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Abstract: We present a finite-order system of recurrence relations for the permanent of circulant
matrices containing a band of k any-value diagonals on top of a uniform matrix (for k = 1, 2 and 3)
and the method for deriving such recurrence relations, which is based on the permanents of the
matrices with defects. The proposed system of linear recurrence equations with variable coefficients
provides a powerful tool for the analysis of the circulant permanents, their fast, linear-time computing;
and finding their asymptotics in a large-matrix-size limit. The latter problem is an open fundamental
problem. Its solution would be tremendously important for a unified analysis of a wide range of
the nature’s ]P-hard problems, including problems in the physics of many-body systems, critical
phenomena, quantum computing, quantum field theory, theory of chaos, fractals, theory of graphs,
number theory, combinatorics, cryptography, etc.

Keywords: permanent; circulant matrix; ménage problem; NP-hard problem; critical phenomena;
quantum computing

MSC: 15A15; 15B05; 05A18; 05A30; 11D04; 11D45; 82B20

1. Introduction: Significance and Complexity of Circulant Permanents

The permanent, per C, and the determinant, det C, of a n× n matrix C correspond to
two major operations—the symmetrization and the anti-symmetrization, respectively. This
fact predetermines their fundamental role in the quantum theory of many-body systems,
which are either bosonic (symmetric) or fermionic (anti-symmetric). The permanents
are well-known in mathematical physics, especially in quantum computing science and
the quantum field theory of interacting Bose fields [1–8]. However, compared to the
determinants, the permanents are much more difficult to compute and they account for
much more complicated many-body phenomena, such as the critical phenomena in phase
transitions. For instance, an exact general solution to a long-standing three-dimensional
Ising model [9] has been represented recently in terms of the permanent of a circulant
matrix [10–12].

The permanents have been studied in mathematics for more than a century (for a
review, see [13–18]), the most actively after discovery of the Ryser’s algorithm [19], the
publication of the comprehensive book “Permanents” [13], proof of the famous Valiant’s
theorem stating that their computing is a ]P-hard problem within the computational
complexity theory [20] and a recent development of a fully polynomial randomized ap-
proximation scheme [21,22] for their computing. In fact, the permanents are intimately
related to many fields of mathematics, including matrix algebra, combinatorics, number
theory, theory of symmetric polynomials, discrete Fourier transform, q-analysis, dynamical
systems, generalized harmonic and wavelet analysis [23–25] and computational complexity
theory. For instance, in combinatorics, matching in the bipartite graphs is enumerated by
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the permanents of 0-1 matrices [26]. Another example is provided by the permanent of
the Schur matrix, which is equal to a sum that explicitly includes the ordinary Möbius
function of the number theory [27]. Importantly, the permanents play a significant role
in the algebraic complexity theory as universal polynomials [28]. Nevertheless, despite
amazing recent activity and interest (see, e.g., [1,5–8,15,18,22,29–38] and references therein),
the methods for analyzing and calculating the permanents and their asymptotics for most
of large matrices remain illusive.

The general deterministic algorithms [19,36–38] for computing the permanent of a
n× n matrix with n2 entries require exponentially large number of operations, at least∼n2n.
A circulant matrix, whose permanent has been analyzed by many authors [13,39–44], has
just n independent parameters, as per Definition 2 below, and requires smaller, but still
exponentially large number of operations. The point is [45] that a circulant graph on n
vertices with enough nonzero entries contains an arbitrary subgraph of size proportional
to n1/2. No efficient algorithm has been found for computing the permanent of a general
circulant matrix of a large or moderate size in polynomial time.

The situation could be very different for the permanent of matrices with a fixed number
k of any-value parameters which is not increasing with the matrix size n or of a special
structure, say, confining all nonzero entries to a band or restricted diagonal or rectangular
blocks. One expects that for some classes of matrices with such additional constraints,
computing their permanents is possible in polynomial time, and hence, accessible for
applications. The latter has been demonstrated for matrices whose nonzero entries are
confined to a band or just a few diagonals [13,32,44,46–48]. Efficient computing of the
permanent of very sparse circulants [35,45,49] is another example. In the present paper we
consider an alternative class of matrices—the circulant matrices composed of a band of k
any-value diagonals on top of a uniform n× n matrix.

The presence of nonzero, even constant entries spreading over an entire two-dimensional
matrix plane in all directions drastically changes the behavior and asymptotics of the
permanent and significantly complicates the problem of its calculation. The two afore-
mentioned classes of matrices, with zero and nonzero entries outside a finite number
of diagonals, constitute two different universality classes for permanents. Based on the
reduction of the critical behavior in phase transitions to the asymptotics of the permanent
of a mean-field correlation matrix [10–12], these two classes could be related to two scaling
asymptotics of the critical phenomena in the disordered and ordered phases, respectively.
As is known from a phenomelogical renormalization-group approach [9,50], they are very
different, since the correlation matrix abruptly tends to zero in the disordered phase, but
remains nonzero for a very long distance due to long-range correlations in the ordered
phase. Note that we can choose any (except the truly special, trivial zero) constant nonzero
value, c = 1 or c 6= 1, for the entries of the uniform background matrix (see Equation (22))
in the considered model of the circulant matrix with a band of k any-value diagonals since
it amounts to a simple rescaling of the permanent, as is explained in Remark 3. Computing
the permanent of such matrices is very important in a number of applications in mathemat-
ics, physics, computing, information systems, cryptography, etc. (see the references above).
We aim at finding a system of recurrence relations for it. It would allow one to compute the
permanent of such matrices in linear time.

A base goal of the paper is to present a new method for finding the aforementioned
system of recurrence relations: Recursion of permanents of the matrices with defects.
One specific goal is to demonstrate practical ways of this method and communicate the
new results on finding the system of recurrence relations for calculating nontrivial, multi-
parametric circulant permanents with a band of k = 1, 2 or 3 different diagonals. In
particular, such a recurrence, in the case of the zero-valued k-diagonal band, provides a
solution to a famous problem of finding a finite recurrence for the k-ménage numbers,
or k-discordant permutations (for a discussion of k-ménage numbers, see [51–58]). For
calculating the permanents, especially of matrices whose entries are continuous variables,
the proposed method of the recursion of permanents with defects is more powerful and
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efficient than a widely known method of rook polynomials [17,51–54,57]. The former
incorporates all entire analytic, algebraic and combinatorial information on the permanental
polynomial of k variables. The latter is limited to just one artificial variable and mainly
combinatorial information on the associated 0-1 matrices and is not directly suitable for
finding the permanent as a function of all k variables and revealing its asymptotics.

Notation 1. For brevity, we denote the permanent, Cn = per C, of any n× n matrix C by a symbol
of its size, n, placed next to the matrix’s symbol as a subscript which simultaneously plays a part of
a recursion variable.

2. Definitions

Definition 1. The permanent and determinant of a n× n matrix C = (cq
p) are

Cn ≡ per C = ∑
σ∈Sn

n

∏
p=1

cσ(p)
p and det C = ∑

σ∈Sn

sgn(σ)
n

∏
p=1

cσ(p)
p . (1)

The sums run over the symmetric group Sn, i.e., over the permutations σ of 1, 2, ..., n.

Definition 2. The n × n circulant matrix C = Circ(c0, c1, ..., cn−1) with the p-th row and q-
th column entry cq

p is the matrix with the rows obtained via consecutive cyclic permutations of
the entries of the first row (c0, c1, ..., cn−1), or via the discrete Fourier transform of the set of its
eigenvalues {λl | l = 1, ..., n}:

cq
p ≡ cq−p (mod n) =

1
n

n

∑
l=1

λle2πi(q−p)(l−1)/n, λl =
n−1

∑
j=0

cje2πij(l−1)/n. (2)

Next, we consider a circulant matrix C = Circ(c0, ..., ck−1, 1, ..., 1), say,

C = Circ(c0, c1, c2, 1, ..., 1) =



c0 c1 c2 1 · · · 1 1 1
1 c0 c1 c2 · · · 1 1 1
1 1 c0 c1 · · · 1 1 1
1 1 1 c0 · · · 1 1 1
...

...
...

...
. . .

...
...

...
1 1 1 1 · · · c0 c1 c2
c2 1 1 1 · · · 1 c0 c1
c1 c2 1 1 · · · 1 1 c0


, (3)

whose first row includes a set {c0, ..., ck−1} of just k = 1, 2, or 3 any-value entries, and the rest of
the first row’s entries equal unity: cq = 1, q = k, ..., n− 1. In other words, the circulant matrix C
contains a band of k any-value diagonals inside a uniform n× n matrix J = (Jq

p) with unity entries
Jq
p = 1; p, q = 1, ..., n.

It is convenient to derive the recurrence relations for its permanent on the basis of the
following two matrices A and B defined for any matrix size n ≥ k.

Definition 3. The matrix A = (aq
p) is obtained from the original circulant matrix

C = Circ(c0, ..., ck−1, 1, ..., 1) by replacing all entries in the lower left (p − q > n − k) trian-
gle of entries with unities:

aq
p = cq

p if p− q ≤ n− k; aq
p = 1 if p− q > n− k. (4)

Definition 4. The matrix B = (bq
p) is obtained from the shifted circulant matrix

C̃ = Circ(c1, ..., ck−1, 1, ..., 1, c0) ≡ (c̃q
p) (5)
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by replacing the upper rightmost and lower leftmost entries c̃n
1 and c̃1

n with 1s (hereinafter, δq,j is
the Kronecker delta):

bq
p = c̃q

p + (1− c̃1
n)δp,nδq,1 + (1− c̃n

1 )δp,1δq,n. (6)

Definition 5. Two auxiliary matrices, A′ = (a′p
q), R = (rq

p), with entries

a′p
q
= aq

p + (c2 − 1)δp,nδq,1, rq
p = c̃q

p +
n

∑
l=2

(1− c1
l )δp,lδq,1 (7)

are used to prove the Theorem. The A′ differs from A, Equation (4), just by the lowest left entry
c2. The R is obtained from the shifted circulant C̃, Equation (5), by replacing all entries in the first
column, except the upper one, with unity.

Definition 6. A symbol M(l) stands for a matrix M = (mq
p) whose l-th column is replaced with a

column of 1s—that is, m(l)q
p = mq

p + (1−mq
p)δq,l .

We found that in order to get the closed, finite-order recurrence relations, we need to consider
the permanent of the matrices with a unity-column defect, namely, C(l)

n , A(l)
n , B(l)

n , and the following
sums of such permanents.

Definition 7. (Here a sum’s index in the parenthesis, (n), is a matrix size plus 1.)

A(n) =
n−1

∑
l=1

A(l)
n−1, B(n) =

n−1

∑
l=1

B(l)
n−1, C(n) =

n−1

∑
l=1

C(l)
n−1 = (n− 1)C(1)

n−1. (8)

Definition 8. A star (∗)-conjugation of any k-diagonal-band matrix M with defects means a
matrix M(∗) obtained from M by just renaming its parameters in the inverse order: c0, ..., ck−1 →
ck−1, ..., c0.

Definition 9. M(i|j) is the (n− 1)× (n− 1) submatrix obtained from a n× n matrix M after
deleting the i-th row and j-th column. M(i1i2|j1 j2) is the (n− 2)× (n− 2) submatrix obtained
from a n× n matrix M after deleting rows i1 and i2, and columns j1 and j2.

3. Method: Recursion of Permanents with Defects

We calculated the circulant permanent Cn = per C via the permanents of a few
matrices obtained from the circulant C by introducing certain defects, like those in the
Definitions 3–9. The set of those matrices with defects is dictated by a requirement of
its self-closure in the course of the reducing their permanents to the permanents of the
lower-size matrices by means of the Laplace expansion [14], certain relations between
different permanents valid due to particular patterns and symmetries of the k-diagonal-
band circulants; and various matrix transformations leaving the permanent invariant, such
as transposing with respect to the main or minor diagonals, and permutations of rows
or/and columns. In particular, the matrices such as A and B in Equations (4) and (6)
have the non-unity entries just within the main band of the k diagonals. The matrix R in
Equation (7) whose first-column entries are all unities, except the upper one, is instrumental
for establishing a recursive coupling with the sums of permanents, Equation (8), via the
Laplace expansion over the first row. Some important matrices with defects arise naturally
as minors in the Laplace expansion or Lemmas 1 and 2 below.

In general, we introduce the matrices with defects located as close to the corners of
the matrices as possible in order to avoid recursive chains of matrices with the defects
penetrating deeper and deeper inside the matrices.
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The permanent of each matrix with defects is associated with a particular combinato-
rial meaning. The permanents of, say, circulant C and matrix with defects A, in the case of
zero parameters c0 = ... = ck−1 = 0, are equal to the famous k-ménage numbers for the
circular-table and straight-table problems, respectively.

One of the key ingredients of the method is explicit involvement of the sums of
permanents over the matrices with the unity-column or unity-row defects (see Equation (8))
into the permanents’ recurrence relations.

The star (∗)-conjugation introduced in Definition 8 reveals an important symmetry
and helps to reduce the number of matrices with defects needed for achieving completeness
of the system of recurrence relations.

Especially, we employ the following lemmas which immediately follow from the
permanent’s definition and the Laplace expansion of the permanent along the p∗-th row or
the p∗-th row and q∗-th column, etc.

Lemma 1. If a matrix M̃ = (m̃q
p) differs from a matrix M = (mq

p) by just the entries (defects) m̃q
p∗

in a single row p = p∗, then its permanent M̃n = per M̃ differs from the permanent Mn = per M
of the unperturbed matrix by just the sum over separate linear corrections per each p∗-row en-
try, (m̃q

p∗ − mq
p∗), multiplied by the corresponding permanental minor, i.e., by the permanent

M(p∗|q)n−1 = per M(p∗|q) of the submatrix M(p∗|q) of the lower size n− 1:

M̃n = Mn +
n

∑
q=1

(m̃q
p∗ −mq

p∗)M(p∗|q)n−1. (9)

A similar representation is valid when all defects are located in a single column.

Lemma 2. If a matrix M̃ = (m̃q
p) differs from a matrix M = (mq

p) by just the entries (defects)

m̃q
p∗ in a row p = p∗ and m̃q∗

p in a column q = q∗, then its permanent M̃n = per M̃ differs from the
permanent Mn = per M of the unperturbed matrix by the following superposition of (i) the separate
linear corrections per each p∗-row entry and each q∗-column entry, multiplied by the corresponding
permanental minor of the size n− 1, and (ii) the cross-correlated quadratic corrections per each pair
of defects, one from the p∗-row and one from the q∗-column, multiplied by the permanent of the
corresponding submatrix M(p∗p|qq∗) of the size n− 2:

M̃n = Mn +
n

∑
q=1

(m̃q
p∗ −mq

p∗)M(p∗|q)n−1 +
n

∑
p=1,p 6=p∗

(m̃q∗
p −mq∗

p )M(p|q∗)n−1

+
n

∑
q=1,q 6=q∗

n

∑
p=1,p 6=p∗

(m̃q
p∗ −mq

p∗)(m̃
q∗
p −mq∗

p )M(p∗p|qq∗)n−2 .
(10)

Note that the defect m̃q∗
p∗ at the intersection of the p∗-th row and q∗-th column contributes to the

right-hand side of Equation (10) just once through a linear correction and does not contribute at all
to the cross-correlated quadratic corrections.

A generalization of Lemmas 1 and 2 to a general case when the defects are located in
the three or more different rows and columns is straightforward.
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4. The Permanent of a Uniform Circulant Matrix with One Any-Value Diagonal
(k = 1) and the Rencontres Numbers

In this section, we consider the simplest nontrivial case of a uniform circulant n× n
matrix with a band of k any-valued diagonals, namely, the case of just one (k = 1) diagonal
with the entries c0 inside the matrix J of all 1s:

C =


c0 1 · · · 1 1
1 c0 · · · 1 1
...

...
. . .

...
...

1 1 · · · c0 1
1 1 · · · 1 c0

 . (11)

Proposition 1. The recurrence equation for the permanent of this circulant is

Cn = nCn−1 + (c0 − 1)[Cn−1 − (n− 1)Cn−2], or Cn − nCn−1 = (c0 − 1)n, (12)

and yields the exact solution for the permanent,

Cn = ec0−1Γ(n + 1, c0 − 1), (13)

via the well-known upper incomplete gamma function

Γ(n + 1, x) =
∫ ∞

x
tne−tdt. (14)

Proof. The permanent is given by the Laplace expansion over the first row as

Cn = c0Cn−1 + C(n) (15)

via the sum of permanents C(n), Equation (8), which consists of n− 1 equal permanents of

the circulant matrices with a 1’s-column defect C(q)
n−1 = C(1)

n−1(q = 1, ..., n− 1). The latter
can be evaluated by means of Lemma 1, and so we have

C(n) = (n− 1)C(1)
n−1, C(1)

n−1 = Cn−1 + (1− c0)Cn−2. (16)

The first part of Equation (12) follows from (15), (16). It is immediate to solve it for

Cn − nCn−1 = (c0 − 1)n (17)

via a geometrical progression that could be started from the matrix size n = 2, for which the
relevant permanents are easy to calculate from the definition (1) (C1 = c0, C2 = c2

0 + 1). It is
valid even for n = 1 if one assigns the unity value for the permanent of the zero-size matrix,
C0 = 1, so that C1 − C0 = c0 − 1. The latter Equation (17) is exactly the known recurrence
equation for the upper incomplete gamma function, which follows from integration by
parts of Equation (14). This fact proves Equation (13) and completes the proof of the
Proposition 1.

Remark 1. According to the Definition (1), the permanent of the matrix (11) is a polynomial of
one variable c0 of the order n. It can be represented as

Cn =
n

∑
j=0

Pjc
j
0 = n!

n

∑
j=0

(c0 − 1)j/j! . (18)

Here the second representation follows from Equation (13) and the known fact that a Taylor series of
the function exΓ(n + 1, x) = n! ∑n

j=0 xj/j! becomes finite at the integer values of n = 0, 1, 2, ....
Thus, the analytic formula in Equation (13) gives the exact solution for this permanent, and



Entropy 2021, 23, 1423 7 of 17

importantly, allows one to find its asymptotics in the limit of a large matrix size n → ∞ via the
known properties of the upper incomplete gamma function.

Remark 2. Famous derangement numbers, or subfactorials [17], counting the number of permuta-
tions of the set {1, ..., n} that have no fixed points,

Dn,0 ≡ !n = bn!/ee = n!
n

∑
j=0

(−1)j/j! =
∫ ∞

0
(t− 1)ne−tdt, (19)

and more general rencontres numbers counting the number of permutations of the set {1, ..., n}
with exactly k fixed points (0 ≤ k ≤ n),

Dn,k =
n!

k!(n− k)!
Dn−k,0 , (20)

are closely related to the permanent of the matrix (11). Namely, the number of derangements is
equal to the permanent of the matrix C with the zero diagonal, that is, just to the constant term P0
of the permanental polynomial in Equation (18):

Dn,0 = Cn|c0=0 = P0 . (21)

Remark 3. The permanent C′n of a somewhat more general circulant n× n matrix C′ with one
c0-diagonal inside a uniform matrix with one and the same value c, not necessarily unity, assigned
to all other entries,

C′ =


c0 c · · · c c
c c0 · · · c c
...

...
. . .

...
...

c c · · · c0 c
c c · · · c c0

, (22)

can be easily reduced to the one in Equation (13) by means of the rescaling:

C′n = cne
c0
c −1Γ(n + 1,

c0

c
− 1). (23)

This formula and its analogs for the uniform circulant matrices with a band of k > 1 diagonals
are useful for analyzing an overall scaling of the permanents. Yet, thereinafter we will skip such a
straightforward generalization and set c = 1.

Remark 4. Another derivation of Equation (23) is based on the combinatorics of the permanent in
the Definition (1) and the rencontres numbers in Equation (20):

C′n =
n

∑
j=0

Dn,jc
j
0cn−j =

∫ ∞

0

(c0 − c + ct)n

et dt = cne
c0
c −1Γ(n + 1,

c0

c
− 1). (24)

Remark 5. In the case k = 0 of the matrix which has all unity entries without a band of any-value
diagonals, C = J, it is easy to find the permanent directly from the definition in Equation (1) by
means of a trivial combinatorics: per J = n!. Of course, the same result follows from the general
analytic formula in Equation (13) in the corresponding particular case c0 = 1.
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5. The Permanent of a Uniform Circulant Matrix with a Band of Two Any-Value
Diagonals (k = 2) and the Ménage Numbers

Here we consider a more envolved, but still simple case of a uniform circulant n× n
matrix with a band of two (k = 2) diagonals (with the entry values c0 and c1) inside the
matrix J of all 1s:

C = Circ(c0, c1, 1, ..., 1) =



c0 c1 1 · · · 1 1 1
1 c0 c1 · · · 1 1 1
1 1 c0 · · · 1 1 1
...

...
...

. . .
...

...
...

1 1 1 · · · c0 c1 1
1 1 1 · · · 1 c0 c1
c1 1 1 · · · 1 1 c0


. (25)

Proposition 2. The permanent of this circulant with a band of two diagonals,

Cn ≡ per Circ(c0, c1, 1, ..., 1) = An + (c1 − 1)[An−1 + (c1 − c0)A(1)
n−1 + A(n) − A(∗)(n)], (26)

is given by a solution of the following system of recurrence relations

An = c0 An−1 + (n− 2 + c1)A(1)
n−1 + (1− c1)A(∗)(n−1),

A(1)
n = An−1 + (n− 2 + c1)A(1)

n−1 + (1− c1)A(∗)(n−1),

A(n) = (n− 1)A(1)
n−1 + (1− c1)A(∗)(n−1),

A(∗)(n) = (n− 1)A(1)
n−1 + (1− c0)A(n−1)

(27)

with the initial conditions set at the starting recursive order n = 1 as follows

A1 = c0, A(1)
1 = 1, A(1) = A(∗)(1) = 0. (28)

Proof. The permanent Cn is given by Lemma 1 applied to the matrix A, Equation (4),
which differs from the circulant C by one defect in the lower left corner:

Cn = An + (c1 − 1)A(∗)n−1. (29)

Here the star (∗)-conjugation means renaming c0 → c1, c1 → c0 as per Definition 8. The
permanent An is given by the Laplace expansion over the first row,

An = c0 An−1 + (c1 − 1)A(1)
n−1 + A(n), (30)

via the sum A(n), Equation (8), which we find via summation of the analogs of Equation (29)
written for the circulant with a 1’s-column defect at the position q = l,

C(l)
n = A(l)

n + (c1 − 1)(1− δl,1)A(n+1−l)(∗)n−1, l = 1, 2, ..., n. (31)

Taking into account that the permanent of the circulant matrix with a 1’s-column defect does
not depend on the position l of the 1’s-column defect, and hence, equals to C(l)

n = A(1)
n ∀l,

we immediately get the third equation of the system (27). The forth equation is just its
(∗)-conjugated counterpart. Plugging the third equation into Equation (30), we get the first
equation of the system (27). At last, the second equation of the system (27) follows from the
first equation and the representation of the permanent of the matrix A(1) with a 1’s-column
defect at the position of the first column obtained by means of Lemma 1:

A(1)
n = An + (1− c0)An−1. (32)
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Equation (26) for the circulant permanent Cn itself follows from Equation (29) after
plugging the equation for the (∗)-conjugated permanent of the matrix A:

A(∗)n−1 = An−1 + (c1 − c0)A(1)
n−1 + A(n) − A(∗)(n). (33)

The latter equation is a consequence of the identity A(1)
n = A(1)(∗)n with both sides

substituted with an explicit expression

A(1)
n = An−1 + (c1 − 1)A(1)

n−1 + A(n) (34)

which follows from Equations (32) and (30). The initial conditions (28) provide the correct
values for all permanents at the recursive order n = 2, namely,

A2 = c2
0 + c1, A(1)

2 = c0 + c1, A(2) = A(∗)(2) = 1, A(∗)2 = c2
1 + c0. (35)

This completes the proof of the Proposition 2.

Remark 6. The permanent of the uniform circulant matrix C with a band of two diagonals (k = 2),
Equation (25), is given by the system of linear homogeneous recurrence relations with variable
coefficients of the fourth order, Equation (27), whereas in the case of a band of one diagonal (k = 1)
the system of recurrence relations is of the second order, Equation (12). The system in Equation (27)
allows one to compute the entire permanental polynomial,

per C =
n

∑
j0,j1=0

Pj0,j1 cj0
0 cj1

1 , (36)

as a function of two valiables (c0, c1) for any large matrix size n and to find its asymptotics
analytically. The relevant results will be presented elsewhere.

Remark 7. Famous ménage numbers [52,53,55–57,59–61] Un counting the number of different
ways to seat n husbands at a circular table of 2n places so that men and women alternate and
no adjacent couples are allowed, that is, the number of 2-discordant permutations σ of {1, ..., n}
such that σ(j) is not congruent to any j, j + 1 (mod n), are equal to the permanent of the uniform
circulant matrix C with a band of two zero diagonals. That is, they are equal to a particular value
of the permanent when both variables are zero, c0 = c1 = 0, which is the constant term of the
permanental polynomial in Equation (36):

Un = Cn|c0=c1=0 = P0,0 . (37)

A well-known fourth-order recurrence equation for the ménage numbers [53,59]:

Un = nUn−1 + 2Un−2 − (n− 4)Un−3 −Un−4, (38)

immediately follows from the recurrence relations for the permanent Cn, Equation (27), as
its particular case. Namely, for c0 = c1 = 0 the permanent, and hence, the ménage numbers
(the sequence A000179 in [56]) are given by a simple formula

Un = Cn = An − An−1 (39)

via the permanent An of the matrix with the defect A, Equation (4), which coincides
with the straight ménage number Vn, counting the number of permutations σ of {1, ..., n}
such that σ(j) is not congruent to any j, min{j + 1, n} (mod n) (that corresponds to an
analogous problem of seating n husbands at a straight-line table), and satisfies the third-
order recurrence (the sequence A000271 in [56]):

An = (n− 1)(An−1 + An−2) + An−3. (40)
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The latter immediately follows from Equation (27) since

A(1)
n = An + An−1 & A(n) = A(∗)(n) = An + An−1 + An−2 for c0 = c1 = 0. (41)

Thus, the method of the recursion of permanents with defects provides a simple derivation
of the recurrence (40) for the straight ménage numbers Vn = An|c0=c1=0, which is different
from a long combinatorial derivation (see Theorem 1 in [53]).

6. The Permanent of a Uniform Circulant Matrix with a Band of Three Any-Value
Diagonals (k = 3) and the 3-Ménage Numbers

Finally, we consider a quite complicated case of a uniform circulant n× n matrix with
a band of three (k = 3) diagonals (with the entry values c0, c1, c2) inside the matrix J of all
1s. It is depicted as C in Equation (3) and C̃ in Equation (5) below.

C̃ = Circ(c1, c2, 1, ..., 1, c0) =



c1 c2 1 · · · 1 1 c0
c0 c1 c2 · · · 1 1 1
1 c0 c1 · · · 1 1 1
...

...
...

. . .
...

...
...

1 1 1 · · · c1 c2 1
1 1 1 · · · c0 c1 c2
c2 1 1 · · · 1 c0 c1


. (42)

Theorem 1. The permanent of this circulant with a band of three diagonals is

Cn ≡ per Circ(c0, c1, c2, 1, ..., 1) = Bn + (c0 − 1)An−1 + (c2 − 1)A(∗)n−1 + (c0 − 1)(c2 − 1)Bn−2 (43)

and is determined by a solution of the following system of recurrence relations:

An = A(n) − (1− c2)A(2)
n−1 + (c0 + c1 − 1)An−1 − (1− c0)(1− c1)An−2, (44)

Bn = B(n) +c1Bn−1 − (1− c0)An−1 − (1− c2)A(∗)n−1

−(1− c0)
2 An−2 − (1− c2)

2 A(∗)n−2 + (1− c0)(1− c2)Bn−2,
(45)

A(n) = (n− 3)C(1)
n−1 + A(2)

n−1 + An−1 + 2(1− c2)A(∗)(n−1) + (1− c1)B(n−1)

+(1− c0)An−2 + (c1 + c2 − 2)A(∗)n−2 − c2(1− c2)A(∗)(n−2) − 2(1− c0)(1− c2)B(n−2)

−(2 + c0 − c1 − c2)(1− c2)A(∗)n−3 + (1− c0)(1− c2)
2 A(∗)n−4,

(46)

B(n) = (n− 3)C(1)
n−1 + An−1 + A(∗)n−1 + (1− c0)A(n−1) + (1− c2)A(∗)(n−1)

−(1− c0)(1− c2)B(n−2) − (1− c0)
2 An−3 − (1− c2)

2 A(∗)n−3,
(47)

C(1)
n = (n− 3)C(1)

n−1 + An−1 + A(∗)n−1 + Bn−1

+(1− c0)[A(n−1) − An−1] + (1− c2)[A(∗)(n−1) − A(∗)n−1]− (1− c0)(1− c2)B(n−2)

−(1− c0)
2[An−2 + An−3]− (1− c2)

2[A(∗)n−2 + A(∗)n−3].

(48)

The symbols A(n), B(n) in Equations (44) and (45) stand for the right-hand sides of

Equations (46) and (47), respectively. In Equations (44) and (46), the symbol A(2)
n−1 stands for

A(2)
n−1 = C(1)

n−1 + (1− c1)A(∗)n−2 + (1− c2)A(∗)(n−2)

+(1 + c0 − c1)(1− c2)A(∗)n−3 − (1− c0)(1− c2)
2 A(∗)n−4.

(49)

Remark 8. The recurrence system includes the star (∗)-conjugated counterparts of Equations (44)
and (46) for A(∗)n and A(∗)(n). Their explicit form is given in the Appendix A. Obviously,
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B(∗)n ≡ Bn, B(∗)(n) ≡ B(n) and C(∗)(1)n ≡ C(1)
n . Hence, the star (∗)-conjugated counterparts

of Equations (45), (47) and (48) are not needed. Note that in the present case of k = 3 the
star (∗)-conjugation means just renaming c0 → c2, c2 → c0 and leaves c1 untouched as per
Definition 8.

Remark 9. The system consists of the three blocks of different origin:

(i) Block 1—the basis permanents (44) and (45) of the matrices with entry defects;
(ii) Block 2—the sums of permanents (46) and (47) with a 1’s column defect;
(iii) Block 3—the special permanent (48) of the matrix C with all 1s in the first column.

Proof of the Theorem 1. While applying Lemmas 1 and 2 below, we employ the auxiliary
matrices A′ and R defined in Equation (7). They differ from the basis matrices A and B
by one and two defects, so that their permanents are given by Lemma 1 and Lemma 2,
respectively, as follows:

A′n = An + (c2 − 1)Bn−1, (50)

Rn = Bn − (1− c0)(1− c2)Bn−2. (51)

Equation (43) follows from Lemma 2 applied to the B, which differs from the C̃ by two defects.
Equations (44) and (45) follow from the Laplace expansions over the first row:

An = c0 An−1 + (c1 − 1)A(1)
n−1 + (c2 − 1)A(2)

n−1 + A(n), (52)

Rn = c1Bn−1 + (c2 − 1)B(1)
n−1 + (c0 − 1)B(n−1)

n−1 + B(n). (53)

Equation (46) is based on Lemma 2 applied to the A viewed as the C with three defects:

An = Cn + (1− c1)Bn−1 + 2(1− c2)A′(∗)n−1 + (1− c2)
2 A(∗)n−2. (54)

Namely, we use an analog of Equation (54) for a matrix A(q) with a 1’s-column defect:

A(q)
n = C(q)

n + (1− c1)B(q−1)
n−1 (1− δq,1) + (1− c2)

2 A(n+1−q)(∗)n−2(1− δq,1)(1− δq,2)

+(1− c2)[A(n+1−q)(∗)n−1(1− δq,1) + A(n(1−δq,1)+2−q)(∗)n−1(1− δq,2)]

−(1− c0)(1− c2)[B
(q−1)
n−2 (1− δq,n) + B(q−2)

n−2 (1− δq,2)](1− δq,1), q = 1, ..., n.

(55)

Equation (46) is the sum of Equations (55) over q = 1, 2, ..., n with a renamed n→ n− 1.
Equation (47) is based on Lemma 2 applied to the B viewed as the C̃ with two defects:

Bn = C̃n + (1− c0)An−1 + (1− c2)A(∗)n−1 − (1− c0)(1− c2)Bn−2. (56)

Namely, we use an analog of Equation (56) for a matrix B(q) with a 1’s-column defect:

B(q)
n = C̃(q)

n + (1− c0)A(q)
n−1(1− δq,n) + (1− c2)A(n+1−q)(∗)n−1(1− δq,1)

−(1− c0)(1− c2)B(q−1)
n−2 (1− δq,1)(1− δq,n), q = 1, ..., n.

(57)

Equation (47) is the sum of Equations (57) over q = 1, 2, ..., n with a renamed n→ n− 1.
Equation (48) follows from Lemma 2 applied to the C(1) viewed as the R with one

defect:

C(1)
n = Rn + (1− c1)Bn−1 = Bn + (1− c1)Bn−1 − (1− c0)(1− c2)Bn−2. (58)

Equation (49) is Equation (55) in the case q = 2. When deriving the equations above,
we plugged in some special permanents with a 1’s column defect as follows:

A(1)
n = B(n)

n = B(1)(∗)n = An + (1− c0)An−1, A(n)
n = An−1 + A(n). (59)
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This completes the proof of the Theorem.

Remark 10. By means of changing the unknown variables or reducing or increasing their number,
it is possible to rewrite the system of recurrence relations in other, more or less symmetric forms. For
instance, it is straightforward to solve Equation (47) for the variable B(n) in terms of the basis perma-
nents and exclude it from the system by plugging it into the Equations (46)–(48) which, together with
Equation (44) and the (∗)-conjugated Equations (A1) and (A2), constitute the six recurrence equa-
tions, each of the fourth order, for the six unknown variables An, A(∗)n, A(n), A(∗)(n), Bn, C(1)

n .
Overall, this system of linear homogeneous recurrence relations with variable coefficients is of the
24-th order. One can go further on, and similarly, exclude the variable C(1)

n by solving Equation (46)
for C(1)

n−1 and plugging it into the remaining equations. A related analysis will be done elsewhere.
Note that the actual overall order of this recurrence could be less than 24 only for some special
cases or if there is some hidden symmetry or identity within this system of recurrence relations. In
particular, for the problem of the 3-ménage numbers (3-discordant permutations) corresponding to
the case c0 = c1 = c2 = 0, the system of recurrence relations can be reduced to just one recurrence
Equation (67) of the 8-th order for An (see Remark 12 below).

Remark 11. The system of recurrence relations (44)–(48) is valid for n ≥ 7 since the matrix
size in the lowest-order permanent A(∗)n−4 entering Equations (44) and (46) should be equal or
larger than the size of the diagonal band, k = 3. The permanents of the order 6 and lower in the
right-hand side of the recurrence equations (that is, A3, A(∗)3, B4, B5, etc.) should be computed
directly via the definition of the permanent in Equation (1). Direct numerical calculations, such as
in Figure 1, confirm that the recurrence (44)–(48) gives easy and fast access to the correct result for
the permanent of the circulant (3) with arbitrary, even complex values of the entries c0, c1, c2 for
any, arbitrarily large matrix size n in linear time. In fact, there are no other means to compute the
permanents such as in Figure 1 for a matrix size n ∼ 100 or larger. The point is that the known
deterministic algorithms [19,36,37] are not capable of computing the permanent of a matrix with a
size n larger than 50 even on a supercomputer [38]. (A standard PC with Wolfram Mathematica
fails already at n ∼ 25.) A fully polynomial randomized approximation scheme [21,22] does not
work for matrices with sign indefinite or complex entries and requires a rather long polynomial
computing time that scales as ∼n11 for a general matrix with nonnegative entries or ∼n4(log n)
in a special case of a very dense matrix. Figure 1 illustrates a strong dependence of the permanent
on the entries c0, c1, c2. It is not just strongly different from the permanent of the all-1s matrix,
perJ = n!, but changes its asymptotic value by two orders of magnitude due to flipping a sign of a
single entry c1.

20 40 60 80 100

1000

2000

3000

4000

5000

6000

0

per C

n!

n

Figure 1. The scaled permanent, perC/n!, of the n× n circulant matrix C calculated via recursive
relations (44)–(48). Blue dots correspond to the band of three diagonals c0 = −1, c1 = 2, c2 = 10 on
top of the all-1s matrix J; orange crosses correspond to the diagonals c0 = −1, c1 = −2, c2 = 10.
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Remark 12. The famous 3-ménage numbers [51–53,56,57,62,63] U3
n counting the number of the 3-

discordant permutations σ of {1, ..., n} such that σ(j) is not congruent to any j, j+ 1, j+ 2 (mod n),
are equal to the permanent of the uniform circulant matrix C with a band of three zero diagonals.
Hence, they are given by a particular value, U3

n = Cn|c0=c1=c2=0, of the permanent

Cn = Bn − 2An−1 + Bn−2 (60)

by means of the solution of the system of recurrence relations

An = A(n) − C(1)
n−1 − An−1 − A(n−2) − 2An−2 − An−3 + An−4, (61)

Bn = B(n) − 2An−1 − 2An−2 + Bn−2, (62)

A(n) = (n− 2)C(1)
n−1 + An−1 + 2A(n−1) + B(n−1) + A(n−2) − 2B(n−2) − An−3, (63)

B(n) = (n− 3)C(1)
n−1 + 2An−1 + 2A(n−1) − B(n−2) − 2An−3, (64)

C(1)
n = (n− 3)C(1)

n−1 + Bn−1 + 2A(n−1) − B(n−2) − 2An−2 − 2An−3 (65)

which are Equations (44)–(48) in the particular case c0 = c1 = c2 = 0 when the star (∗)-conjugated
counterparts are not needed since An = A(∗)n, A(n) = A(∗)(n).

We checked that the correct values (see the integer sequences A000183 and A001887
in [56]) and the known recurrence relations for the 3-ménage numbers, or 3-discordant
permutations [53,56,57,62,63]:

U3
n = (−1)n(4n + fn) +

n
n− 1

[(n + 1)U3
n−1 + 2(−1)n fn−1]−

2n
n− 2

[(n− 3)U3
n−2

+(−1)n fn−2] +
n

n− 3
[(n− 5)U3

n−3 − 2(−1)n fn−3] +
n

n− 4
[U3

n−4 − (−1)n fn−4],
(66)

(which is also valid for n ≥ 7, see Example 4.7.17 in [17]) and for the straight 3-ménage
numbers [53,55] V3

n = An (which is valid for n ≥ 11)

An = (n− 1)An−1 + (n + 2)An−2 − (3n− 13)An−3 − (2n− 8)An−4

+(3n− 15)An−5 + (n− 4)An−6 − (n− 7)An−7 − An−8
(67)

follow from Equations (60)–(65) derived above. (Equation (66) includes the n-th Fibonacci
number Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, via a function fn = Fn+1 + Fn−1 + 2.) In
particular, in order to derive Equation (67), one can, first, exclude the B(n) by solving for

it Equation (62) and plugging it into the remaining equations; then excluding the C(1)
n by

solving for it Equation (63) and plugging it into the remaining equations; then, in a similar
way, excluding the A(n); and finally, excluding the Bn.

7. Conclusions

We present the exact solution for the circulant permanent via the finite system of
the linear recurrence relations which provides a full access to a highly nontrivial analytic
dependence of the permanent (whose entries are all nonzero) on k = 1, 2 or 3 independent
parameters. This is especially interesting since computing the permanent in the case of 0-1
matrices with just three arbitrarily placed nonzero entries per row and column is as hard as
in the general case [64]. Exactly solvable models, like the ones discussed above, could play
as important role in the understanding and theory of the matrix permanent and similar
]P-hard problems as the famous Onsager’s and other exactly solvable models play in the
theory of critical phenomena in phase transitions [9]. In other words, an attitude to the
matrix permanent should be shifted from considering it just as a symbol of incomputability
to employing it as a powerful tool for understanding and studying the ]P- and NP-hard
problems and processes.
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The circulant permanent studied above is a multivariate polynomial of k indetermi-
nates (c0, ..., ck−1) and has (say, in the case k = 3) the following form

per C =
n

∑
j0,j1,j2=0

Pj0,j1,j2 cj0
0 cj1

1 cj2
2 , (68)

where summation over the indexes is subject to the constraint ∑k−1
i=0 ji ≤ n. The degree of

such a permanental polynomial is equal to the matrix size n. The permanental polynomials
constitute a key concept of the universal polynomials in the algebraic complexity theory [28]
and their understanding is paramount.

The constant term of the permanental polynomial, Pj0=0,...,jk−1=0, considered as a
function of the matrix size n forms a famous integer sequence of the k-ménage numbers,
or k-discordant permutations [51–53,56–58]. The recurrence relations for the k-ménage
numbers are known in an explicit form only for the cases k = 1 (derangements, or 1-
ménage numbers), k = 2 (classical 2-ménage numbers), and k = 3 (3-ménage numbers).
The recurrence relations (44)–(48) for the circulant permanent in the case k = 3 provide a
compact and explicit recurrence for the 3-ménage numbers, Equations (60)–(65) or (67), if
one simply sets all three circulant parameters to be zero, c0 = c1 = c2 = 0. Finding the
recurrence for the k-ménage numbers in the case k ≥ 4 remains an open problem.

The finite recursion for the circulant permanents (presented above for the particular
cases k = 1, 2, 3) is the solution to a much more complex problem. It provides a powerful
analytic and numerical tool for a detailed analysis of the entire permanental multivariate
polynomial, not just its constant term that is the sequence of the k-ménage numbers. The
details of such an analysis will be given elsewhere. It would be interesting to generalize
this approach to the case k ≥ 4 which is challenging. As the next step, we plan to work out
the aforementioned recursion in the case of the uniform circulant permanent with a band
of k = 4 any-value diagonals.

For calculating the permanents, the method of recurrence relations for the permanents
of matrices with defects, presented here, is superior to the rook and hit polynomial approach
which dominated an extensive literature on the ménage numbers (discordant permutations)
in recent years [17,51–54,57]. The point is that the rook and hit polynomials are somewhat
artificial univariate polynomials associated with the permanents of just 0-1 matrices while
the actual permanental polynomials, as in Equation (68), are multivariate ones and contain
much more involved combinatorial and analytic information on permanents. Compared
to the rook and hit polynomial approach, the permanent-based method is more algebraic
rather than combinatorial in nature.

The most important further step would be finding the asymptotics of the permanent for
some classes of the circulant constraint matrices of large size n� 1. The recurrence relations
like the ones presented above allow one to apply well-developed asymptotic methods
(see, for instance, [55,65–68] and references therein). A solution to this fundamental open
problem on the permanent’s asymptotics would be incredibly important for a unified
analysis of a wide range of the nature’s #P-hard problems, including problems in the physics
of many-body systems, critical phenomena, quantum computing, quantum field theory,
theory of chaos, fractals, number theory, cryptography, dynamical systems, generalized
harmonic and wavelet analysis, etc.

Finally, it is worth noting that the outlined above possibility to compute the perma-
nent of the uniform circulant matrices with a band of k diagonals in polynomial time
does not contradict to the belief of an impossibility to compute the permanents in the
general case of arbitrary matrices which is a #P-hard problem according to the well-known
Valiant’s theorem [20] in the computational complexity theory. Although the permanents
calculated above via the recurrence relations are very complex multivariant functions of
the parameters c0, ..., ck−1, the polynomial-time computability of such exactly solvable
models is consistent with the principle of supremacy of quantum computing [6,7,69]. In
fact, our ability to understand, describe and compute various complex processes of nature
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is increasing every time we bite off new computable or exactly solvable special cases from
a general-case land of NP- and #P-hard problems.
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Appendix A. The (∗)-Conjugated Recurrence Equations (44) and (46)

A(∗)n = A(∗)(n) − (1− c0)A(∗)(2)n−1 + (c2 + c1 − 1)A(∗)n−1 − (1− c2)(1− c1)A(∗)n−2, (A1)

A(∗)(n) = (n− 3)C(1)
n−1 + A(∗)(2)n−1 + A(∗)n−1 + 2(1− c0)A(n−1) + (1− c1)B(n−1)

+(1− c2)A(∗)n−2 + (c1 + c0 − 2)An−2 − c0(1− c0)A(n−2) − 2(1− c0)(1− c2)B(n−2)

−(2 + c2 − c1 − c0)(1− c0)An−3 + (1− c2)(1− c0)
2 An−4,

(A2)

where

A(∗)(2)n−1 = C(1)
n−1 + (1− c1)An−2 + (1− c0)A(n−2)

+(1 + c2 − c1)(1− c0)An−3 − (1− c2)(1− c0)
2 An−4.

(A3)
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Mathematics II; Silvestrov, S., Rančić, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 337–353.
26. Diaconis, P.; Graham, R.; Holmes, S.P. Statistical Problems Involving Permutations with Restricted Positions. 1999. Available

online: http://www.math.ucsd.edu/~fan/ron/papers/01_07_permutations.pdf (accessed on 26 October 2021).
27. Graham, R.L.; Lehmer, D.H. On the permanent of Schur’s matrix. J. Aust. Math. Soc. A 1976, 21, 487–497. [CrossRef]
28. Bürgisser, P.; Clausen, M.; Shokrollahi, M.A. Algebraic Complexity Theory. With the Collaboration of Thomas Lickteig. Grundlehren

der MathematischenWissenschaften [Fundamental Principles of Mathematical Sciences] Book Series, GL Volume 315; Springer: Berlin,
Germany, 1997.

29. Gurvits, L.; Samorodnitsky, A. A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a
Combinatorial Corollary. Discret. Comput. Geom. 2002, 27, 531–550. [CrossRef]

30. Anari, N.; Gurvits, L.; Gharan, S.O.; Saberi, A. Simply Exponential Approximation of the Permanent of Positive Semidefinite
Matrices. In Proceedings of the IEEE 58th Annual Symposium, Foundations of Computer Science (FOCS), Berkeley, CA, USA,
15–17 October 2017; pp. 914–925. [CrossRef]

31. Fyodorov, Y.V. On permanental polynomials of certain random matrices. Int. Math. Res. Not. 2006, 2006, 61570. [CrossRef]
32. Schwartz, M. Efficiently computing the permanent and Hafnian of some banded Toeplitz matrices. Linear Algebra Appl. 2009, 430,

1364–1374. [CrossRef]
33. Fiedler, M.; Hall, F.J. A note on permanents and generalized complementary basic matrices. Linear Algebra Appl. 2012, 436,

3553–3561. [CrossRef]
34. Shchesnovich, V.S. The permanent-on-top conjecture is false. Linear Algebra Appl. 2016, 490, 196–201. [CrossRef]
35. Cifuentes, D.; Parrilo, P.A. An efficient tree decomposition method for permanents and mixed discriminants. Linear Algebra Appl.

2016, 493, 45–81. [CrossRef]
36. Glynn, D.G. The permanent of a square matrix. Eur. J. Comb. 2010, 31, 1887–1891. [CrossRef]
37. Ikenmeyera, C.; Landsberg, J.M. On the complexity of the permanent in various computational models. J. Pure Appl. Algebra 2017,

221, 2911–2927. [CrossRef]
38. Wu, J.; Liu, Y.; Zhang, B.; Jin, X.; Wang, Y.; Wang, H.; Yang, X. Computing Permanents for Boson Sampling on Tianhe-2

Supercomputer. arXiv 2016, arXiv:1606.05836v1.
39. King, B.W.; Parker, F.D. A Fibonacci matrix and the permanent function. Fibonacci Q. 1969, 7, 539544.
40. Minc, H. Permanental compounds and permanents of (0,1) circulants. Linear Algebra Appl. 1987, 86, 11–42. [CrossRef]
41. Bernasconi, A.; Codenotti, B.; Crespi, V.; Resta, G. How fast can one compute the permanent of circulant matrices? Linear Algebra

Appl. 1999, 292, 15–37. [CrossRef]
42. Thomas, H. The number of terms in the permanent and the determinant of a generic circulant matrix. J. Algebr. Comb. 2004, 20,

55–60. [CrossRef]
43. Kocharovsky, V.V.; Kocharovsky, V.V. On the permanents of circulant and degenerate Schur matrices. Linear Algebra Appl. 2017,

519, 366–381. [CrossRef]
44. De Poi, P.; Mezzetti, E.; Michałek, M.; Miró-Roige, R.M.; Nevo, E. Circulant matrices and Galois-Togliatti systems. J. Pure Appl.

Algebra 2019, 224, 106404. [CrossRef]
45. Codenotti, B.; Resta, G. On the permanent of certain circulant matrices. In Algebraic Combinatorics and Computer Science; Crapo, H.,

Senato, D., Eds.; Springer: Milano, Italy, 2001.
46. Da Fonseca, C.M. The µ-permanent of a tridiagonal matrix, orthogonal polynomials, and chain sequences. Linear Algebra Appl.

2010, 432, 1258–1266. [CrossRef]
47. Temme, K.; Wocjan, P. Efficient Computation of the Permanent of Block Factorizable Matrices. arXiv 2012, arXiv:1208.6589v1.
48. Butera, P.; Pernici, M. Sums of permanental minors using Grassmann algebra. Int. J. Graph Theory Appl. 2015, 1, 83–96.
49. Servedio, R.A.; Wan, A. Computing sparse permanents faster. Inf. Process. Lett. 2005, 96, 89–92. [CrossRef]
50. Goldenfeld, N. Lectures on Phase Transitions and Renormalization Group; Addison-Wesley: Reading, MA, USA, 1992.
51. Riordan, J. Introduction to Combinatorial Analysis; John Wiley: New York, NY, USA, 1958.
52. Whitehead, E.G., Jr. Four-discordant permutations. J. Aust. Math. Soc. (Ser. A) 1979, 28, 369–377. [CrossRef]
53. Canfield, E.R.; Wormald, N.C. Ménage numbers, bijections and P-recursiveness. Discret. Math. 1987, 63, 117–129. [CrossRef]
54. Bong, N.-H. Lucas numbers and the ménage problem. Int. J. Math. Educ. Sci. Technol. 1998, 29, 647–661. [CrossRef]
55. Flajolet, P.; Sedgewick, R. Analytic Combinatorics; Cambridge University Press: Cambridge, UK, 2009.
56. The Online Encyclopedia of Integer Sequences. Available online: https://oeis.org/ (accessed on 26 October 2021).
57. Zeilberger, D. Automatic Enumeration of Generalized Ménage Numbers. arXiv 2014, arXiv:math.CO/1401.1089v1.
58. Alekseyev, A.A. Weighted de Bruijn Graphs for the Ménage Problem and Its Generalizations. arXiv 2016, arXiv:math.CO/1510.07927v4.
59. Muir, T. Additional note on a problem of arrangement. Proc. R. Soc. Edinb. 1882, 11, 187–190. [CrossRef]
60. Kaplansky, I.; Riordan, J. The probleme des menages. Scr. Math. 1946, 12, 113–124.

http://dx.doi.org/10.1073/pnas.1505664112
http://www.ncbi.nlm.nih.gov/pubmed/26443859
http://dx.doi.org/10.1016/j.jmaa.2010.04.041
http://www.math.ucsd.edu/~fan/ron/papers/01_07_permutations.pdf
http://dx.doi.org/10.1017/S1446788700019339
http://dx.doi.org/10.1007/s00454-001-0083-2
http://dx.doi.org/10.1109/FOCS.2017.89
http://dx.doi.org/10.1155/IMRN/2006/61570
http://dx.doi.org/10.1016/j.laa.2008.10.029
http://dx.doi.org/10.1016/j.laa.2011.12.030
http://dx.doi.org/10.1016/j.laa.2015.10.034
http://dx.doi.org/10.1016/j.laa.2015.12.004
http://dx.doi.org/10.1016/j.ejc.2010.01.010
http://dx.doi.org/10.1016/j.jpaa.2017.02.008
http://dx.doi.org/10.1016/0024-3795(87)90285-0
http://dx.doi.org/10.1016/S0024-3795(99)00012-9
http://dx.doi.org/10.1023/B:JACO.0000047292.01630.a6
http://dx.doi.org/10.1016/j.laa.2017.01.024
http://dx.doi.org/10.1016/j.jpaa.2020.106404
http://dx.doi.org/10.1016/j.laa.2009.10.036
http://dx.doi.org/10.1016/j.ipl.2005.06.007
http://dx.doi.org/10.1017/S1446788700012337
http://dx.doi.org/10.1016/0012-365X(87)90002-1
http://dx.doi.org/10.1080/0020739980290502
https://oeis.org/
http://dx.doi.org/10.1017/S0370164600047118


Entropy 2021, 23, 1423 17 of 17

61. Touchard, J. Permutations discordant with two given permutations. Scr. Math. 1953, 19, 109–119.
62. Riordan, J. Discodant permutations. Scr. Math. 1954, 20, 14–23.
63. Yamamoto, K. Structure polynomial of Latin rectangles and its application to a combinatorial problem. Mem. Fac. Sci. Kyushu

Univ. Ser. A Math. 1956, 10, 1–13. [CrossRef]
64. Dagum, P.; Luby, M.; Mihail, M.; Vazirani, U. Polytopes, permanents, and graphs with large factors. In Proceedings of the 29th

IEEE Symposium on Foundations of Computer Science, White Plains, NY, USA, 24–26 October 1988; Institute of Electrical and
Electronics Engineers: Washington, DC, USA, 1988; pp. 412–421.

65. Wimp, J.; Zeilberger, D. Resurrecting the Asymptotics of Linear Recurrences. J. Math. Anal. Appl. 1985, 111, 162–176. [CrossRef]
66. Zeilberger, D. AsyRec, a Maple Package That Computes the Asymptotics for Solutions of Linear Recurrence Equations with

Polynomial Coefficients. Available online: http://www.math.rutgers.edu/~zeilberg/tokhniot/AsyRec (accessed on 26 October
2021).

67. Apagodu, M.; Zeilberger, D. Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger
theory. Adv. Appl. Math. 2006, 37, 139–152. [CrossRef]

68. Apagodu, M.; Zeilberger, D. Multi-Variable Zeilberger and Almkvist-Zeilberger Algorithms and the Sharpening of Wilf-Zeilberger
Theory, Software Package. Available online: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/multiZ.html
(accessed on 26 October 2021).

69. Harrow, A.W.; Montanaro, A. Quantum computational supremacy. Nature 2017, 549, 203–209. [CrossRef]

http://dx.doi.org/10.2206/kyushumfs.10.1
http://dx.doi.org/10.1016/0022-247X(85)90209-4
http://www.math.rutgers.edu/~zeilberg/tokhniot/AsyRec
http://dx.doi.org/10.1016/j.aam.2005.09.003
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/multiZ.html
http://dx.doi.org/10.1038/nature23458

	Introduction: Significance and Complexity of Circulant Permanents
	Definitions
	Method: Recursion of Permanents with Defects
	The Permanent of a Uniform Circulant Matrix with One Any-Value Diagonal (k=1) and the Rencontres Numbers
	The Permanent of a Uniform Circulant Matrix with a Band of Two Any-Value Diagonals (k=2) and the Ménage Numbers
	The Permanent of a Uniform Circulant Matrix with a Band of Three Any-Value Diagonals (k=3) and the 3-Ménage Numbers
	Conclusions
	The (*)-Conjugated Recurrence Equations (44) and (46)
	References

