759100 | -2.26450100   | -3.16205600 |
| С     | 3.25370400  | -2.18860400   | 1.61183600  |
| С     | 1.03143000  | -1.67250300   | 1.93176600  |
| С     | 1.07086600  | -2.24515900   | 3.24313900  |
| С     | 2.27621900  | -2.82656100   | 3.69068600  |
| С     | 3.38020700  | -2.81043900   | 2.86765200  |
| Н     | 4.11904100  | -2.13070300   | 0.95447800  |
| С     | -0.09973500 | -2.19399800   | 4.04314500  |
| Н     | 2.31322100  | -3.27168500   | 4.68139500  |
| Н     | 4.32693500  | -3.24512200   | 3.16990700  |
| С     | -1.21553300 | -1.57861500   | 3.55601900  |
| С     | -1.21705400 | -1.03503200   | 2.23868600  |
| Н     | -0.08721900 | -2.63111700   | 5.03778400  |
| Н     | -2.11105100 | -1.50896200   | 4.16060800  |
| Ν     | 2.13618500  | -1.64162500   | 1.14767800  |
| Ν     | -0.13268900 | -1.13369900   | 1.43394800  |
| С     | -2.34609800 | -0.31396500   | 1.67983500  |
| С     | -3.50793700 | 0.00765300    | 2.40574100  |
| С     | -4.50373700 | 0.80015700    | 1.85170800  |

| С      | -4.32934200               | 1.30160600  | 0.54924200      | Н        | 3.08010100  | -0.89155700 | -1.82599500   |
|--------|---------------------------|-------------|-----------------|----------|-------------|-------------|---------------|
| С      | -3.17266700               | 0.97791100  | -0.18354700     | Н        | 2.63514200  | -2.42099800 | -1.06676900   |
| С      | -2.18552400               | 0.14757500  | 0.34282100      | С        | 1.25484900  | 0.89152700  | -3.29533000   |
| Н      | -3.64564100               | -0.34680400 | 3.42277500      | Н        | 0.76722200  | 1.86788900  | -3.23241500   |
| Н      | -5.38839100               | 1.03639200  | 2,43044000      | Н        | 2.25832000  | 0.98796900  | -2.87657100   |
| Н      | -3 08793700               | 1 39177100  | -1 18301300     | Н        | 1 36319300  | 0 63940900  | -4 35934000   |
| Ir     | -0 52246600               | -0 49435000 | -0 62457800     | C        | -4 35161700 | -1 53626900 | 1 16431000    |
| 0      | -5 22053000               | 2 09778300  | -0.08593800     | C<br>C   | -3.04550800 | 0.33320700  | 0.87157400    |
| C      | -5.22055000<br>6.42718000 | 2.07770500  | -0.08575800     | C<br>C   | 4 07024700  | 1 17404000  | 1 40262700    |
|        | -0.42718000               | 2.43749300  | 1 40752700      | C<br>C   | -4.07024700 | 0.57400000  | 1.40203700    |
| п      | -0.22213900               | 2.09220900  | 0.11(22200      | C        | -3.29080700 | 0.3/490900  | 1.78220100    |
| п      | -0.98083700               | 3.08330800  | -0.11623200     | C        | -5.44020600 | -0./9035900 | 1.03900200    |
| H      | -/.02692800               | 1.5/340900  | 0.83337100      | Н        | -4.43111500 | -2.61891400 | 1.08589400    |
| N      | 0.28015900                | 1.32181900  | 0.01937/00      | C        | -3.79355400 | 2.56055200  | 1.54866100    |
| Н      | 6.81323600                | -1.15105100 | -0.03956500     | Н        | -6.08870200 | 1.19779900  | 2.17802500    |
| Н      | -0.23426600               | 1.74205400  | 0.79398700      | Н        | -6.35837600 | -1.29177900 | 1.94661100    |
| Н      | 3.07071200                | -0.43066400 | -0.24672600     | С        | -2.55310200 | 3.03493900  | 1.22908700    |
| С      | 3.44591100                | 4.99898600  | 0.46953900      | С        | -1.56017600 | 2.15583200  | 0.70486700    |
| С      | 3.08134500                | 3.71660100  | -0.00531000     | Н        | -4.56258000 | 3.22200200  | 1.93841200    |
| С      | 1.73005100                | 3.29097400  | 0.18339600      | Н        | -2.31335800 | 4.08185000  | 1.36988800    |
| С      | 0.82424900                | 4.14286600  | 0.85604600      | Ν        | -3.19820600 | -1.00852900 | 0.77602600    |
| С      | 1.20641000                | 5.38787600  | 1.32255000      | Ν        | -1.84098500 | 0.85596100  | 0.46677000    |
| С      | 2.53114000                | 5.81183500  | 1.11645900      | С        | -0.19191600 | 2.54585900  | 0.42808200    |
| Н      | 4.46976900                | 5.33642100  | 0.32669700      | С        | 0.31507500  | 3.83837000  | 0.65444700    |
| Н      | -0.21112100               | 3.82985400  | 0.97024100      | С        | 1.65437500  | 4.13337900  | 0.43828800    |
| Н      | 0.49041600                | 6.03480600  | 1.81919100      | С        | 2.51033100  | 3.10756900  | -0.00208500   |
| Н      | 2.84703100                | 6.79008700  | 1.46945800      | С        | 2.00814000  | 1.81500300  | -0.23073100   |
| С      | 1.31040400                | 2.01003800  | -0.35686700     | C        | 0.65961800  | 1.50321600  | -0.04807900   |
| Н      | 1.91338900                | 1.57859800  | -1.15014400     | Н        | -0.33369400 | 4.63425000  | 1.00881600    |
| 0      | 3 71416900                | 0.04137100  | -0.81191400     | Н        | 2 02186700  | 5 13694300  | 0 61499500    |
| N      | 6 20837700                | -1 26256700 | -0.85322800     | Н        | 2 71360400  | 1 06776100  | -0 57813600   |
| Н      | 4 56904500                | -0.46775300 | -0 76641800     | Ir       | -0 25866600 | -0 23479700 | -0 53551200   |
| н      | 6 23132300                | -2 25283500 | -1 09631200     | 0        | 3 83600000  | 3 26754900  | -0 23851300   |
| н      | 6 67292400                | -0 77546200 | -1 62043200     | C<br>C   | 4 41125600  | 4 56533400  | -0.09623300   |
| N      | 4 00691800                | 2 93154100  | -0.64288000     | н        | 4 33468600  | 4 92912200  | 0.93562400    |
| н      | 4.00091000                | 3 26364900  | -0.62157300     | н        | 5 46454300  | 4.5256300   | -0.36001600   |
| п<br>п | 4.90223700                | 1 01084700  | -0.02137300     | 11<br>11 | 3.40434300  | 5 28608700  | 0.77608200    |
| п      | 5.91512400                | 1.91084700  | -0.04391100     | п        | 5.94572900  | 3.28098700  | -0.77098300   |
| 72     |                           |             |                 | N        | -0.13844600 | -1.046/0600 | 1.49336600    |
| /3     | 1 0000                    |             | 1 ( 50 00001055 | Н        | 1.42934300  | -0.66581500 | 3.88//4/00    |
| 1816   | -1 SCF Done               | E(RM06) = - | 1659.02031275   | Н        | -1.08091700 | -1.43810800 | 1.55638300    |
| C      | 0.45/32600                | -0.18220500 | -2.62010800     | Н        | 0.05024200  | -0.43278000 | 2.78378200    |
| С      | -0.97556400               | -0.28675700 | -2.62695100     | С        | 4.15814600  | -3.43305800 | 1.65904300    |
| С      | -1.33464400               | -1.62954500 | -2.16575000     | С        | 2.78938200  | -3.29699200 | 1.89608900    |
| С      | 0.97900800                | -1.36512200 | -1.97185800     | С        | 2.19143100  | -2.02798300 | 1.88696000    |
| С      | -0.15300900               | -2.27150900 | -1.75644400     | С        | 2.98606200  | -0.89236200 | 1.66580300    |
| С      | -1.92223100               | 0.67918000  | -3.27796100     | С        | 4.35520500  | -1.03036300 | 1.44528900    |
| Н      | -1.54321300               | 1.70397000  | -3.23715300     | С        | 4.94254600  | -2.29968500 | 1.43626200    |
| Н      | -2.06507200               | 0.41842100  | -4.33578500     | Н        | 4.61073400  | -4.42025600 | 1.66127400    |
| Н      | -2.90751600               | 0.66442100  | -2.80290900     | Н        | 2.53405800  | 0.09343400  | 1.65682200    |
| С      | -2.70932800               | -2.22314400 | -2.21938500     | Н        | 4.96319100  | -0.14614900 | 1.27611400    |
| Н      | -2.89934500               | -2.63763800 | -3.21979200     | Н        | 6.00967900  | -2.40338500 | 1.26129700    |
| Н      | -2.83059600               | -3.03519200 | -1.49796200     | С        | 0.73636800  | -1.92847500 | 2.17699000    |
| Н      | -3.48559600               | -1.48012000 | -2.02192300     | Н        | 0.30279500  | -2.88312000 | 2.47403600    |
| С      | -0.03704900               | -3.66612000 | -1.21880700     | 0        | 0.57047600  | -1.05376600 | 3.61447800    |
| Н      | 0.15419100                | -4.37172300 | -2.03912800     | Н        | 2.18306000  | -4.17794200 | 2.09169500    |
| Н      | 0.79547200                | -3.75943700 | -0.51566400     |          |             |             |               |
| Н      | -0.95341700               | -3.98928000 | -0.71585400     | 88       |             |             |               |
| Ċ      | 2.42555200                | -1.76344000 | -1.91409400     | TS16     | -2 SCF Done | E(RM06) = - | 1892.64971376 |
| Н      | 2.71337100                | -2.29919100 | -2.83007800     | С        | 0.41828500  | -2.86866900 | 1.29602600    |
|        |                           |             |                 |          |             |             |               |

| С      | 1.79988600  | -2.61224500 | 0.99975800  |
|--------|-------------|-------------|-------------|
| С      | 2.00478000  | -2.80018700 | -0.43914100 |
| С      | -0.27474400 | -3.02306500 | 0.03362500  |
| С      | 0.74707800  | -3.04606300 | -1.01504700 |
| C      | 2 89947300  | -2.48053500 | 2 01340100  |
| н      | 2 53991400  | -2 02942700 | 2 94245900  |
| н      | 3 30727800  | -3 47034800 | 2.91213900  |
| 11     | 2 72864100  | 1 97216100  | 1 64111200  |
| П      | 3.72804100  | -1.8/210100 | 1.04111500  |
| C II   | 3.33093000  | -2.84345000 | -1.1235/100 |
| Н      | 3.//314100  | -3.8490/200 | -1.03616200 |
| Н      | 3.25648/00  | -2.61230000 | -2.18914100 |
| Н      | 4.04705100  | -2.14019600 | -0.68229200 |
| С      | 0.47603400  | -3.35302800 | -2.45700200 |
| Н      | 0.50467300  | -4.44000200 | -2.61777500 |
| Н      | -0.51563500 | -3.01081200 | -2.76277500 |
| Н      | 1.21989800  | -2.90480300 | -3.12229900 |
| С      | -1.68768800 | -3.50740200 | -0.12858000 |
| Н      | -1.72784000 | -4.60477300 | -0.06880200 |
| Н      | -2.34145100 | -3.11509400 | 0.65561000  |
| Н      | -2.11436100 | -3.21384900 | -1.09112000 |
| C      | -0 16490700 | -3 07702500 | 2 66083200  |
| н      | 0 34835900  | -2 48072700 | 3 4201 5200 |
| н      | -1 22645700 | -2 82246400 | 2 69730600  |
| н<br>ц | -1.22045700 | -2.82240400 | 2.07750000  |
| С      | -0.00000300 | -4.134/0000 | 2.94177300  |
| C      | 4.21804100  | 0.75895100  | -1.98412400 |
| C      | 2.93340500  | 1.07782000  | -0.10525100 |
| C      | 3.80503500  | 2.10934300  | 0.36001900  |
| С      | 4.94833700  | 2.40889300  | -0.41347/00 |
| С      | 5.16375300  | 1.72928600  | -1.59344700 |
| Н      | 4.34737700  | 0.22724100  | -2.92499400 |
| С      | 3.45916300  | 2.79239000  | 1.55632600  |
| Н      | 5.63458600  | 3.17916900  | -0.07172200 |
| Η      | 6.02586300  | 1.93336100  | -2.21954800 |
| С      | 2.29130700  | 2.48094600  | 2.19416900  |
| С      | 1.45320800  | 1.44170600  | 1.69205600  |
| Н      | 4.11437500  | 3.57150300  | 1.93639100  |
| Н      | 1.99422800  | 3.01780600  | 3.08720600  |
| Ν      | 3.14739900  | 0.43120900  | -1.27432300 |
| Ν      | 1.81596600  | 0.71841900  | 0.61084600  |
| С      | 0 15457500  | 1 10061800  | 2 23981800  |
| C      | -0 45433700 | 1 79513100  | 3 30051200  |
| C      | -1 74383400 | 1 48766300  | 3 71384000  |
| C      | -2 44216600 | 0.46471700  | 3 04617000  |
| C      | 1 83248200  | 0.404/1/00  | 1 00/83700  |
| C      | -1.83248200 | -0.24204100 | 1.57504200  |
| C II   | -0.53064/00 | 0.03/95500  | 1.5/594300  |
| Н      | 0.07255400  | 2.5939/400  | 3.81453300  |
| Н      | -2.19393800 | 2.03664200  | 4.53225400  |
| Н      | -2.41639100 | -1.02612900 | 1.52465000  |
| Ir     | 0.54359300  | -0.97459600 | 0.19490700  |
| 0      | -3.70952900 | 0.08600100  | 3.34756400  |
| С      | -4.38778300 | 0.74303700  | 4.41626400  |
| Н      | -4.51292900 | 1.81431600  | 4.21480100  |
| Н      | -5.37064200 | 0.27206600  | 4.47833500  |
| Н      | -3.86173000 | 0.60732300  | 5.36904100  |
| Ν      | -0.12497600 | 0.43759200  | -1.36966300 |
| Н      | -1.88451100 | 1.32173300  | -3.87021000 |
| Н      | 0.81711400  | 0.61659100  | -1.72736300 |
|        | 0.47901200  | 2 12414100  | 1 14505100  |

| С      | -4.15011500  | -1.71696900               | -3.23666500   |
|--------|--------------|---------------------------|---------------|
| С      | -2.82316700  | -1.28979200               | -3.31703000   |
| С      | -2.27286600  | -0.47058800               | -2.31796900   |
| С      | -3.07823200  | -0.07650200               | -1.24111600   |
| С      | -4.40340300  | -0.50552900               | -1.15965600   |
| С      | -4.94260200  | -1.32492700               | -2.15566500   |
| Н      | -4.56146900  | -2.35465300               | -4.01405100   |
| Н      | -2.66040200  | 0.54847700                | -0.46212700   |
| Н      | -5.01459200  | -0.20191800               | -0.31402900   |
| Н      | -5.97480700  | -1.65723700               | -2.08859300   |
| С      | -0.86330200  | 0.01988200                | -2.49372600   |
| Н      | -0.31933200  | -0.60344000               | -3.20829000   |
| 0      | -1.00685000  | 1.35109700                | -3.44464800   |
| Н      | -2.20740200  | -1.59422700               | -4.16089300   |
| С      | -1 60237100  | 5 00701700                | -2 43900600   |
| н      | -2 17923300  | 4 50984100                | -3 22772800   |
| н      | -0.63998300  | 5 31989800                | -2 85715000   |
| н      | -2 15361100  | 5 903/3100                | -2.03713000   |
| C II   | -2.13301100  | <i>4</i> 08745000         | 1 22586700    |
| C      | -1.39/99900  | 4.08743000                | -1.23380700   |
|        | -0.38133800  | 4.77520700                | -0.14155900   |
| п      | 0.38813100   | 5.10055000                | -0.530/5600   |
| п      | -1.11/55400  | 5.651//200                | 0.23336900    |
| Н      | -0.41024200  | 4.09//1000                | 0./036/400    |
| C      | -2./2462/00  | 3.55058900                | -0.69831800   |
| Н      | -3.2/816100  | 3.00/8/200                | -1.47218000   |
| Н      | -2.56525300  | 2.88002100                | 0.15330300    |
| Н      | -3.35181400  | 4.38141100                | -0.35658800   |
| 0      | -0.57157800  | 2.97067000                | -1.74123700   |
| Н      | -0.90161200  | 2.31081000                | -2.70147500   |
|        |              |                           |               |
| 76     |              |                           |               |
| TS16   | 5-3 SCF Done | E(RM06) = -1              | 1735.47695655 |
| С      | 0.28257400   | -0.29486100               | -2.73910600   |
| С      | -1.14928100  | -0.41392000               | -2.65430100   |
| С      | -1.46604100  | -1.73986000               | -2.11410000   |
| С      | 0.85461400   | -1.44665300               | -2.07692500   |
| С      | -0.25272300  | -2.35264100               | -1.75747300   |
| С      | -2.13970800  | 0.51618000                | -3.29288400   |
| Н      | -1.77250400  | 1.54609200                | -3.30690400   |
| Н      | -2.32761400  | 0.21594200                | -4.33305300   |
| Н      | -3.10182100  | 0.50719000                | -2.77259400   |
| С      | -2.83139000  | -2.35388200               | -2.06356700   |
| Н      | -3.05357300  | -2.85201300               | -3.01828500   |
| Н      | -2.91080000  | -3 10552500               | -1 27379100   |
| н      | -3 61188400  | -1 60754200               | -1 89769500   |
| C      | -0.09081100  | -3 73499600               | -1 19995200   |
| н      | -0.00409900  | -4 45910600               | -2 02227700   |
| н      | 0.81658000   | -3 82602800               | _0 59754800   |
| н      | _0 94705000  | -4 03680400               | -0 59033000   |
| C      | 2 30608000   | -1 82606800               | -0.57055700   |
| с<br>ц | 2.50098000   | -1.02000000<br>7 28600000 | 2.00743100    |
| п      | 2.33138000   | -2.30000900               | -3.00293100   |
| п      | 2.9333/800   | -0.94432300               | -2.00390200   |

2.57308300 -2.45140700 -1.23422500 C 1.02984900 0.76250200 -3.49394300 Н 0.53772600 1.73682300 -3.43313600

2.05282200 0.88073900 -3.13114000

-4.31908600 -1.41366200 1.31625700

1.08424300 0.47941300 -4.55418700

Н

Н

Н

С

| С  | -3.01957000 | 0.42503100  | 0.84939300  |
|----|-------------|-------------|-------------|
| С  | -4.03180500 | 1.30798300  | 1.33536200  |
| С  | -5.24676800 | 0.74165600  | 1.78016400  |
| С  | -5.39996500 | -0.62896300 | 1.76613700  |
| Н  | -4.39824100 | -2.49909500 | 1.32781900  |
| С  | -3.74583500 | 2.69960200  | 1.37487900  |
| Н  | -6.03785000 | 1.39490200  | 2.13901400  |
| Н  | -6.31464500 | -1.10437700 | 2.10400400  |
| С  | -2.50858700 | 3.14207300  | 1.00082100  |
| С  | -1.53084600 | 2.22259100  | 0.51690900  |
| Н  | -4.50461000 | 3.39188100  | 1.72959700  |
| Н  | -2.26012700 | 4.19456800  | 1.06347200  |
| Ν  | -3.17278100 | -0.91941100 | 0.86771200  |
| Ν  | -1.82406900 | 0.91086600  | 0.37446100  |
| С  | -0.16512400 | 2.57616500  | 0.19186700  |
| С  | 0.37546600  | 3.86128200  | 0.37844900  |
| С  | 1.72384700  | 4.10873400  | 0.16376100  |
| С  | 2.55119900  | 3.04526400  | -0.24215200 |
| С  | 2.01088400  | 1.76461900  | -0.45332000 |
| С  | 0.65680800  | 1.49728900  | -0.25442000 |
| Н  | -0.25158700 | 4.68421000  | 0.70968400  |
| Н  | 2.12179000  | 5.10425900  | 0.31924900  |
| Н  | 2.69517500  | 0.98770800  | -0.77700100 |
| Ir | -0.30262700 | -0.24810300 | -0.62843800 |
| 0  | 3.88492700  | 3.15841000  | -0.45684800 |
| С  | 4.51102900  | 4.42366600  | -0.25209800 |
| Н  | 4.40469600  | 4.76005900  | 0.78649500  |
| Н  | 5.56883100  | 4.27038400  | -0.47413600 |
| Н  | 4.10696100  | 5.18570000  | -0.92941100 |
| Ν  | -0.02911900 | -0.90692200 | 1.47546100  |
| Н  | 1.47245900  | -2.33497900 | 3.93642200  |
| Н  | -0.99526300 | -1.21296800 | 1.61583500  |
| Н  | 0.18390700  | 0.11561900  | 2.52528400  |
| С  | 4.32532400  | -3.17797800 | 1.30845400  |
| С  | 2.93945500  | -3.15580700 | 1.47440100  |
| С  | 2.25911900  | -1.93828100 | 1.63865300  |
| С  | 2.99103400  | -0.74130500 | 1.65977500  |
| С  | 4.37508300  | -0.76615400 | 1.49351200  |
| С  | 5.04412800  | -1.98097700 | 1.31516600  |
| Н  | 4.83954200  | -4.12537400 | 1.17465600  |
| Н  | 2.48132900  | 0.20423500  | 1.80176300  |
| Н  | 4.93168100  | 0.16663400  | 1.50168100  |
| Н  | 6.12267300  | -1.99372700 | 1.18538200  |
| С  | 0.78354600  | -1.97668100 | 1.87633700  |

| Н    | 0.36637100  | -2.97130500   | 1.71616300  |
|------|-------------|---------------|-------------|
| 0    | 0.64247400  | -1.97190900   | 3.57023500  |
| Н    | 2.37970700  | -4.08869200   | 1.47593900  |
| Ο    | 0.44331000  | 0.41892400    | 3.55520900  |
| Н    | 0.58559700  | -0.83681800   | 3.79720400  |
| Н    | -0.35980500 | 0.76871900    | 3.98068000  |
|      |             |               |             |
| 15   |             |               |             |
| 2a-2 | SCF Done: E | (RM06) = -325 | 5.531677644 |
| Ν    | -2.97963400 | 0.29680500    | -0.00022900 |
| Н    | -2.67117200 | 1.27665600    | -0.00086400 |
| С    | 1.74666200  | -1.06015300   | -0.00009700 |
| С    | 0.37005800  | -1.28365600   | -0.00008200 |
| С    | -0.53244400 | -0.20833100   | 0.00010500  |
| С    | -0.02364600 | 1.10139700    | 0.00012000  |
| С    | 1.35010900  | 1.32635100    | 0.00005000  |
| С    | 2.23938600  | 0.24615100    | -0.00005100 |
| Н    | 2.43287400  | -1.90268100   | -0.00015300 |
| Н    | -0.70372800 | 1.94980800    | 0.00031300  |
| Н    | 1.73071700  | 2.34413000    | 0.00012300  |
| Н    | 3.31132000  | 0.42455200    | -0.00011900 |
| С    | -1.98411900 | -0.50429100   | 0.00020500  |
| Н    | -2.22314600 | -1.57415200   | 0.00091600  |
| Н    | -0.01546500 | -2.30075200   | -0.00011900 |
|      |             |               |             |
| 17   |             |               |             |
| 2a-3 | SCF Done: E | (RM06) = -380 | ).876588693 |
| Ν    | 2.83351200  | -0.49766900   | -0.26729100 |
| Н    | 2.66285000  | 0.43670500    | -0.65318500 |
| С    | -2.02255900 | -1.09673700   | -0.02545200 |
| С    | -0.68724000 | -1.46948000   | 0.08067700  |
| С    | 0.35362300  | -0.52404800   | 0.08581700  |
| С    | 0.02111000  | 0.85710600    | 0.04464800  |
| С    | -1.33158500 | 1.22405500    | -0.06275100 |
| С    | -2.33701300 | 0.26341200    | -0.10939200 |
| Н    | -2.80546300 | -1.84891400   | -0.04212100 |
| Н    | -1.58579700 | 2.28137300    | -0.10070500 |
| Н    | -3.37321400 | 0.58091600    | -0.19274400 |
| С    | 1.73601100  | -1.04337400   | 0.10923000  |
| Н    | 1.81303300  | -2.07266500   | 0.48110900  |
| Н    | -0.42240900 | -2.52293100   | 0.14138300  |
| Ν    | 1.00777000  | 1.84769500    | 0.07822900  |
| Н    | 0.63971600  | 2.77697700    | 0.25483400  |
| Н    | 1.78822000  | 1.65276000    | 0.69820200  |

## Supplemental Reference.

Chen, X. W., Zhao, H., Xiong, B., Jiang, H. F., Dixneuf, P. H. and Zhang, M. (2017). Selective synthesis of nitrogen bi-heteroarenes by a hydrogen transfer-mediated direct a, β-coupling reaction. Organic & Biomolecular Chemistry *15*, 6093-6097.

Rajendran, S., Raghunathan, R., Hevus, I., Krishnan, R., Ugrinov, A., Sibi, M. P., Webster, D. C. and Sivaguru, J., (2015). Programmed photodegradation of polymeric/oligomeric materials derived from renewable bioresources. Angew. Chem.-Int. Edit. *54*, 1159-1163.

Wang, C., Chen, H.-Y. T., Bacsa, J., Catlow, C. R. A. and Xiao, J. (2013). Synthesis and X-ray structures of cyclometalated iridium complexes including the hydrides. Dalton Transactions 42, 935-940.

Marenich, A. V., Cramer, C. J. and Truhlar, D. G. (2009). Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J. Phys. Chem. B. 113, 4538–4543.

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652.

Lee, C., Yang, W. and Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789.

Stephens, P. J., Devlin, F. J., Chabalowski, C. F. and Frisch, M. J. (1994). Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 98, 11623–11627.

Fukui, K. (1970). Formulation of the reaction coordinate. J. Phys. Chem. 74, 4161-4163.

Fukui, K. (1981). The path of chemical reactions - the IRC approach. Acc. Chem. Res. 14, 363-368.

Hay, P. J. and Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310.

Wadt, W. R. and Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298.

Ehlers, A. W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., Köhler, K. F., Stegmann, R., Veldkamp, A. and Frenking, G. (1993). A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc Cu, Y Ag and La Au. Chem. Phys. Lett. 208, 111–114.

Krishnan, R., Binkley, J. S., Seeger R. and Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654.

McLean, A. D. and Chandler, G. S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648.

Zhao, Y., Schultz, N. E. and Truhlar, D. G. (2005). Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J. Chem. Phys. 123, 161103.

Zhao, Y. and Truhlar, D. G. (2008). Acc. Chem. Res. 41, 157-167.

Zhao, Y. and Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. *120*, 215–241.

Zhao, Y. and Truhlar, D. G. (2009). Benchmark Energetic Data in a Model System for Grubbs II Metathesis Catalysis and Their Use for the Development, Assessment, and Validation of Electronic Structure Methods. J. Chem. Theory Comput. *5*, 324–333.

Roy, L. E., Hay, P. J. and Martin, R. L. (2008). Revised Basis Sets for the LANL Effective Core Potentials. J. Chem. Theor. Comput. 4, 1029–1031.

Grimme, S., Antony, J., Ehrlich, S. and Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104.

Chen, M., Zhang, M., Xiong, B., Tan, Z., Lv, W. and Jiang, H. (2014). A Novel Ruthenium-Catalyzed Dehydrogenative

Synthesis of 2-Arylquinazolines from 2-Aminoaryl Methanols and Benzonitriles. Organic Letters 16, 6028-6031.

Ma, J., Wan, Y., Hong, C., Li, M., Hu, X., Mo, W., Hu, B., Sun, N., Jin, L. and Shen, Z. (2017). ABNO-Catalyzed Aerobic Oxidative Synthesis of 2 - Substituted 4H - 3,1 - Benzoxazines and Quinazolines. European Journal of Organic Chemistry (23), 3335-3342.

Han, B., Yang, X. L., Wang, C., Bai, Y. W., Pan, T. C., Chen, X. and Yu, W. (2012). CuCl/DABCO/4-HO-TEMPO-Catalyzed Aerobic Oxidative Synthesis of 2-Substituted Quinazolines and 4H-3,1-Benzoxazines. J. Org. Chem. 77, 1136-1142.

Yamaguchi, T., Sakairi, K., Yamaguchi, E., Tada, N. and Itoh, A. (2016). Magnesium iodide-catalyzed synthesis of 2-substituted quinazolines using molecular oxygen and visible light. Rsc Advances 6, 56892-56895.

Zhang, Z., Wang, M., Zhang, C., Zhang, Z., Lu, J. and Wang, F. (2015). The cascade synthesis of quinazolinones and quinazolines using an a-MnO2 catalyst and tert-butyl hydroperoxide (TBHP) as an oxidant. Chemical Communications *51* (44), 9205-9207.

Gopalaiah, K., Saini, A. and Devi, A. (2017). Iron-catalyzed cascade reaction of 2-aminobenzyl alcohols with benzylamines: synthesis of quinazolines by trapping of ammonia. Organic & Biomolecular Chemistry *15*, 5781-5789.

Cheng, X., Wang, H., Xiao, F. and Deng, G.-J. (2016). Lewis acid-catalyzed 2-arylquinazoline formation from N'--arylbenzimidamides and paraformaldehyde. Green Chemistry 18, 5773-5776.

Malakar, C. C., Baskakova, A., Conrad, J. and Beifuss, U. (2012). Copper-Catalyzed Synthesis of Quinazolines in Water Starting from o-Bromobenzylbromides and Benzamidines. Chemistry-a European Journal 18, 8882-8885.

Wang, H., Chen, H., Chen, Y. and Deng, G.-J. (2014). Palladium-catalyzed one pot 2-arylquinazoline formation via hydrogen-transfer strategy. Organic & Biomolecular Chemistry 12, 7792-7799.

Yu, C., Guo, X., Xi, Z., Muzzio, M., Yin, Z., Shen, B., Li, J., Seto, C. T. and Sun, S. (2017). AgPd Nanoparticles Deposited on WO2.72 Nanorods as an Efficient Catalyst for One-Pot Conversion of Nitrophenol/Nitroacetophenone into Benzoxazole/Quinazoline. Journal of the American Chemical Society *139*, 5712-5715.

Gujjarappa, R., Maity, S. K., Hazra, C. K., Vodnala, N., Dhiman, S., Kumar, A., Beifuss, U. and Malakar, C. C. (2018). Divergent Synthesis of Quinazolines Using Organocatalytic Domino Strategies under Aerobic Conditions. European Journal of Organic Chemistry (33), 4628-4638.

Saha, M., Mukherjee, P. and Das, A. R. (2017). A facile and versatile protocol for the one-pot PhI(OAc)2 mediated divergent synthesis of quinazolines from 2-aminobenzylamine. Tetrahedron Lett. 58, 2044-2049.

Chen, J., Natte, K., Neumann, H. and Wu, X.-F. (2014). A convenient palladium-catalyzed carbonylative synthesis of quinazolines from 2-aminobenzylamine and aryl bromides. Rsc Advances 4, 56502-56505.