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Abstract

Background: With higher adoption of electronic health records at health-care centers, electronic search algorithms
(computable phenotype) for identifying acute decompensated heart failure (ADHF) among hospitalized patients
can be an invaluable tool to enhance data abstraction accuracy and efficacy in order to improve clinical research
accrual and patient centered outcomes. We aimed to derive and validate a computable phenotype for ADHF in
hospitalized patients.

Methods: We screened 256, 443 eligible (age > 18 years and with prior research authorization) individuals who
were admitted to Mayo Clinic Hospital in Rochester, MN, from January 1, 2006, through December 31, 2014. Using a
randomly selected derivation cohort of 938 patients, several iterations of a free-text electronic search were
developed and refined. The computable phenotype was subsequently validated in an independent cohort 100
patients. The sensitivity and specificity of the computable phenotype were compared to the gold standard (expert
review of charts) and International Classification of Diseases-9 (ICD-9) codes for Acute Heart Failure.

Results: In the derivation cohort, the computable phenotype achieved a sensitivity of 97.5%, and specificity of
100%, whereas ICD-9 codes for Acute Heart Failure achieved a sensitivity of 47.5% and specificity of 96.7%. When all
Heart Failure codes (ICD-9) were used, sensitivity and specificity were 97.5 and 86.6%, respectively. In the validation
cohort, the sensitivity and specificity of the computable phenotype were 100 and 98.5%. The sensitivity and
specificity for the ICD-9 codes (Acute Heart Failure) were 42 and 98.5%. Upon use of all Heart Failure codes (ICD-9),
sensitivity and specificity were 96.8 and 91.3%.

Conclusions: Our results suggest that using computable phenotype to ascertain ADHF from the clinical notes
contained within the electronic medical record are feasible and reliable. Our computable phenotype outperformed
ICD-9 codes for the detection of ADHF.
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Background
The utility of electronic health records (EHRs) has been
increased in past decade and the size of available health
information for clinical and epidemiologic research has
rapidly stretched [1, 2]. This brings new hurdles for
current methodology, such as the inability to manually
review sufficient amounts of data in a reasonable time
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period, the use of inadequate search strategies to review
the EHR, and the reliance on the variable accuracy of
ICD-9 (International Classification of Diseases, Ninth
Revision) billing codes [3–5].
Newer computable phenotypes (automated elec-

tronic search strategies) have been created to facilitate
data collection. For instance, search algorithms have
been successfully developed to identify postoperative
cardiovascular and thromboembolic complications [6],
Charlson comorbidity index [7], risk factors for acute
lung injury [8], initiation of emergent intubations in
the intensive care unit (ICU) [9], extubation time in
the ICU [10], chronic co-morbidity phenotypes from
the EHR, and genomics studies [11]. Recently, for bet-
ter provider decision making for sepsis care, super-
vised machine learning has been deployed as two-step
machine-human interface [12]. These studies have all
demonstrated that electronic searches can achieve
sensitivities and specificities greater than 90% when
compared to manual search efforts. Additionally, a
previous study demonstrated portability of such elec-
tronic search tools, potentially allowing for application
of search algorithms at external institutions [13].
However, there is limited literature on automation for
identifying acute decompensated heart failure (ADHF)
and the effectiveness of such methodology, specifically,
when compared to the manual chart review of a pro-
spectively collected electronic database.
The incidence of heart failure (HF) is growing in the

past decades; currently, it is reported that it impacts
more than 20 million people around the world and
more than 5.5 million individuals in the United States,
being the top discharge diagnosis among medicare
beneficiaries [14, 15]. As per Joseph et al. the ADHF’s
definition is “the sudden or gradual onset of the signs
or symptoms of heart failure requiring unplanned office
visits, emergency room visits, or hospitalization”. One
of the omnipresent feature of ADHF is pulmonary and
systemic congestion due to increased left- and right-
heart filling pressures, which is neutral to any exacerba-
tion mechanism [2, 16]. Hospitalization for ADHF is a
powerful predictor of readmission and post-discharge
death in patients with chronic HF, with mortality rates
as high as 20% after discharge [17, 18]. Regardless of
the etiology, inpatient treatment for ADHF portends a
worsening prognosis [19]. Despite this, there is no pre-
viously defined tool to identify heart failure from EHR
accurately and efficiently.
The primary aim of this study was to develop and

validate a computable phenotype to detect the pres-
ence of ADHF in a retrospective cohort of patients ad-
mitted to a tertiary care center (Mayo Clinic Hospitals
in Rochester, MN). Additionally, we wanted to com-
pare the performance of this computable phenotype to

ICD-9 code search and gold standard (expert manual
reviews). We hypothesized the automated computable
phenotype would be as good as the gold standard and
outperform search strategies using the ICD-9 Code
system.

Methods
Study population
The study was approved by the Mayo Clinic Institutional
Review Board in year 2015 for the use of existing med-
ical records of patients who were admitted to Mayo
Clinic, Rochester, MN from January 1, 2006, through
December 31, 2014. The derivation and validation sub-
sets were randomly selected from a cohort of 256,443
eligible adult patients’ (≥18 years of age) with prior re-
search authorization (Fig. 1).

Identification of study population
Patient hospitalization data was extracted from the UDP
using an ACE hospital admission query. A total of 473,
146 hospital admits in 314,988 patients were found dur-
ing the study period listed above. From the patient num-
ber of 314,988 there were 44,867 patients excluded for
age less than 18 years, 13,678 patients excluded for no
research authorization in accordance with the Minnesota
Health Records Act (Minnesota Statue 144.291–144.298)
that states only patients who consented research
authorization of their medical record data can be
included for study, and 256,443 patients included ad
total eligible patients.

Data extraction strategies
For the purpose of algorithm creation, the EHR of a subset
(N1 = 355) of patients, derived from the total eligible
patients, were manually reviewed to identify keywords and
inclusion & exclusion terms for ADHF (see Additional file 1
for added explanation of algorithm creation). The per-
formance of this algorithm was evaluated at multiple steps
of derivation using an initial derivation cohort of 100
patients (N2). With the goal to achieve sensitivity of more
than 95%, the automated search algorithm was continu-
ously refined with additional free text search terms, inclu-
sion and exclusion keywords, and the inclusion of more
datasets in EHR. After > 95% sensitivity and specificity
were achieved and tested on a final derivation cohort of
another 100 patients (N3), the algorithm was then vali-
dated in an independent cohort of 100 patients (N4) (see
Fig. 1 for a flowchart of the extraction strategy).

Manual data extraction strategy
Manual review of patient records is the traditional
method for data abstraction; there is no established gold
standard to validate ADHF during hospital stay based on
the EHR. In this study, two investigators- co-authors (KS
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and MS) independently reviewed the EHR of 355 pa-
tients to initiate the algorithm process and refine it in
the derivation steps to identify ADHF in its various syn-
onyms and abbreviations within pre-specified EHR
sections (For the flowchart of extraction strategy, please
see Fig. 1). The manual reviewers were not involved in
the development or utilization of the automated elec-
tronic search strategy and were blinded to the results
from the automated electronic note search strategy.
Then subsequent cohorts of 100 and 100 random
patients chart were reviewed, thus making the 3 separate
derivations cohorts of total 555 patients. Once the algo-
rithms were finalized, the manual chart review was done
for another 100 random patients, bringing the whole
cohort to 655 patients.

Automated electronic data extraction strategy
This retrospective study used information from the
United Data Platform (UDP), the clinical data reposi-
tory for Mayo Clinic. The UDP is an exhaustive clin-
ical data warehouse that stores patient demographic
characteristics and diagnoses, and hospital, laboratory,
clinical, and pathologic data gathered from various
clinical and hospital source systems within the institu-
tion. We used the Advanced Cohort Explorer (ACE)
toolset to access the data contained within the UDP.
The ACE can search for demographic characteristics,
clinical data, hospital admissions information, diagno-
sis codes, procedure codes, laboratory test results,
flow sheet data, pathology reports, and genetic data.
The ACE provides a unique free text search strategy

Fig. 1 Flowchart of Included Patients in Derivation and Validation Cohorts
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by which researchers can quickly search for slected
words or groups of words in the EHR system.
To find patients with ADHF we first had to find

patients with any heart failure. To do this a study author
adept at building ACE electronic search queries con-
structed a query using ICD9 codes for heart failure
(Listed in Additional file 3). This query was then run on
a random sample of 1000 study patients obtained from
the hospital admit query. Manual interrogation of clin-
ical notes of the ICD9 query ‘hits’ was done in first 355
patients to determine how ADHF was documented in
the patient’s medical record. From this manual interro-
gation of the clinical notes of the ICD9 ‘hits’ a clinical
note text query was created.
The ACE is based on Boolean logic to create free text

searches. To prepare a query, we entered all the synonyms,
abbreviations, and medical acronyms for ADHF. Also to
make the computable phenotype more specific we devel-
oped an extensive list of exclusion terms. For example,
diagnoses that had the following words associated with
them were excluded: “prior,” “rule out,” or “negative for”
(for a complete list of inclusion and exclusion terms, see
Additional file 1). To establish a more uniform method-
ology and minimize the number of false-positive results,
the application of the automated algorithm to note searches
was restricted to the Sections- “Diagnosis- Principal Diag-
nosis, - Secondary Diagnoses,- Chief Complaint/Reason for
Visit,- Brief Hospital Course.” The computable phenotype
was continuously refined through an iterative process of re-
view of mismatches between the automated electronic
search and the manual chart review. Every time a discrep-
ancy between the electronic search and the manual search
was identified, the search strategy for inclusion-exclusion
criteria were updated and re-examined on the derivation
cohort. After multiple iterations, the sensitivity and specifi-
city for ADHF detection improved to greater than 95%, at
which point the algorithm was finalized and applied to the
validation cohort.

ICD-9–based data extraction
Acute HF and acute-on-chronic HF (systolic, diastolic or
both) have individual specific ICD9 codes. However, the
sensitivity and specificity of these codes remains in ques-
tion. ADHF does encompass the acute HF conditions
listed as HF 428 codes (Additional file 2). Because the
majority of patients with in-hospital ADHF did have HF
ICD-9 coding, albeit not specific to one subcategory, the
computable phenotype for ADHF was eventually com-
pared to codes for acute HF (Additional file 2) and also
to all codes for HF within the ICD 9.

Statistical analyses
Sensitivity and specificity of both the computable pheno-
type and ICD-9 code search were calculated based on

comparisons of the test results to the results of manual
data abstraction (reference standard) for both the deriv-
ation and validation cohorts using JMP statistical soft-
ware (JMP®, Version 10.0. SAS Institute Inc. Cary, NC).
Positive or negative predictive values were not calculated
because of their dependence on the incidence rate within
the cohort. The 95% confidence intervals were calculated
using an exact test for proportions. The computable
phenotype was refined over the course of several itera-
tions. The sensitivity and specificity of the search in the
derivation cohort were calculated for both the initial and
final iteration of the computable phenotype.
Here are the formula for sensitivity [Sensitivity = true

positives/(true positive + false negative)] and specificity
[Specificity = true negatives/(true negative + false posi-
tives)] (Table 1).

Results
Performance of computable phenotype as compared to
manual review
Initially, the computable phenotype automated elec-
tronic ADHF search strategy (eADHF) achieved a sensi-
tivity of 89.4% and specificity of 81% for ADHF in the
derivation cohort when analyzed against a manual
review in the initial derivation cohort (N2). After several
revisions, the eADHF was tested in final derivation
cohort (N3), which achieved the sensitivity and specifi-
city of 97.5 and 100% respectively (Table 2). When this
finalized eADHF was applied to the validation cohort of
100 patients, the sensitivity and specificity were 100 and
98.6% (Table 3).

Performance of ‘acute’ heart failure codes of ICD 9 as
compared to manual review
In the initial derivation cohort (N2), the sensitivity and
specificity of ICD-9 Acute Heart failure codes as com-
pared to manual review was 53 and 95.6%, respectively.
In the final derivation cohort (N3) the sensitivity and
specificity were 47.5 and 96.7%, respectively (Table 2). In
the validation cohort (N4) the sensitivity and specificity
were 42 and 98.6%, respectively (Table 3).

Performance of ‘all’ heart failure codes of ICD 9 as
compared to manual review
In the initial derivation cohort (N2), the sensitivity and
specificity of ICD-9 All Heart failure codes as compared

Table 1 The 2 by 2 table for calculation of sensitivity and
specificity

Reference standard

Positive Negative

Computer Positive True positive False positive

Negative False negative True negative
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to manual review was 95.5 and 79.4%, respectively. In
the final derivation cohort (N3), the sensitivity and spe-
cificity were 97.5 and 86.7%, respectively. In the valid-
ation cohort (N4) the sensitivity and specificity were
96.7 and 91.3%, respectively.

The performance of acute heart failure codes (ICD 9)
compared to (eADHF)
In both the final derivation and validation cohort, the
eADHF outperformed ICD-9 codes for heart failure. In
the final derivation cohort, sensitivity and specificity of
the acute codes for ICD-9 heart failure as compared to
eADHF was 46.2 and 95.1%, respectively. In the valid-
ation cohort sensitivity and specificity of the acute codes
for ICD 9 heart failure as compared to eADHF was 43.8
and 100%, respectively (Table 4).

The performance of all heart failure codes (ICD 9)
compared to eADHF
In both the final derivation and validation cohort, the
eADHF outperformed ICD-9 codes for heart failure. In
the final derivation cohort sensitivity and specificity of
ALL codes for ICD-9 heart failure as compared to the
eADHF was 97.4 and 85.3%, respectively. In the valid-
ation cohort sensitivity and specificity of ALL codes for
ICD-9 heart failure as compared to the eADHF was 96.8
and 92.7%, respectively (Table 4).

Discussion
The present study compared two independent method-
ologies for identifying patients with ADHF and demon-
strated that the sensitivity and specificity of the
computable phenotype could approach 100%. These
findings further corroborate previously published studies
showing that the use of automated search strategies pro-
duced very accurate results that were agreeable with
those produced by manual review methods [3, 8, 9, 11].
The previous studies comparing the use of electronic

free-text search algorithms applied to the EHR versus

administrative ICD-9 data codes to identify ADHF had
variable success [20–23]. This study solidifies the advan-
tage of electronically searching the EHR (compared to
other electronic search strategies such as ICD-9 data
codes) and demonstrates that this method can be as
accurate as experts chart review in prospectively col-
lected electronic databases across institutions.
In this era of medical informatics, our approach has

numerous benefits. The computable phenotype could
substantially decrease human hours spent and human
errors reviewing medical charts for research studies re-
quiring ADHF information but also provides consistent
results. Furthermore, ACE, which was used in this study,
is applicable to any EHR database system. This search al-
gorithm was developed using free text and natural lan-
guage processing strategies that broadly reflect clinical
practice (Additional files 1 and 2), and it does not rely
on any complex coded electronic information, special-
ized image tests, or any other diagnostic modalities.
To minimize Type 1 error and maximize our chances of

capturing 100% of events, a broad spectrum of inclusion and
exclusion terms (Additional files 1 and 2) were incorporated
in this study, making provision for the potential differences
in semantics and documentation language across various in-
stitutions, departments, and data structures. The usability of
such search algorithms has been demonstrated in the past
across multiple health-care institutions and EHRs with min-
imal algorithm optimization for institution-pertinent needs
[13]. It increases the efficiency of clinical and translational re-
search. Further studies are needed to evaluate if it can indir-
ectly enhance the quality of patient care by providing
information about risk factors for adverse outcomes of inter-
est. For instance, information regarding ADHF may permit
investigation of risk factors and adverse outcomes associated
with ADHF. In this case, the strategy may accelerate any
clinical research that may involve analyzing other adverse
events such as cardiorenal syndrome, complications of
ADHF, and other prognostic impacts as well. It has potential
for the surveillance of admitted patients with ADHF. This

Table 2 Derivation Cohort- eADHF and ICD-9 heart Failure Code Performance Against Reference Standard

eADHF vs. reference standard ICD-9 (acute HF) vs. reference standard ICD-9 (all HF) vs. reference standard

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Derivation-Initial
(N2=100)

89.4 81 53 95.6 95.5 79.4

Derivation-Final
(N3=100)

97.5 100 47.5 96.7 97.5 86.7

Table 3 Validation Cohort- eADHF and ICD-9 heart Failure Code Performance Against Reference Standard

eADHF vs. reference standard ICD-9 (acute HF) vs. reference standard ICD-9 (all HF) vs. reference standard

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Validation
(N4=100)

100 98.6 42 98.6 96.7 91.3
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could be associated with a Clinical Decision Support System
that could be available to the clinicians to optimize the care
of these patients.
There are several limitations of this study that we

would like to point out. The data quality is as good as
the source hospital database. Any incorrect data entry or
missing data points or corrupted database may cause
some inaccuracies, but this limitation likely accounts for
a minority of patients in the database [24, 25]. In an at-
tempt to make it generalizable across institutions, a
broad free-text, natural language search criteria were in-
cluded. Which is supported by prior evidence to the ap-
plicability of similar searches in the literature [13]. The
current study only searched through pre-specified but
limited notes sections, and it may be incomplete. How-
ever, it is anticipated that inaccuracies affect only a very
small proportion of the study cohort, as the electronic
search performed with sensitivities and specificities close
to 100% when compared to manual review. Lastly, the
computable phenotype data acquisition is limited by the
timing of notes writing and databases updates. Thus the
role of computable phenotype in real-time use is work
in progress. As variety of rapid data is coming out in
addition to data from electronic medical records [26].
To enhance machine learning and artificial intelligence
capabilities, we must be able to aggregate medical re-
cords data in timely fashion [27]. Our search strategy
may help expedite this effort.

Conclusion
This study details the derivation and validation of com-
putable phenotype derivation and validation for ADHF
in hospitalized patients. This can be widely adopted to
improve the efficiency and accuracy of clinical research,
aid the institutional assessment of ADHF outcomes and
direct quality improvement projects.
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