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Abstract
Background  There is a gap in the literature regarding genetic underpinnings of pediatric autoimmune CNS diseases. This 
study explored rare gene variants implicated in immune dysregulation within these disorders.
Methods  This was a single-center observational study of children with inflammatory CNS disorder who had genetic testing 
through next generation focused exome sequencing targeting 155 genes associated with innate or adaptive immunity. For in 
silico prediction of functional effects of single-nucleotide variants, Polymorphism Phenotyping v2, and Sorting Intolerant 
from Tolerant were used, and Combined Annotation Dependent Depletion (CADD) scores were calculated. Identified genes 
were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
Results  Of 54 patients, 42 (77.8%) carried variant(s), among which 12 (22.2%) had 3–8 variants. Eighty-eight unique single-
nucleotide variants of 55 genes were identified. The most variants were detected in UNC13D, LRBA, LYST, NOD2, DOCK8, 
RNASEH2A, STAT5B, and AIRE. The majority of variants (62, 70.4%) had CADD > 10. KEGG pathway analysis revealed 
seven genes associated with primary immunodeficiency (Benjamini 1.40E − 06), six genes with NOD-like receptor signaling 
(Benjamini 4.10E − 04), five genes with Inflammatory Bowel Disease (Benjamini 9.80E − 03), and five genes with NF-kappa 
B signaling pathway (Benjamini 1.90E − 02).
Discussion  We observed a high rate of identification of rare and low-frequency variants in immune regulatory genes in 
pediatric neuroinflammatory CNS disorders. We identified 88 unique single-nucleotide variants of 55 genes with pathway 
analysis revealing an enrichment of NOD2-receptor signaling, consistent with involvement of the pathway within other 
autoinflammatory conditions and warranting further investigation.

Keywords  Autoimmune · Neuroinflammatory · Demyelinating · Genetics · Variants of unknown significance · Next-
generation sequencing

Introduction

Autoimmune and neuroinflammatory central nervous sys-
tem (CNS) disorders are being increasingly recognized in 
children as a complex group of disorders with a wide range 
of clinical manifestations [1]. The genetic basis of inflam-
matory disorders of the CNS remains largely unknown, and 
among these, multiple sclerosis (MS) has been the most 
widely investigated. Studies of MS genetic predisposition 
have historically focused on identifying common variants 
or single-nucleotide polymorphisms (SNPs) that are associ-
ated with increased risk of developing the disease. Genome-
wide association studies (GWAS) have uncovered more than 
230 such SNPs [2, 3]. Of the hundreds of susceptibility 
genetic loci implicated in MS, the Major Histocompatibility 
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Complex (MHC) locus constitutes the largest component of 
genetic risk [4]. Studies have shown that roughly 20% of MS 
heritability is explained by common variants from GWAS, 
while 5% are explained by coding, rare variants that are not 
identified through GWAS. Despite all efforts, 75% of MS is 
still unexplained, which underscores the remarkable genetic 
complexity of these conditions [3].

Many genes implicated in autoimmune and inflammatory 
disorders are pleotropic. Nearly a third of the genetic vari-
ants associated with MS also have been reported in other 
autoimmune diseases, and studies of multiple, different 
autoimmune diseases has shown that almost two-thirds of 
loci are shared between these diseases [4–6]. Identification 
of rare variants associated with different conditions could 
shed light on pathophysiologic mechanisms underlying these 
diseases.

Considering the sparsity of literature, especially in pedi-
atric patient populations, the authors sought to explore rare 
variants of genes implicated in immune dysregulation in 
pediatric autoimmune and inflammatory CNS disorders.

Methods

Patient population

IRB approval was obtained through Children’s Hospital Los 
Angeles and University of Southern California. Patients 
were identified by auditing individuals evaluated in the 
Pediatric Neuroimmunology and Demyelinating Disorders 
Program at Children’s Hospital Los Angeles between July 
2019 and December 2021 who had genetic testing. Inclu-
sion criteria were (1) patients were < 21 years of age at the 
time of first neuroinflammatory attack or clinical presenta-
tion and (2) had a confirmed neuroinflammatory disorder per 
the senior author, a fellowship trained pediatric neuroimmu-
nologist (JS). Diagnostic criteria varied for each condition 
(e.g., McDonald’s 2017 or International Pediatric Multiple 
Sclerosis Study Group 2013 criteria for MS) although were 
considered standard of care for the condition assessed. Diag-
nosis was subsequently verified by a second pediatric-trained 
neuroimmunologist (NA). There were no exclusion criteria 
and all individuals with genetic testing as defined below 
were enrolled. As this study was retrospective in nature, 
consent and assent were waived.

Study design

Individuals meeting inclusion criteria had to have under-
gone genetic testing with either whole exome sequencing 
or a focused exome sequencing study (e.g., commercial 

autoinflammatory and autoimmunity syndromes panel) 
which was obtained for clinical purposes. Institutionally, 
all patients are advised to have genetic testing performed 
following confirmatory diagnosis of a neuroinflammatory 
condition, limiting severity bias. All studies were com-
pleted at the same laboratory.

Demographic data were obtained through chart review. 
Patient characteristics included age (at the time when 
results of genetic studies were obtained), sex, race, ethnic-
ity (Hispanic/Latino vs. non-Hispanic/Latino), and clinical 
diagnosis.

Autoimmune and inflammatory CNS disorders include 
the following categories: demyelinating brain and spinal 
cord disorders, immune-mediated encephalopathies or 
encephalitis, systemic autoimmune conditions with CNS 
manifestations, CNS vasculitis, and neurodegenerative and 
genetic conditions with immune-mediated pathophysiol-
ogy [1].

Next‑generation sequencing and bioinformatic 
analysis

Next-generation sequencing was performed using a 
focused exome analysis targeting 155 genes associated 
with primary disorders of innate or adaptive immunity. In 
some patients, an additional 37 genes implicated in auto-
immunity were tested when clinically indicated (atypical 
or severe presentations). Additional gene testing was never 
reflexive (added on when the initial panels were negative) 
and was only ordered at the time of the initial panel. These 
panels are designed to identify monogenic autoinflamma-
tory syndromes, monogenic autoimmunity, periodic fever 
syndromes, familial cold autoinflammatory syndromes, 
familial Mediterranean fever, and monogenic inflamma-
tory bowel disease. The list of genes included in the panels 
and relevant transcript(s) are included in the supplemen-
tary material (Appendix 1). Online Mendelian Inherit-
ance in Man (OMIM®) database was used to identify the 
reported associated conditions and inheritance pattern.

Single nucleotide variants, exon-level deletions, cod-
ing exons duplications, and 10–20 base pair mutations of 
adjacent intronic sequences were reported [6]. The Single 
Nucleotide Polymorphism Database (dbSNP) reference 
SNP ID number (rs number) was reported when avail-
able. Variant frequencies were obtained using population 
frequency databases including the Genome Aggregation 
Database (gnomAD v.2.1.1) and Exome Aggregation Con-
sortium (ExAC).

For in silico prediction of variant functional effects, we 
used Polymorphism Phenotyping v2 (PolyPhen-2), and 
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Sorting Intolerant from Tolerant (SIFT) with Genome Refer-
ence Consortium Human Build 37 (GRCh37/hg19) assembly 
input. Combined Annotation Dependent Depletion (CADD) 
scores were calculated using the GRCh37-v1.6 model.

Pathway analysis

To perform Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis using clinical diagnosis gene lists, 
lists of gene names were first imported into the NIAID/NIH 
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) Bioinformatics Resources v.6.8 Analysis 
Wizard Tool. “OFFICIAL_GENE_SYMBOL” was selected 
in the Identifier field, Homo sapiens was inputted within the 
Species field, and “Gene List” was selected under List Type. 
Next, the imported gene list was analyzed using the DAVID 
Functional Annotation Tool set, specifically looking within 
the “Pathway” and “KEGG_Pathway” tools [7, 8].

Burden test analysis

This study assessed gene-based contribution of variants of 
unknown significance via weighted sum statistics (WSS) 
burden test[9] and the variance component C-alpha test 
[10], using previously established methods [11]. To assess 
the aggregate contribution of multiple rare genes in the dis-
ease processes studied, the authors performed burden testing 
analysis using high confidence variants and potentially path-
ogenic variants based on MAF or protein-prediction algo-
rithms. Variants were identified by literature driven review 
in multiple sclerosis as other, more rare disorders, did not 
have sufficient genetic investigation to warrant phenotype/
genotype differentiation [11–13]. Variants meeting crite-
ria were considered qualifying variants and were applied 
in Test Rare vAriants with Public Data (TRAPD)[14] as a 
pathogenicity filter and subsequently analyzed against the 
gnomeAD database.

Statistical analysis

Descriptive statistics were used to summarize the character-
istics of patients included in this study. For KEGG pathway 
analysis, p values and Benjamini corrections were calcu-
lated. Benjamini values of < 0.05 were considered statisti-
cally significant. Analyses were performed using DAVID 
Bioinformatics Resources 6.8. For burden test analysis, the 
freely available TRAPD program was utilized. Data were 
reformatted to python format for conversion.

Results

We identified 54 patients with pediatric-onset autoimmune 
CNS disorders in whom autoimmune and autoinflammatory 
panels were obtained out of a total of 174 eligible patients 
(31%). The most frequent reasons for not having testing 
were: insurance denial (n = 103/120, 86%), family or patient 
declining testing (n = 10/120, 8%), and delays in obtaining 
testing at the time of study (n = 7/120, 6%). Of note, insur-
ance denials were primarily commercial payors (n = 69/103, 
67%) as opposed to state or federal payors (n = 34/103, 33%). 
Enrolled patients had higher rates of state or federal payors 
as a primary insurance (n = 40/54, 74%) which was signifi-
cant different (p < 0.001, 95% CI 0.08–0.36) compared to 
excluded patients. The mean age was 13.4 ± 5.31 years and 
55% were female. Demographics and clinical diagnosis of 
patients are listed in Table 1.

Table 1   Demographics and clinical diagnosis

ADEM acute disseminated encephalomyelitis, CIS clinically isolated 
syndrome, CNS central nervous system, MFS Miller Fisher syn-
drome, MOGAD myelin oligodendrocyte glycoprotein antibody-asso-
ciated disease, MS multiple sclerosis, RIS radiographically isolated 
syndrome, SLE systemic lupus erythematous

Age Mean (year) 13.4 ± 5.31

Sex (n, %) Male 24 (44.4%)
Female 30 (55.6%)

Ethnicity (n, %) Hispanic/Latino 27 (50.0%)
Not Hispanic/Latino 11 (20.4%)
Not reported 16 (29.6%)

Diagnosis (n, %) MS 15 (27.8%)
MOGAD 13 (24.0%)
Autoimmune encephalitis 5 (9.25%)
CNS vasculitis 3 (5.56%)
ADEM 2 (3.70%)
Idiopathic transverse myelitis 2 (3.70%)
Meningoencephalitis of unknown 

etiology
2 (3.70%)

Post-infectious meningoencephalitis 2 (3.70%)
CIS 1 (1.85%)
Down syndrome regression disorder 1 (1.85%)
Hemispheric inflammation 1 (1.85%)
Inflammatory Stroke 1 (1.85%)
MFS/Bickerstaff's brainstem encepha-

litis
1 (1.85%)

Neuropychiatric SLE 1 (1.85%)
Neurosarcoidosis 1 (1.85%)
RIS 1 (1.85%)
SLE cerebritis 1 (1.85%)
Susac Syndrome 1 (1.85%)
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Forty-two patients (77.8%) carried variant(s) in immune 
dysregulation genes, among which 12 (22.2%) had 3–8 vari-
ants (Appendix 2). Eighty-eight unique single-nucleotide 
variants of 55 genes were identified (all heterozygous). 
Twelve patients (22.2%) had negative results. All variants 
were unique to each individual, except for two variants of 
NOD2 (p.Arg702Trp and p.Gly908Arg) that were each 
shared among two different individuals. The highest number 
of variants were detected in UNC13D (6 variants); LRBA, 
LYST, and NOD2 (4 variants); and DOCK8, RNASEH2A, 
STAT5B, and AIRE (3 variants).

Table 2 lists the gene variants categorized by clinical 
diagnosis. Two variants were deemed as increased risk 
alleles [NOD2 c.2104C > T (p.Arg702Trp) and NOD2 
c.2722G > C (p.Gly908Arg)]. The rest of the variants (86, 
97.7%) were classified as VUS. Seventy-seven (87.5%) 
variants were missense mutations in coding regions, four 
(4.5%) silent, three (3.4%) intronic, two (2.3%) in non-
coding regions, and two (2.3%) resulted in a change in an 
RNA molecule that does not result in any protein product. 
Of note, no patients had any abnormalities on the 37 gene 
“add-on” testing that was performed in a minority (8/54, 
15%) of patients.

Most of the variants (85, 96.5%) had an allele frequency 
of less than 0.1% (MAF < 0.001) in the gnomAD database, 
including 68 variants (77.2%) < 0.01% (MAF < 0.0001). 
Fourteen variants (15.9%) were not reported in the gnomAD 
database.

Mean CADD score was 17.3 ± 9.45 (median 21.4, IQR 
9.63–24.6). The majority of variants (62, 70.4%) had CADD 
score > 10. For seventeen rare variants of 13 genes (ACP5, 
ADAR, DEF6, LYST, NLRC4, NOD2, RAB27A, RFXANK, 
RNASEH2A, SLC7A7, TTC7A, UNC13D, and XIAP) avail-
able results of all platforms were in agreement predicting 
detrimental effect [deleterious/damaging based on PolyPhen 
and SIFT, moderate to highly conserved, and CADD > 15 
(median 25.9, IQ 25.9–27.5)] (Table 2).

From the KEGG pathway analysis of the aggregated gene 
lists, seven genes associated with primary immunodeficiency 
(Benjamini 1.40 E − 06), six genes with NOD-like receptor 
signaling pathway (Benjamini 4.10 E − 04), five genes with 
inflammatory bowel disease (IBD) (Benjamini 9.80 E − 03), 
and five genes with NF-kappa B signaling pathway (Benja-
mini 1.90E − 02) (Table 3).

Burden testing analysis of rare variants in our cohort were 
compared to the gnomAD control database. No single gene 
in burden testing analysis was noted to be significant after 
multiple testing corrections (p = 0.38) with a similar non-
statistically significant c-alpha score (p = 0.66).

Discussion

To our knowledge, this is the first study of rare variants of 
immune regulation genes in a relatively large sample of 
pediatric patients with autoimmune CNS diseases. Using 
next-generation sequencing provides insight into rare vari-
ants that are not identified by GWAS.

We observed a high rate (77.4%) of identification of rare 
and low-frequency variants within immune dysregulation 
genes among pediatric patients with autoimmune CNS 
disorders. The majority of identified variants had a CADD 
score > 10, indicating the likelihood to be function-altering. 
The findings could shed light on pathophysiologic mecha-
nisms of these conditions. Although the cohort-based gene 
test did not achieve statistical significance after correcting 
for multiple gene testing, the heterogeneity and small “n” 
in this inception cohort likely limited the ability to detect 
genes that may have contributed to the phenotypes recorded.

Table 4 lists immune dysregulation conditions associ-
ated with the 55 genes harboring the rare variants identi-
fied in our study. Several of these genes have been reported 
to be associated with neurological manifestations. Notably, 
TREX1, RNASEH2A, ADAR, and IFIH are among the genes 
associated with Aicardi–Goutieres syndrome [15]; STXBP2, 
UNC13D are associated with familial hemophagocytic lym-
phohistiocytosis (FHL) [16], which can cause neuroinflam-
mation in up to 50% of patients [17]. Variants of NOD2 are 
most notably known for increased risk of Crohn’s disease 
[18], but are also reported in association with Rasmussen 
syndrome with CNS granulomatosis [19]. TNFAIP3 has 
been reported in association with a granulomatous neuro-
inflammatory disorder of CNS [20], neuropsychiatric Sys-
temic Lupus Erythematous (SLE) [21], and Neuromyelitis 
Optica (NMO) [22]. Decreased TNFAIP3 gene expression 
was associated with Myelin oligodendrocyte glycoprotein 
antibody-associated disease (MOGAD) relapse [23]. LYST 
is associated with Chediak-Higashi syndrome, learning 
disorders, cerebellar deficits, polyneuropathies, spasticity, 
cognitive decline, and parkinsonism [24]. RAG1, one of 
the genes involved in Severe Combined Immunodeficiency 
(SCID) [25], is also reported in association with refractory 
status epilepticus [26] and optic neuropathy [27]. Other 
associations include AIRE with autoimmune cerebellar 
degeneration [28]; RAB27A with developmental regression 
and seizures [29]; RTEL1 with microcephaly, developmen-
tal delay, spastic diplegia, and cerebellar dysfunction [30]; 
STAT1 with CNS aneurysms and inflammatory spinal cord 
lesions [31]; SMARCAL1 with microcephaly, developmen-
tal delays, and neuronal migration disorders [32]. TTC7A 
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Table 2   List of rare variants, allele frequency, and results of in silico predictions categorized by diagnosis

Dx Gene Variant dbSNP ExAC AF PolyPhen SIFT Conserv CADD

ADEM ADAR c.577C > G 
(p.Pro193Ala)

rs145588689 0.003 NA NA Mod 23.5

AIRE c.722G > T 
(p.Ser241Ile)

rs1260665653 NA Probably damaging Deleterious Weak 5.897

DEF6 c.1745 T > A 
(p.Leu582Gln)

rs751075162 0.0001 Possibly damaging Deleterious High 27.7

ITGB2 c.1358G > A 
(p.Ser453Asn)

rs138659490 0.0008 NA NA High 9.234

NOD2 c.1151 T > A 
(p.Phe384Tyr)

rs777343284 0.0003 Probably damaging Tolerated High 25.9

Autoimmune 
encephalitis

AIRE c.1256G > A 
(p.Cys419Tyr)

rs756933733 NA Possibly damaging Tolerated Mod 19.08

IL21R c.585C > G 
(p.Ser195Arg)

rs773814550 NA Possibly damaging Tolerated Mod 24.6

RNASEH2A c.871C > T 
(p.Arg291Cys)

rs771858022 0.00006 Probably damaging Deleterious High 24.6

STAT1 c.1632 + 6G > A 
(Intronic)

rs185216067 0.0008 NA NA NA 5.658

TNFRSF1A c.271G > A 
(p.Ala91Thr)

NA Possibly damaging Tolerated Mod 21.7

XIAP c.844G > C 
(p.Glu282Gln)

NA Probably damaging Deleterious High 37

CIS CYBA c.553G > A 
(p.Val185Ile)

rs1158937022 NA Tolerated Tolerated Weak 15.57

CNS vasculitis DOCK8 c.4276A > G 
(p.Ser1426Gly)

rs755182322 0.00009 Tolerated Tolerated High 23.6

IL21 c.470A > T 
(p.His157Leu)

rs1326239267 NA Tolerated Tolerated Weak 12.68

SLC7A7 c.187C > T 
(p.Leu63Phe)

NA Probably damaging Deleterious High 26

UNC13D c.652G > T 
(p.Gly218Trp)

rs775666284 0.00001 Possibly damaging Deleterious Mod 26.1

Down syndrome 
regression disorder

CTLA4 c.23G > A 
(p.Arg8Gln)

rs138279736 0.0005 Tolerated Tolerated` Mod 17.97

IRF7 c.1405 T > C 
(p.Trp469Arg)

rs746725871 0.00009 Benign Tolerated Mod 4.558

LYST c.1676G > A 
(p.Arg559His)

rs138011756 0.0008 Benign Tolerated Mod 16.15

SMARCAL1 c.488C > A 
(p.Thr163Asn)

rs748188404 0.0003 Tolerated Tolerated Weak 6.197

Hemispheric inflam-
mation

RBCK1 c.69 T > G 
(p.Asp23Glu)

rs748386516 0.0007 Possibly damaging Tolerated High 13.08

UNC13D c.419 T > C 
(p.Ile140Thr)

rs1181554837 NA Probably damaging Deleterious Mod 25.9

Meningoencephalitis 
of unknown etiol-
ogy

CARD14 c.652C > T 
(p.Arg218Cys)

NA NA NA Weak 24.7

CYBA c.274G > A 
(p.Val92Ile)

rs202179890 0.0002 Benign Tolerated Weak 7.442

DOCK8 c.1817G > A 
(p.Ser606Asn)

rs778451048 0.0003 Benign Tolerated High 21.3

PLCG2 c.3092A > G 
(p.Asn1031Ser)

rs747605077 0.00001 Benign Deleterious High 2.114
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Table 2   (continued)

Dx Gene Variant dbSNP ExAC AF PolyPhen SIFT Conserv CADD

PSTPIP1 c.831G > T 
(p.Glu277Asp)

rs990986006 NA Tolerated Tolerated Mod 6.831

RMRP n.189C > T (RNA 
change)

NA NA

STAT5B c.799C > T 
(p.Pro267Ser)

NA Probably damaging Tolerated Mod 24.3

TNFRSF13B c.41G > A 
(p.Arg14His)

rs200309474 0.002 Tolerated Tolerated Weak 0.258

TNFSF12 c.610G > A 
(p.Gly204Arg)

rs746979506 0.00009 Probably damaging Tolerated Weak 14.18

TREX1 c.24G > A (Silent) rs147463121 0.0001 NA NA NA 3.279

MOGAD ACP5 c.249C > G 
(p.Asp83Glu)

rs563929774 0.0001 Probably damaging Deleterious High 24.3

ADA2 c.1033G > A 
(p.Ala345Thr)

rs752798667 0.0002 Benign Tolerated Mod 26.6

AIRE c.1438A > G 
(p.Thr480Ala)

NA Benign Tolerated Mod 21.6

CTLA4 c.309C > T (Silent) NA NA NA NA 35

IFIH1 c.1745C > T 
(p.Ala582Val)

rs889262310 NA Benign Tolerated Weak 12.41

LRBA c.40A > G 
(p.Thr14Ala)

rs1200143430 NA Probably damaging Tolerated Weak 21.4

LRBA c.8479A > G 
(p.Met2827Val)

rs1276578449 NA Probably damaging Tolerated Mod 19.67

LRBA c.8476G > A 
(p.Ala2826Thr)

rs779604273 0.00009 Probably damaging Tolerated Weak 23.7

MEFV c.828A > C 
(p.Glu276Asp)

rs775020273 0.0005 NA NA Weak 0.1

NOD2 c.2104C > T 
(p.Arg702Trp)

rs2066844 0.03 Probably damaging Deleterious Mod 8.082

RAG1 c.656G > A 
(p.Arg219Gln)

rs764179803 0.0001 Benign Tolerated Mod 10.03

RBCK1 c.700G > C 
(p.Glu234Gln)

rs756811010 0.0001 Benign NA High 40

STAT5B c.2348C > T 
(p.Pro783Leu)

NA Possibly damaging Tolerated Mod 23.6

STIM1 c.1367 T > C 
(p.Ile456Thr)

NA Benign Deleterious Mod 5.025

STXBP2 c.1453-9G > A 
(Intronic)

rs372742473 0.00002 NA NA NA 6.059

TNFRSF13B c.21C > G 
(p.Ser7Arg)

rs780461208 0.00002 NA Tolerated Weak 13.14

UNC13D c.3022A > C 
(p.Thr1008Pro)

rs753816739 0.0002 Probably damaging Tolerated Weak 24.5

UNC13D c.2783G > A 
(p.Arg928His)

rs113461073 0.002 Benign Tolerated Weak 0.44

ZAP70 c.790 + 5C > T 
(Intronic)

rs56133341 0.0004 NA NA NA 0.239
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Table 2   (continued)

Dx Gene Variant dbSNP ExAC AF PolyPhen SIFT Conserv CADD

MS ACP5 c.131C > T 
(p.Thr44Met)

rs369804864 0.00003 Probably damaging NA High 7.842

ADAM17 c.53C > T 
(p.Pro18Leu)

rs144458353 0.0006 Benign Tolerated Mod 21.4

BACH2 c.2230A > G 
(p.Ile744Val)

rs1321699864 NA Benign Tolerated Weak 13.41

CARD14 c.2140G > A 
(p.Gly714Ser)

rs151150961 0.0007 NA NA Weak 6.068

DOCK8 c.268_270del 
(p.Asp90del)

rs776468911 0.0003 NA NA NA 26.2

DUOX2 c.1295G > A 
(p.Arg432His)

rs530736554 0.0007 NA NA High 24.3

DUOX2 c.1825C > T 
(p.Pro609Ser)

rs201221237 0.0009 NA NA High 25.6

G6PC3 c.1001 T > C 
(p.Met334Thr)

rs746741551 0.0002 Benign Tolerated Weak 1.205

G6PC3 c.413G > A 
(p.Arg138His)

rs763535974 0.0001 Benign Tolerated Mod 15.17

IL10 c.434C > T 
(p.Ala145Val)

rs774072665 0.00001 Benign Tolerated Weak 14.84

IL1RN c.28G > C 
(p.Gly10Arg)

rs770976676 0.0002 Benign Deleterious Weak 33

LRBA c.5149G > A 
(p.Val1717Met)

rs143003767 0.0007 Benign Tolerated Weak 16

LYST c.2465C > T 
(p.Thr822Ile)

rs199746236 0.0003 Probably damaging Deleterious Mod 26.4

LYST c.6454A > C 
(p.Ser2152Arg)

rs201317160 0.0003 Tolerated Tolerated Mod 14.68

NLRC4 c.443G > T 
(p.Arg148Leu)

rs377088692 NA Possibly damaging Deleterious High 15.23

NOD2 c.1295C > T 
(p.Ala432Val)

rs2076754 0.0002 Probably damaging Deleterious High 16.34

ORAI1 c.14C > T 
(p.Pro5Leu)

rs549883296 NA Tolerated Tolerated Weak 24.7

RAB27A c.543A > G 
(p.Ile181Met)

rs139025012 0.0001 Possibly damaging Deleterious High 22.4

RFXANK c.661G > A 
(p.Asp221Asn)

NA Possibly damaging Deleterious Mod NA

RMRP n.*70G > A (Non-
coding)

NA NA NA NA NA

SH3BP2 c.1135C > T 
(p.Pro379Ser)

rs759054470 0.00003 Benign Tolerated High 23.4

STAT5B c.2358A > G (Silent) rs568497349 0.0002 NA NA NA 23.6

STIM1 c.1773C > G 
(p.Asp591Glu)

rs776241052 0.0002 Benign Tolerated Weak 13.73

TBX1 c.1039C > A 
(p.Arg347Ser)

NA Possibly damaging Tolerated Mod NA
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Table 2   (continued)

Dx Gene Variant dbSNP ExAC AF PolyPhen SIFT Conserv CADD

TNFAIP3 c.2117G > A 
(p.Arg706Gln)

rs3734553 0.0001 Benign Deleterious High 22.4

UNC13D c.2795 T > C 
(p.Leu932Pro)

rs760552006 0.003 Probably damaging Deleterious High 26.4

UNC13D c.681C > T (Silent) rs779543680 0.0003 NA NA NA 11.53
Neuropychiatric SLE SLC29A3 c.146G > C 

(p.Arg49Pro)
rs201610819 0.001 Probably damaging Tolerated Weak 24.3

Neurosarcoidosis RNASEH2A c.101A > G 
(p.Asp34Gly)

rs762516714 0.001 Probably damaging Deleterious High 27.5

Inflammatory stroke NOD2 c.2722G > C 
(p.Gly908Arg)

rs2066845 0.014 Probably damaging Deleterious Mod 29.7

RTEL1 c.2306G > A 
(p.Arg769His)

0.0001 Tolerated Tolerated Weak 11.48

RIS NOD2 c.2722G > C 
(p.Gly908Arg)

rs2066845 0.014 NA NA Mod 29.7

TTC7A c.563G > A 
(p.Arg188His)

rs147471840 0.0002 Probably damaging Deleterious Mod 25.2

SLE cerebritis CARD8 c.803A > G 
(p.Asn268Ser)

NA Tolerated Tolerated Mod NA

LYST c.7157A > G 
(p.His2386Arg)

rs758888571 0.0002 Probably damaging Tolerated High 23.2

NOD2 c.2104C > T 
(p.Arg702Trp)

rs2066844 0.03 NA NA Mod 8.082

Susac syndrome DCLRE1C c.212C > T 
(p.Thr71Met)

rs147013097 0.0003 Tolerated Tolerated Mod 24.6

Transverse myelitis IFIH1 c.2973C > A 
(p.Phe991Leu)

rs763358277 NA Possibly damaging Tolerated Mod 21.6

RNASEH2A c.821A > G 
(p.Asn274Ser)

rs373169862 0.0007 Benign Tolerated Weak 2.817

Variants for which available results of all platforms were in agreement predicting detrimental effect are bolded
ADEM acute disseminated encephalomyelitis, CIS clinically isolated syndrome, CNS central nervous system, MOGAD myelin oligodendrocyte 
glycoprotein antibody-associated disease, MS multiple sclerosis, RIS radiographically isolated syndrome, SLE systemic lupus erythematous

with perisylvian polymicrogyria, cerebellar hypoplasia and 
arthrogryposis, severe microcephaly, refractory epilepsy, 
developmental delay, and hypomyelinating leukodystrophy 
[33]; and ZAP70 with silent brain infarcts [34].

Our analysis of KEGG-enriched pathways both reflects 
the nature of the screening tests used and provides mecha-
nistic insights into the pathophysiology of these condi-
tions. The most significantly enriched term was “Primary 
Immunodeficiency,” potentially a result of the autoin-
flammatory and autoimmunity syndrome screening pan-
els used in the study. By definition, autoimmune neuro-
logic diseases represent disorders of immune regulation. 

Inflammatory pathways have already been linked to neural 
dysfunction; examples in epilepsy alone include the IL-1 
receptor/Toll-like receptor (TLR) 4 axis, the arachidonic 
acid–prostanoid cascade, oxidative stress, and transform-
ing growth factor-β (TGFβ) signaling associated with 
blood–brain barrier dysfunction, among others [82]. It is, 
therefore, not surprising that genes involved with immune 
development and regulation may also be involved with 
diseases of neuroinflammation.

What is surprising from these data is an identified enrich-
ment in specific arms of the immune response, notably the 
Nucleotide Oligomerization Domain (NOD)-like Receptor 
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signaling pathway. The NOD-like Receptor protein family 
is one of several classes of germline-encoded pattern rec-
ognition receptors (PRR) used within the innate immune 
system [83]. Other example PRRs include TLRs and C-type 
lectin receptors, which interact with microbial ligands such 
as bacterial lipopolysaccharide and peptidoglycan or yeast 
β-glucans. In contrast to membrane-bound PRRs, NOD-like 
receptors are known to detect pathogen and danger-associ-
ated patterns within the cytoplasmic compartment and are 
involved with initial innate immune responses to cellular 
injury and stress [83].

NOD2 in particular is stimulated by bacterial pepti-
doglycan-related products to oligomerize, recruit receptor-
interacting serine/threonine-protein kinase 2 (RIPK2), and 
ultimately activate downstream NF-κB and MAPK signal-
ing to promote production of proinflammatory molecules 
[84] (Fig. 1). NOD2 has already been linked to conditions 
of immune dysregulation; NOD2 polymorphisms are the 
strongest genetic risk factors for the development of Crohn’s 
Disease, although the exact mechanisms by which are not 
yet clear [18]. In addition to Crohn’s disease, NOD2 muta-
tions are associated with systemic and CNS inflammatory 
granulomatous diseases, such as Blau Syndrome, early-onset 
sarcoidosis [85], and CNS granulomatosis [19]. Moreover, 
expression of NOD is increased in astrocytes after exposure 
to bacterial pathogens of the CNS [86], promoting micro-
glial inflammation in murine models of pneumococcal 
meningitis [87], as well as dopaminergic degeneration in a 
murine model of Parkinson’s Disease [88]. Our data suggest 
NOD2-receptor signaling may be an attractive candidate for 

further investigation and targeting in pediatric autoimmune-
neuroinflammatory conditions.

This study is not without limitations. This study evalu-
ated a population of children with heterogenous rare and 
ultra-rare diseases making broad generalization of the 
results difficult. Accordingly, this study has a low total 
n. This undoubtedly contributed to the lack of statistical 
significance during burden testing analysis. In addition, 
there are several limitations to burden testing that affect 
its utility particularly in more modest sample sizes. Some 
of the well-known barriers include locus heterogeneity 
(several contributing genes each accounting for only a 
small percentage of cases), and high background rate of 
rare variants in the candidate genes [14]. Using a public 
sequencing database (e.g., gnomAD) as control imposes 
additional challenges. There is possibility of “contamina-
tion” of the control group, as these datasets might contain 
individuals with neurological and/or immune dysregula-
tion conditions. Another important consideration is that 
the aggregate datasets include multiple different sequenc-
ing platforms and variant-calling processes that might 
be different from which was used for cases, affecting the 
validity of the comparison between the two groups. More-
over, due to lack of individual-level data in the aggregate 
datasets, an approximation is used, resulting in a more 
conservative test which overestimates the sum of variants 
in the population-based datasets, in turn underestimating 
the difference between cases and controls.

Our results highlight the need for more expansive testing 
of this population to further assess if the high frequency of 

Table 3   Results of KEGG 
pathway analysis of the 
aggregated gene lists

KEGG Pathway Genes Count % p value Benjamini

Primary immunodeficiency DCLRE1C
ORAI
TNFRSF13B
AIRE
RAG1
RFXANK
ZAP70

7 13 1.30E − 08 1.40E − 06

NOD-like receptor signaling pathway MEFV
NLRC4
TNFAIP3
CARD8
NOD2
PSTPIP1

6 11.1 8.00E − 06 4.10E − 04

Inflammatory bowel disease (IBD) IL10
IL21R
IL21
NOD2
STAT1

5 9.3 2.90E − 04 9.80E − 03

NF-kappa B signaling pathway TNFAIP3
TNFRSF1A
XIAP
PLCG2
ZAP70

5 9.3 9.30E − 04 1.90E − 02
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rare and ultra-rare variants is contributory. However, the broad 
overlap of the dysfunctional pathways associated with identi-
fied gene abnormalities does shed light on the possibility of 
shared pathology among these disorders. The authors hope 
that these data serve as a proof of concept for the need for 
additional next-generation exome sequencing in individuals 
with pediatric neuroinflammatory disorders. Further study 
of more homogenous populations within this broad category 
(e.g., multiple sclerosis) would be particularly beneficial to 
best evaluate the nuances of the role of genes. There is a poten-
tial for severity bias in this study as well as not all patients at 
our center were able to obtain genetic testing and those who 
did have this testing may have had more significant or severe 
disease phenotypes. An important consideration in these data 
are that it was derived out of a focused exome panel which 
was limited to only genes already associated with inflam-
matory disease. Thus, pathway analysis is anticipated to be 
heavily influenced by the focused selection of genes that were 
analyzed, even beyond the variant level. Further study, with 
more broad, whole exome-based analysis, would be greatly 
beneficial for determining how enriched these pathways truly 
are. An additional limitation was that there was a statistically 
significant difference in the rate of commercial versus state/
federal insurance for patients in the enrolled versus unenrolled 
groups, potentially skewing our results towards individuals 
who were more likely to come from lower socio-economic 
statuses although this was not assessed in this study. Addi-
tionally, given the geographic location of our center, there is a 
much higher rate of individuals of Hispanic or LatinX descent 
than at other centers nationally and this is of particular impor-
tance when assessing generalizability of these data. Finally, the 
potentially for epigenetic phenomenon or the interplay of envi-
ronment, early childhood stress, and/or diet, was not assessed 
in this study and may be of use in future research.

Conclusions

The genetic basis of autoimmune and neuroinflammatory 
CNS disorders remains largely unknown, particularly in pedi-
atric patient populations. We observed a high rate (77.4%) of 
identification of rare and low-frequency variants in immune 
regulatory genes in pediatric neuroinflammatory CNS disor-
ders. We identified 88 unique single-nucleotide variants of 
55 genes, including UNC13D, LRBA, LYST, NOD2, DOCK8, 
RNASEH2A, STAT5B, and AIRE. Finally, pathway analysis 
revealed an enrichment of NOD2-receptor signaling within 
this patient cohort, consistent with involvement of the pathway 
within other autoinflammatory conditions and warranting fur-
ther investigation. This study provides the field a first glance at 
the genetic underpinning of pediatric autoimmune and inflam-
matory CNS disorders. The above gene variants, implicated in 
disorders of immune regulation, may play a role in pathogen-
esis of or predilection for autoimmune CNS disorders.Ta
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Fig. 1   A NOD2 and B Inflammatory bowel disease signaling pathways. Genes harboring rare variants are marked with a red star
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