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Microglia-mediated neuroinflammation is a hallmark of Parkinson’s disease (PD). In
the brains of patients with PD, microglia have both neurotoxic and neuroprotective
effects, depending on their activation state. In this review, we focus on recent
research demonstrating the neuroprotective role of microglia in PD. Accumulating
evidence indicates that the protective mechanisms of microglia may result from
their regulation of transrepression pathways via nuclear receptors, anti-inflammatory
responses, neuron–microglia crosstalk, histone modification, and microRNA regulation.
All of these mechanisms work together to suppress the production of neurotoxic
inflammatory components. However, during the progression of PD, the detrimental
effects of inflammation overpower the protective actions of microglia. Therefore, an
in-depth exploration of the mechanisms underlying microglial neuroprotection, and a
means of promoting the transformation of microglia to the protective phenotype, are
urgently needed for the treatment of PD.

Keywords: Parkinson’s disease, neuroinflammation, anti-inflammation, transrepression pathway, histone
modification, microRNA, alternative activation

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease, and manifests as a
variety of movement defects (Dauer and Przedborski, 2003). The disease is characterized clinically
by the loss of dopaminergic neurons in the substantia nigra of the midbrain, and pathologically
by the accumulation of Lewy bodies (protein aggregates containing α-synuclein) in the remaining
dopaminergic neurons (Braak et al., 2003). As the majority (>95%) of PD cases occur sporadically,
the cause and pathogenesis of PD are now believed to be related to environmental factors alone or
in combination with a genetic predisposition (Samii et al., 2004; Gao and Hong, 2011; Mullin and
Schapira, 2015).

Extensive and consistent neuroinflammation is an important component in the pathogenesis of
PD (Nagatsu and Sawada, 2005; Block and Hong, 2007). The involvement of neuroinflammation
in dopaminergic neuron loss in PD is supported by a wealth of clinical and molecular evidence. For
example, postmortem analysis of patients with PD revealed a large number of activated microglia
and accumulation of inflammatory mediators in the substantia nigra (Hirsch and Hunot, 2009).
Positron emission tomography also showed an increase in microglial activation in the early stages
of PD that was correlated inversely with dopaminergic terminal density, and positively with motor
impairment (Ouchi et al., 2005). In addition, cerebrospinal fluid from patients with PD is cytotoxic
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to dopaminergic neurons owing to the elevated levels of cytokines
and antibodies which may interact with proteins modified by
dopamine oxidation (He et al., 2002; Nagatsu and Sawada, 2005).

Whether neuroinflammation is the cause or consequence of
dopaminergic neuron degeneration remains unknown, and how
microglial activation produces detrimental or beneficial effects is
not yet fully determined. The neuroprotective effects of microglia
in various central nervous system (CNS) diseases including
PD have drawn increasing attention in recent years. In this
review, we will focus on the protective roles of microglia in PD
and summarize new research that has uncovered the molecular
mechanisms underlying the transformation of microglia to their
neuroprotective phenotype.

NEUROINFLAMMATION: ANGEL OR
DEVIL?

Neuroinflammation has been described extensively in PD, and is
becoming recognized as a double-edged sword, producing both
detrimental and beneficial effects (Sierra et al., 2013; Benraiss
et al., 2016). Neuroinflammation is a complex integration of
responses from all immune cells present within the CNS,
including microglia, astrocytes, and infiltrating T-lymphocytes.
Astrocytes are the most abundant glial cells of the nervous system
and provide essential functional support for neurons, including
antioxidant protection, glutamate clearance, promotion of
neurovascular coupling, and release of transmitters and cytokines
(Volterra and Meldolesi, 2005; Oberheim et al., 2012). However,
in addition to their numerous protective functions already
reported in PD (Rappold and Tieu, 2010; Mythri et al., 2011;
Nam et al., 2015b), astrocytes also communicate with microglia to
amplify the immune response and activate apoptotic mechanisms
that induce dopaminergic neuronal death (Saijo et al., 2009).
The small portion of infiltrated CD4+ T-lymphocytes that invade
the substantia nigra also play an important role in mediating
neuroinflammation in animal models of PD, albeit with divergent
functions (Reynolds et al., 2007; Brochard et al., 2009).

Although microglia represent only 5–20% of the CNS cell
population, they provide the first line of defense for the innate
immune system against infection or injury (Nimmerjahn
et al., 2005). Under physiological conditions, microglia
exhibit a deactivated phenotype and constantly survey the
microenvironment to maintain tissue homeostasis (Streit, 2002).
They sense a wide range of stimuli through a combination
of diverse membrane receptors, termed pattern recognition
receptors, which are constitutively expressed to identify and bind
pathogen- and damage-associated molecular patterns (Akira
et al., 2006; Block et al., 2007; Tang and Le, 2014). The stimuli that
may directly or indirectly lead to microglial activation, especially
in the substantia nigra, generally derive from brain trauma,
infection, cell debris, degraded neuromelanin, environmental
toxins, and released protein aggregates (Davalos et al., 2005;
Hanisch and Kettenmann, 2007). Microglia are often rapidly
activated, changing morphology and secreting a spectrum of
pro-inflammatory mediators to engulf infectious organisms or
invading pathogens, and clearing toxic proteins and cell debris

from the injury site by phagocytosis (Gao et al., 2003; Schwartz
and Kipnis, 2004; Glezer et al., 2007; Gao and Hong, 2008).

Microglial activation also enhances neuronal survival by
releasing trophic and anti-inflammatory factors (Ding et al., 2004;
Schwartz and Kipnis, 2004). Indeed, glial-derived neurotrophic
factor was shown to enhance neuronal survival and rescue
injured dopaminergic neurons in animal models and in a clinical
trial of gene therapy for PD (Kordower, 2003; Ding et al.,
2004; Nam et al., 2015a). In addition to removing harmful
stimuli, under certain circumstances microglial activation may
enhance recovery and the healing process by promoting the
expression of genes involved in tissue repair and regeneration
(Schwartz and Kipnis, 2004; Glezer et al., 2007; Schwartz and
Ziv, 2008). Therefore, without neuroinflammation, removal of
offending pathogens and recovery from CNS injuries might be
compromised.

However, in PD, the harmful molecules persistently released
by microglia in the substantia nigra usually overshadow the
beneficial molecules, so that the overall effect of microglial
activation is detrimental. For example, reactive microglia in
the nigrostriatal pathway can produce a large amount of
pro-inflammatory cytokines, such as tumor necrosis factor-α
(TNF-α), interleukin (IL)-1β and IL-6, and multiple chemokines,
as well as superoxide and nitric oxide (NO), which may
augment neuronal degeneration (Block et al., 2007; Dufek
et al., 2015). In PD, midbrain dopaminergic neurons are
especially vulnerable and extremely sensitive to cytokines,
probably due to dopamine metabolism and a dense population
of microglia in the substantia nigra (Kim et al., 2000; Obeso
et al., 2010; Tansey and Goldberg, 2010). Therefore, during
disease progression, those pro-inflammatory mediators together
with the neuron debris induce, in turn, more widespread
damage to neighboring neurons—a process known as reactive
microgliosis. Consequently, a cycle of neuronal injury and
sustained inflammation occurs (Block et al., 2007). To break this
cycle, a large number of anti-inflammatory agents have been
tested, such as non-steroidal anti-inflammatory drugs (Gao and
Hong, 2008) and minocycline (He et al., 2001), with promising
results in preclinical trials.

PATHOGENIC PROTEINS AND
MICROGLIAL ACTIVATION

α-Synuclein
In the development of PD, microglia can be activated directly
or indirectly by a range of misfolded proteins or pathogens.
For example, the mutated forms of α-synuclein, one of the
most prevalent pathological proteins identified in familial PD,
are generally aggregated, nitrated or oxidized, and released
into the extracellular space from dying or dead dopaminergic
neurons (Zhang et al., 2007; Gao et al., 2008; Reynolds et al.,
2008; Lashuel et al., 2013). α-Synuclein aggregates act as
chemoattractants to direct microglial migration toward damaged
neurons through H2O2-dependent phosphorylation of tyrosine
protein kinase Lyn (Wang et al., 2015), and consequently induce
robust microglial activation by sensing Toll-like receptors (TLRs;
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Kim C. et al., 2013). Interestingly, both overexpression of mutant
α-synuclein and a lack of α-synuclein in microglia can alter
their immune profiles and phagocytic ability (Austin et al.,
2006; Rojanathammanee et al., 2011), suggesting a potential
autonomous microglial reaction in the PD models harboring
α-synuclein mutations.

Leucine-Rich Repeat Kinase 2
Leucine-rich repeat kinase 2 (LRRK2) is an autosomal dominant,
late-onset familial PD gene. Its mutated form has recently been
demonstrated to be a negative regulator of microglial motility,
which thus prevents microglia from efficiently responding
to brain damage (Choi et al., 2015). LRRK2 also plays a role
in mediating microglial morphology and pro-inflammatory
responses. Inhibition of LRRK2 kinase activity or knockdown
of LRRK2 protein changes lipopolysaccharide (LPS)–TLR4-
induced outgrowth of microglial process and attenuates the
induction of cytokines such as inducible nitric oxide synthase
(iNOS), TNF-α, IL-1β and IL-6 (Kim et al., 2012; Moehle
et al., 2012). LPS-induced phosphorylation of p38 mitogen-
activated protein kinase (MAPK) and stimulated NF-κB
transcriptional activity is also decreased in LRRK2 knockdown
cells, demonstrating that LRRK2 is a critical component
in the mediation of neuroinflammation in PD (Kim et al.,
2012).

Parkin
Loss-of-function mutations in the gene encoding parkin, a
ubiquitin E3 ligase protein, are responsible for autosomal
recessive PD (Lucking et al., 2000). Although, most studies
on parkin have focused on its function in neurons, its levels
can also be regulated by inflammatory signaling in microglia
treated with LPS or TNF-α (Tran et al., 2011). Parkin deficiency
greatly increases the vulnerability of nigral dopaminergic neurons
to inflammation-related degeneration in mice, with increased
levels of TNF-α, IL-1β, and iNOS mRNA (Frank-Cannon et al.,
2008; Tran et al., 2011). Notably, aged parkin-null mice display
increased astrogliosis in the striatum and aberrant microglial
activation in the midbrain (Rodriguez-Navarro et al., 2007).
They also accumulate higher levels of tau and fail to upregulate
heat shock proteins (Rodriguez-Navarro et al., 2007). Similarly,
another study showed that aged parkin-null microglia produce
markedly less glutathione and are more sensitive to H2O2-
induced loss of viability than wild-type microglia of a similar age
(Solano et al., 2008).

DJ-1
Mutations in the gene encoding DJ-1, an oxidative stress
sensor that localizes to mitochondria, have been linked to the
development of early onset PD (Macedo et al., 2003). Knockdown
of DJ-1 in microglia increases cell sensitivity to dopamine,
measured by secreted pro-inflammatory cytokines such as IL-
1β and IL-6 (Trudler et al., 2014). DJ-1-deficient microglia show
elevated monoamine oxidase activity that induces a high level of
intracellular reactive oxygen species and NO, leading to increased
dopaminergic neurotoxicity (Trudler et al., 2014). Signal
transducers and activators of transcription (STATs) are pivotal

signaling molecules that activate neuroinflammation induced by
interferon-γ (IFN-γ; Horvath, 2004). It is reported that microglia
cultured from DJ-1-null mice express a high level of pro-
inflammatory mediators and phosphorylated STAT1 (p-STAT1)
in response to IFN-γ, and IFN-γ-induced interactions of Src-
homology 2-domain containing protein tyrosine phosphatase-1
(SHP-1) with p-STAT1 and STAT1 are also attenuated (Kim J. H.
et al., 2013). Direct intranigral LPS administration causes a
greater loss of dopaminergic neurons and striatal dopamine
content in DJ-1-null mice than in wild-types (Chien et al., 2016).
Furthermore, LPS-induced neuronal death in neuron–glia co-
cultures is augmented by DJ-1 deficiency in microglia, which
can be antagonized by the neutralizing antibody against IFN-γ
(Chien et al., 2016). Therefore, loss of DJ-1 function might
increase the risk of PD by enhancing neuroinflammation.

Matrix Metalloproteinases
Matrix metalloproteinases (MMPs) belong to a family of
extracellular soluble or membrane-bound endopeptidases, which
are mainly responsible for the remodeling of extracellular
macromolecules (Lu et al., 2011). The activation of MMPs,
particularly MMP-3 and MMP-9, might be associated with PD
pathogenesis (Kim and Hwang, 2011; He et al., 2013). Expression
of MMPs is elevated in various PD models established using
selective toxins and inflammation (Lorenzl et al., 2002; Kim and
Hwang, 2011). MMP-3 is induced and activated in dopaminergic
neurons upon stress conditions, and its active form is then
released into the medium (Kim et al., 2005; Kim et al., 2007).
The released MMP-3 activates microglia, enhances the NF-κB
signaling pathway, increases the TNF-α level and eventually
causes neuronal death (Kim et al., 2005, 2007). In the 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-injected PD model,
dopaminergic neuron degeneration, microglial activation, and
superoxide generation are largely attenuated in MMP-3-null mice
compared to wild-types (Kim et al., 2007). Similarly, inhibition
of MMP-9 with Ro 28-2653 can significantly reduce dopamine
depletion and loss of dopaminergic neurons in the substantia
nigra (Lorenzl et al., 2004). All results suggest that MMPs
are critical in the immunopathogenesis of PD, and that MMP
suppression might be a useful therapeutic strategy for PD.

ACTIVATION STATES OF MICROGLIA

Microglial immune responses have been widely investigated
and demonstrated to be significant heterogeneous and show
distinct region-dependent diversity (Hanisch, 2013; Grabert et al.,
2016). Microglial activation states, or phenotypes, have been
increasingly studied in recent years. To simplify their functional
heterogeneity, microglia are polarized into two contrary states
termed classical activation state and alternative activation state
depending on the types of stimuli, echoing the divergent effects
of neuroinflammation (Colton, 2009; Colton and Wilcock, 2010).
Classical activation of microglia has been widely studied and
is likely to be the more common response. In this state,
microglia are usually induced by multiple pathogen- and damage-
associated molecular patterns, and produce pro-inflammatory
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cytokines, reactive oxygen species, NO and superoxide (Block
et al., 2007). In contrast, alternative activation refers to a state
that promotes the expression of genes involved in inflammation
resolution, tissue repair, and extracellular matrix reconstruction,
such as arginase 1 (Arg1), mannose receptor (CD206), found
in inflammatory zone 1 (Fizz1 or Retnla), and chitinase 3-like
3 (Chi3l3 or Ym1) (Colton, 2009). Microglia are assumed to
transition between the two activation states both in normal
tissue and under pathogenic conditions. Imbalance between the
two reactive phenotypes has been attributed to the development
and progression of PD (Tang and Le, 2016). However, this
view of microglial categorization has been challenged in light
of new research findings and technological advances. With the
advent of single-cell RNA sequencing, studies have also recently
shown that the cells such as microglia/macrophages, express
classical and alternative activation simultaneously in response
to traumatic brain injury, resulted from mixed populations
or from lack of activation signatures in individual cells (Kim
et al., 2016; Morganti et al., 2016). This hints that solely
activation states might not exist, and expression of polarization
markers might be ineffective in predicting the presence of other
polarization genes (Ransohoff, 2016). Nevertheless, enhancement
of alternative activation-like responses has been demonstrated
to partly contribute to neuroprotection. In the remainder of
this review, we will summarize recent findings on the various
protective mechanisms of microglia and meanwhile list their
links with different microglial states.

PROTECTIVE MECHANISMS OF
MICROGLIA

Given the vulnerability and poor regenerative capacity of
dopamine neurons, sustained inflammation could drive a chronic
neurodegenerative process. Fortunately, endogenous protective
regulatory signals and negative feedback mechanisms attenuate
microglial neurotoxicity. This inhibitory feedback is critical
in both intact and injured tissue. According to the current
state of knowledge, microglial protective mechanisms relevant
to PD pathology generally involve: (1) anti-inflammation; (2)
transrepression pathways through multiple nuclear receptors; (3)
neuron–microglia crosstalk; (4) histone modification; and (5)
microRNA regulation (Table 1). All these mechanisms converge
to inhibit pro-inflammatory cytokines, reactive oxygen species,
and NO production, and suppress the activity of NF-κB and its
downstream targets (Figure 1).

Anti-inflammation
IL-4, IL-13, IL-10 and transforming growth factor-β (TGF-β) are
the major anti-inflammatory cytokines that play a critical role in
minimizing brain inflammation and enhancing the expression
of genes involved in tissue recovery (Colton and Wilcock,
2010; Saijo and Glass, 2011). Of these, IL-4 and IL-13 are
well-described. They are recognized by IL-4/IL-13 receptors to
suppress the production of pro-inflammatory cytokines such as
IL-6, IL-8 and TNF-α and reduce superoxide production and NO
release, which ultimately alleviates LPS-induced neuron injury

both in vitro and in vivo (Ledeboer et al., 2000; Butovsky et al.,
2005; Park et al., 2005; Zhao et al., 2006; Colton, 2009; Colton
and Wilcock, 2010; Saijo and Glass, 2011). IL-4 secreted from
neurons also enhances microglial expression of the IL-4 receptor,
facilitating a “feedforward” increase in microglial expression of
trophic factors, and peroxisome proliferator-activated receptor
(PPAR)-dependent phagocytosis of apoptotic neurons (Zhao
et al., 2015). Similarly, in LPS-induced mouse model of PD,
intracerebral IL-10 alleviated microglial activation and inhibited
LPS-mediated production of TNF-α and NO, subsequently
leading to neuroprotection against LPS-induced dopaminergic
neuronal death (Rentzos et al., 2009). However, these protective
effects of IL-10 are not seen in mice that lack nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (Arimoto
et al., 2007), suggesting that IL-10 might antagonize NADPH
oxidase to promote anti-inflammation. TGF-β is a pleiotropic
cytokine with diverse functions including the induction of
angiogenesis and promotion of extracellular matrix deposition,
and it also participates in suppressing microglial responses,
thus avoiding exacerbation of brain damage after injury (Boche
et al., 2006). It should be noted that different anti-inflammatory
cytokines (IL-4, IL-10, TGF-β) might differentially affect the
production of pro-inflammatory mediators (Ledeboer et al.,
2000).

Anti-inflammatory cytokines are also powerful triggers
of alternative activation in microglia, and aid inflammation
resolution through endocytic clearance, promote tissue repair
and, in turn, induce the secretion of higher levels of IL-4, IL-
10, and IGF-1 to enhance neuronal survival (Ponomarev et al.,
2007; Colton, 2009; Henkel et al., 2009; Colton and Wilcock, 2010;
Zhou et al., 2012). IL-4 production, for example, is essential for
the maintenance of Ym1 expression and alternative activation in
microglia and peripheral infiltrating macrophages (Ponomarev
et al., 2007).

Transrepression Pathways
Glucocorticoid Receptors
Glucocorticoids are the most efficient endocrine molecules
sensed by glucocorticoid receptors (GRs) and have anti-
inflammatory and immunosuppressive effects (Herrero et al.,
2015; Xavier et al., 2016). Upon binding, GRs translocate into
the nucleus, resulting in the suppression of NF-κB activity
and downregulation of a variety of pro-inflammatory mediators
(Nelson et al., 2003). GRs deficiency induces persistent microglial
activation with higher nitrite production that precedes the loss
of dopaminergic neurons (Morale et al., 2004; Ros-Bernal et al.,
2011). This excitotoxicity can be reduced by the GR agonist
dexamethasone and increased by the GR antagonist RU486
(Gallina et al., 2015). GR-deficient microglia also have higher
levels of pro-inflammatory cytokines (e.g., TNF-α) and inhibit
the expression of anti-inflammatory genes (e.g., IL-1R2; Ros-
Bernal et al., 2011). In GR-deficient mice, intraparenchymal
injection of LPS activates the TLR4 signaling pathway, resulting
in exacerbated cellular lesions and neuronal and axonal damage
(Carrillo-de Sauvage et al., 2013). Interestingly, in the MPTP-
intoxicated mouse model and in patients with PD, GRs
expression is reduced in the substantia nigra, suggesting that
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TABLE 1 | Neuroprotective mechanisms of microglia-mediated neuroinflammation.

Typical mechanisms In crosstalk with Associated with
alternative activation

Anti-inflammation

IL-4
IL-13

(1) Suppress the pro-inflammation
(2) Reduce superoxide and nitrite production
(3) Assist the inflammation resolution and tissue repair

TGF-β, PPARs, CD200,
JMJD3 miR-124

Yes

IL-10 (1) Suppresses the pro-inflammation Yes

TGF-β (1) Suppresses the pro-inflammation
(2) Increases ECM deposition
(3) Promotes tissue repair

IL-4,
CX3CR1

Yes

Transrepression pathways

GRs (1) Suppress the NF-κB activity
(2) Inhibit pro-inflammatory mediators
(3) Reduce nitrite production

PPARs (1) Repress NF-κB and MAPK activities
(2) Inhibit pro-inflammatory cytokines
(3) Reduce nitrite production

IL-4
IL-13

Yes

ERs (1) Inhibit pro-inflammatory cytokines
(2) Activate the PI3K pathway
(3) Suppress the NF-κB activity
(4) Inhibit inwardly rectifying K+ channel Kir2.1

Nurr1 (1) Interacts with CoREST
(2) Inhibits pro-inflammatory cytokines
(3) Suppresses the NF-κB activity

Yes

Neuron-microglia crosstalk

CD200-CD200R (1) Promotes the KATP channels open
(2) Inhibits the ATP release
(3) Inhibits pro-inflammatory cytokines
(4) Suppresses the iNOS activity

IL-4

CX3CL1-CX3CR1 (1) Inhibits pro-inflammatory cytokines
(2) Reduces nitrite production

TGF-β Yes

Histone modification

JMJD3 (1) Inhibits pro-inflammatory cytokines
(2) Reduces nitrite production
(3) Suppresses the NF-κB activity

IL-4 Yes

MicroRNA regulation

miR-124 (1) Inhibits classical activation
(2) Promotes alternative activation

Yes

miR-21
miR-181c

(1) Suppress Fas ligand or TNF-α production

miR-155 (1) Inhibition of miR-155 switches microglial activation
toward alternative activation

Yes

CX3CL1, fractalkine; CX3CR1, fractalkine receptor; ECM, extracellular matrix; ER, estrogen receptor; GR, glucocorticoid receptor; IL, interleukin; PPAR, peroxisome
proliferator-activated receptor; TGF-β, transforming growth factor-β.

the neuroprotective effects of GRs might be impaired in PD
pathogenesis (Ros-Bernal et al., 2011).

Peroxisome Proliferator-Activated Receptors
Peroxisome proliferator-activated receptors belong to the
steroid hormone nuclear receptor superfamily, which has been
extensively studied with respect to its regulation of glucose
and lipid metabolism, energy balance, atherosclerosis, and
macrophage differentiation. PPARs also play a pivotal role in
inflammation regulation in the CNS through transrepression
pathways (Breidert et al., 2002; Dehmer et al., 2004; Hunter et al.,
2007; Quinn et al., 2008).

Activation of PPARs inhibits the synthesis of pro-
inflammatory mediators including TNF-α, NO, cyclooxygenase-2

and related chemokines, to attenuate neurotoxicity (Bernardo
et al., 2000; Kim et al., 2002). For example, treatment with
15-deoxy-112−14-prostaglandin J2, one of the major natural
PPAR-γ agonists, inhibits LPS-induced microglial activation
(Bernardo et al., 2000). Similarly, synthetic agonists of PPAR-
γ, including troglitazone, ciglitazone and pioglitazone, can
also suppress the excessive production of pro-inflammatory
molecules and prevent LPS-induced neuronal death (Kim et al.,
2002; Hunter et al., 2007). Inhibition of microglial activation by
PPARβ/δ is also associated with the suppression of NF-κB and
MAPK activity (Xu et al., 2013).

Malibatol A, a novel natural antioxidant extracted from
the Chinese plant Hopea hainanensis, inhibits inflammatory
cytokines not only in LPS-stimulated microglia but also in mouse
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FIGURE 1 | Protective mechanisms of microglia in PD. (1) Anti-inflammatory action induced by cytokines (e.g., IL-4, IL-10, IL-13 and TGF-β). (2)
Transrepression pathways through multiple nuclear receptors (e.g., GRs, PPARs, ERs, and Nurr1). (3) Neuron–microglia crosstalk (CD200–CD200R and
CX3CL1–CX3CR1). (4) Histone modification (e.g., JMJD3). (5) MicroRNA regulation (e.g., miR-124). These protective mechanisms coordinate with each other to
render microglia immunosuppressive or quiescent by inhibiting neurotoxic inflammatory components including reactive oxygen species, nitric oxide (NO), superoxide,
various pro-inflammatory cytokines, and NF-κB and its downstream targets.

models of stroke (Pan et al., 2015). Treatment with malibatol A
decreases classical activation markers (CD16, CD32, and CD86)
and increases alternative activation markers (CD206, Ym1) by
activating PPAR-γ (Pan et al., 2015). In the MPTP-injected
mouse model of PD, pioglitazone administration attenuates
dopaminergic neuron death by blocking the NF-κB pathway
and inhibiting iNOS (Breidert et al., 2002; Dehmer et al., 2004;
Quinn et al., 2008). Similarly, oral treatment with telmisartan, the
most potent PPAR-γ activator, provides neuroprotection against
dopaminergic cell death and neuroinflammation in MPTP-
lesioned mice, which can be inhibited by co-administration of the
PPAR-γ antagonist GW9662 (Garrido-Gil et al., 2012). Together,
these studies demonstrate the potential of PPARs as targets for
resolving neuroinflammation and attenuating neurotoxicity.

Estrogen Receptors
Epidemiological studies have found a higher prevalence of PD
in men than in women, and drugs used to treat PD affect men
and women differently with regard to therapeutic responses
(Shulman, 2002; Tao et al., 2012). Different levels of steroid
hormones such as estrogens are believed to be an important
contributor to these differences. The anti-inflammatory effects
of estrogens and estrogen receptor (ER)-selective ligands on
microglial activation have been extensively evaluated. Generally,
estrogens act through ERα or ERβ receptors to suppress the
production of several proinflammatory cytokines, including
TNF-α and other secretory products induced by LPS, to protect
neurons against death (Vegeto et al., 2000, 2001; Liu et al., 2005).
Estrogen also ameliorates microglial activation by inhibiting
the inwardly rectifying K+ channel Kir2.1, a known regulator
of microglial activation (Wu et al., 2016). Notably, those

protective effects can be blocked by ER antagonists, suggesting
that ERs are critical mediators of the anti-inflammatory and
neuroprotective functions of estrogens (Vegeto et al., 2001;
Liu et al., 2005; Ishihara et al., 2015). Specifically, ERα exerts
its anti-inflammatory effect via the PI3K pathway, which in
turn blocks the NF-κB pathway and translocation to the cell
nucleus (Ghisletti et al., 2005). Moreover, estrogens also suppress
microglial activation and attenuate the loss of dopaminergic
neurons in MPTP-intoxicated male mice in vivo (Tripanichkul
et al., 2006). Collectively, this evidence highlights the importance
of ERs in the inhibitory effects of estrogens that might account
for the gender differences in PD.

Nurr1
Nurr1 (NR4A2) is a member of the NR4A subfamily of
orphan nuclear receptors. It is required for the differentiation
and maintenance of midbrain dopaminergic neurons and is
an important pathogenic gene for familial PD (Le et al.,
2003; Jankovic et al., 2005; Kadkhodaei et al., 2009). The
transrepression effects of Nurr1 on neuroinflammation have
gained increasing attention in recent years. Nurr1 expression is
increased in microglia responding to LPS stimulation and the
protein is translocated from the cytoplasm to the nucleus to
regulate gene expression (Fan et al., 2009). In the LPS-injected
PD model, Nurr1 mediates transrepression pathways (Saijo et al.,
2009). Overexpressed Nurr1, orchestrated with Corepressor for
Repressor Element 1 Silencing Transcription Factor (CoREST)
inhibits the expression of various pro-inflammatory neurotoxic
molecules and NF-κB targeted genes. In contrast, knockdown
of Nurr1 gives rise to exaggerated inflammatory responses in
microglia that are further amplified by astrocytes, causing the
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extensive death of dopaminergic neurons (Saijo et al., 2009).
These studies reveal Nurr1 as a novel pharmacological target in
PD immunotherapy.

Nurr1 is an orphan nuclear receptor which acts by
ligand-independent activation. However, Nurr1 agonists such
as 1,1-bis (3′-indolyl)-1-(p-chlorophenyl) methane (C-DIM12)
and SA00025 have been generated in recent years and
stabilize binding of CoREST, block pro-inflammatory gene
expression by inhibiting NF-κB, induce dopaminergic gene
expression, and thus produce anti-parkinsonian effects against
6-hydroxydopamine intoxication (Zhang et al., 2012c,d; De
Miranda et al., 2015; Hammond et al., 2015; Smith et al., 2015).
Forced expression of Nurr1 and forkhead box A2 (Foxa2), a
potent Nurr1 co-activator in the development of dopaminergic
neurons (Yi et al., 2014), causes microglial phenotypes to switch,
and synergistically protects degenerating dopaminergic neurons
by paracrine signaling (Oh et al., 2015). Similarly, exogenous
expression of Nurr1 transcriptionally activates the expression
of alternative activation markers such as Arg1, by directly
binding to its promoter (Mahajan et al., 2015). Overall, Nurr1
might function as an anti-inflammatory transcription factor and
contribute to the balance of different microglial phenotypes.

Neuron–Microglia Crosstalk
CD200 and its Receptor (CD200R)
CD200R is present on microglia, and actively drives quiescent
microglia by engaging CD200, a type I membrane glycoprotein
expressed on the membrane surface of neurons (Vieites et al.,
2003; Gorczynski et al., 2004; Lyons et al., 2007). Microglia in
CD200-deficient mice exhibit more characteristics of activation
than in wild-types, appearing aggregated, less ramified, and
with shorter glial processes (Hoek et al., 2000; Deckert et al.,
2006). Moreover, the increased microglial activation in CD200-
deficient mice is accompanied by elevated levels of TNF-α and
iNOS, suggesting that neuronal inhibitory signals for microglial
response are compromised (Deckert et al., 2006). Disruption
of the CD200–CD200R interaction by a CD200R antibody
greatly exacerbates dopaminergic neuron death in a primary
neuron/microglia co-culture system (Wang et al., 2011).

There is also a time-dependent downregulation of CD200–
CD200R in the cerebra of MPTP-injected mouse models of PD
(Ren et al., 2016). CD200 appears to promote the opening of the
adenosine triphosphate-sensitive potassium (KATP) channels,
inhibit microglial activation and the release of ATP and
pro-inflammatory factors, and protect dopaminergic neurons
against MPTP-induced lesions (Ren et al., 2016). Furthermore,
blocking CD200–CD200R interaction exaggerates microglial
activation with elevated TNF-α and IL-6 production in a 6-
hydroxydopamine-induced rat model of PD, eventually causing
more extensive dopaminergic neuron loss (Zhang et al., 2011).

Interestingly, CD200 expression is decreased in neurons
from IL-4-deficient mice, and this induces a greater
neuroinflammatory response to LPS (Lyons et al., 2009).
Conversely, stimulation with IL-4 enhances CD200 expression,
revealing a putative role of CD200 and CD200R in the alternative
activation of microglia (Lyons et al., 2009; Yi et al., 2012).
Together, this evidence suggests that the CD200–CD200R

pathway is critical in the attenuation of microglial activation.
Impairment in either CD200 or CD200R induces activation of
microglia. We can also imagine that in the substantia nigra of
patients with PD, the progressive loss of dopaminergic neurons
cannot produce enough inhibitory CD200 that might accelerate
reactive microgliosis and neurodegeneration.

Fractalkine (CX3CL1) and its Receptor (CX3CR1)
CX3CL1 is a transmembrane glycoprotein. It is highly expressed
in neurons and cleaved from membranes in response to
neurotoxic insults, attracting reactive immune cells such as
microglia by binding with CX3CR1 (Chapman et al., 2000; Cook
et al., 2001). The interaction between CX3CL1 and CX3CR1
attenuates microglial activation and neurodegeneration. For
example, treatment with CX3CL1 suppresses the production
of NO, IL-6 and TNF-α released from microglia upon
LPS/IFN-γ stimulation that significantly prevents neuronal
death in vitro (Mizuno et al., 2003). Cardona et al. (2006)
used several in vivo models to demonstrate that a deficiency
in CX3CR1 dysregulates microglial responses and results
in neurotoxicity. CX3CR1-null mice showed increased cell-
autonomous microglial activation and enhanced neurotoxicity
after LPS-induced systemic inflammation (Cardona et al., 2006).
This was also seen in an MPTP-intoxicated CX3CR1-null
mouse model (Cardona et al., 2006), suggesting that CX3CR1
signaling is important in protecting neurons against microglial
neurotoxicity. Therefore, augmenting neuroprotective CX3CL1–
CX3CR1 signaling may be another avenue to investigate in the
treatment of PD.

Histone Modification
Alternatively activated microglia may facilitate neuroprotection
and enhance tissue repair. It is therefore very important
to probe the mechanisms that regulate alternative activation.
Epigenetic changes, such as DNA methylation or histone
structure alterations, regulate gene transcription by controlling
the accessibility of the promoter to regulatory factors (Berger,
2007).

It has been reported that the histone H3K27me3 demethylase
JMJD3 is essential for alternative microglial activation (Tang
et al., 2014). Knockdown of JMJD3 compromises the expression
of Arg1 and CD206 in IL-4 treated microglia, but exaggerates the
production of pro-inflammatory cytokines and NO, eventually
accelerating death of dopaminergic neurons in vitro (Tang et al.,
2014). Arg1, a classical marker of alternative activation, is
directly regulated by JMJD3 and shown to be anti-inflammatory
by counteracting iNOS (Tang et al., 2014). This suggests that
switching microglial phenotype is possible through epigenetic
modification. Notably, this switch has also been studied in
other neurodegenerative diseases, by regulating pivotal genes
including MSX3 (Yu et al., 2015), FAM19A3 (Shao et al., 2015)
and NF-κB p50 (Taetzsch et al., 2015), or chemical treatments
including fasudil (Zhang et al., 2013), malibatol A (Pan et al.,
2015), and glatiramer acetate (Burger et al., 2009; Begum-Haque
et al., 2013). Considering that microglial phenotypes can be
further divided into various subtypes, probably with different
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effects on neuroprotection, more investigations into the detailed
mechanisms involved in this switch are necessary.

MicroRNA Regulation
MicroRNAs participate in the promotion of microglial
quiescence. Broadly speaking, microRNA regulation is also
an epigenetic mechanism. Results of microarray expression
profiling and bioinformatics analysis of mRNA and microRNA
from primary cultures of murine microglia showed that miR-
689, miR-124, and miR-155 were the most strongly associated
microRNAs predicted to mediate pro-inflammatory pathways
and the classical activation phenotype (Freilich et al., 2013).

miR-124 is a modulator of microglia and macrophage
activation recently demonstrated to maintain their quiescent
state (Ponomarev et al., 2007, 2011). Knockdown of miR-124
leads to activation of microglia and peripheral macrophages
in vitro and in vivo. Administration of miR-124 before or after
disease onset causes systemic deactivation and suppression
of experimental autoimmune encephalomyelitis symptoms
(Ponomarev et al., 2011). More interestingly, transfection of
miR-124 can attenuate the expression of markers associated with
classical activation such as CD86 and iNOS, whereas cytokines
and markers associated with alternative activation including
Arg1, FIZZ1, and TGF-β are upregulated (Ponomarev et al.,
2011). This finding is in line with the notion that quiescent
microglia show properties of the alternatively activated state.
Notably, miR-124 levels decrease over time in the substantia
nigra of the MPTP-induced mouse model of PD, suggesting that
miR-124 depletion is involved in the pathogenesis of the disease
(Kanagaraj et al., 2014).

In addition, miR-21 and miR-181c are inversely correlated
with Fas ligand and TNF-α, respectively, during hypoxia-
induced microglial activation (Zhang et al., 2012a,b). The ectopic
expression of miR-21 or miR-181c suppresses Fas ligand or TNF-
α production by directly binding to its 3′-untranslated region,
thereby partially protecting neurons from death (Zhang et al.,
2012b,a).

Besides the protective microRNAs, miR-155 appears to be a
pro-inflammatory microRNA that can transform the microglial
activation state to a classical-like phenotype. Specifically, miR-
155 targets anti-inflammatory proteins as well as some alternative
activation-associated genes—such as that encoding SMAD2, a
transcription factor critical in the expression of Arg1, CD206 and
IL-10—leading to the upregulation of several pro-inflammatory
mediators characteristic of the classical phenotype including
iNOS, IL-6 and TNF-α (Ruffell et al., 2009; Louafi et al., 2010;
Cardoso et al., 2012).

SUMMARY AND PERSPECTIVES

In conclusion, microglia employ a series of neuroprotective
actions by activating multiple receptors, releasing anti-
inflammatory cytokines, initiating neuron–microglia crosstalk,
regulating microRNA, and modifying histone tails to suppress
the expression of neurotoxic genes. Notably, these actions
work together against inflammation-mediated neuronal injury

(Figure 1). For example, TGF-β can enhance IL-4-induced
alternatively activated microglia by increasing the expression of
Arg1 and Ym1, whereas treatment with IL-4 can increase the
level of TGF-β2, suggesting that TGF-β and IL-4 communicate
with each other to promote protective microglia. Moreover,
TGF-β can also enhance the steady state level of CX3CR1 that
may help microglia to adhere to neurons (Chen et al., 2002).
Another example lies in the relationship between IL-4 and
PPARs. IL-4 can induce PPAR activation, whereas PPAR agonists
can also increase IL-4 expression and attenuate the LPS-induced
increase in major histocompatibility complex class II and IL-1β

levels in microglia (Loane et al., 2009).
The available evidence strongly supports a link between

neuroprotective mechanisms and the alternative activation state
of microglia (Table 1). Alternatively activated microglia enhance
the expression of anti-inflammatory cytokines and various
transrepression receptors to execute neuroprotective functions.
Anti-inflammatory cytokines such as IL-4 and IL-13, as well
as PPAR-γ, miR-124 and JMJD3, promote alternative activation
of microglia. It might be interesting to determine whether
transrepression receptors such as GRs and ERs also contribute
to alternative activation.

Neuroprotective mechanisms of microglia are constantly
competing with neurotoxic signaling that is critical for the
maintenance of homeostasis. In most cases, the inflammatory
responses are self-limiting and finely regulated to keep the
balance between pro-inflammation/injury and the resolution
of inflammation/recovery. In PD, however, persistent stimuli,
derived from endogenous factors—especially α-synuclein
aggregates or the ubiquitin–proteasome system—and
environmental cues, contribute to excessive inflammation
(Gao and Hong, 2008). The detrimental effects thus gradually
overpower the protective effects of microglia, and the sustained
and uncontrolled inflammation, acting either as an initiator or
as a secondary propagator, drives the chronic and progressive
neurodegeneration observed in PD.

There remains an urgent need for a comprehensive
understanding of the neuroprotective role of microglia. Instead
of targeting any one of a large number of pro-inflammatory
factors, enhancing the neuroprotective effects of microglia might
be a more effective therapeutic strategy.
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