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Abstract: The characterization and antioxidant activity on Maillard reaction products (MRPs) derived
from xylose and bovine casein hydrolysate (BCH) was investigated at 100 ◦C and initial pH 8.0 as
a function of reaction time. The pH values and free amino groups contents of xylose–BCH MRPs
remarkably decreased with the reaction time up to 8 h, whereas their browning intensities significantly
increased (p < 0.05). After 4 h of heat treatment, the fluorescence properties of xylose–BCH MRPs
reached the maximum. There was a production of higher and smaller molecular substances in
xylose–BCH MRPs with an increased reaction time, as analyzed by size exclusion chromatography.
The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging capacity and ferrous reducing
activity of xylose-BCH MRPs gradually increased with the reaction time extended from 0 to 8 h.
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1. Introduction

The Maillard reaction (MR) is a reaction that occurs between carbonyl groups of reducing sugars
(monosaccharides, disaccharides, or polysaccharides) and amino groups, peptides, or proteins [1],
and has been recognized as a promising and effective method in protein modification to improve the
antioxidant properties of proteins or peptides. The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical
scavenging capacity of tuna backbone hydrolysate was enhanced 16-fold in the presence of tagatose
after heat treatment of 55 ◦C for 48 h [2]. For instance, reducing the activity and DPPH free radical
scavenging capacity of galactose-porcine plasma protein Maillard reaction products (MRPs) was higher
than those of glucose or fructose-porcine plasma protein MRPs [3]. A variety of mechanisms have been
explored to alter the antioxidant activity of Maillard reaction products, such as the splitting capability
of the free radical chain [4,5], the scavenging capability of superoxide anions and hydroxyl radicals [6],
metal chelation capability, and the decomposing ability of hydrogen peroxides [7]. Moreover, it has
been reported that Maillard reaction products have strong antioxidant capacity due to the production
of melanoidin and Amadori rearrangement products [8].

The Maillard reaction is affected by many aspects, including temperature, pH, water content,
duration of heating, type of reactant, oxygen, ratio of amino acid to sugar, metals, and reaction
inhibitors [9,10]. Furthermore, reaction time is the most crucial and interdependent factor that affects
the reaction process and the glycation degree of the Maillard reaction [11]. Xylose can be extracted
from agricultural wastes (such as corn cobs, straws, etc.), thus being a relatively inexpensive reducing
pentose [12]. Due to its extensive availability, low cost, and stale physicochemical properties, it has
a wide range of application in the food industry, especially for the production of xylitol and bacteria
fermentation of ethanol [13]. However, xylose could also be used as a substrate for Maillard reaction
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to provide carbonyl groups. Furthermore, there is no evidence as to how xylose would improve the
antioxidant activity of bovine casein hydrolysate (BCH) as function of the reaction time. Therefore,
in this study, a xylose-BCH model system is established to elucidate the effect of the reaction time on
pH, browning intensity, fluorescence property, molecular size distribution, free amino groups contents,
and antioxidant activity of BCH and their possible MRPs.

2. Materials and Methods

2.1. Materials

Casein was obtained from the bovine milk using the isoelectric precipitation generated by
the College of Food, Northeast Agriculture university (Harbin, Heilongjiang Province, China).
Xylose was purchased from the Huishi biochemical reagent co., LTD (Shanghai, China). ASI.398 neutral
protease (from Bacillus subtilis, 50,000, U/g), was purchased from Wuxi Enzyme Preparation Company
(Wuxi, Jiangsu Province, China). OPA (O-phthaldialdehyde), bovine serum albumin (66,409 Da),
ovalbumin (44,300 Da), trypsin inhibitor (20,100 Da), β-lactoglobulin (36,000 Da), lysozyme (14,300 Da),
α-lactalbumin (14,147 Da), oxidized glutathione (612.63 Da), reduced glutathione (307.32 Da), L-leucine,
trifluoroacetic acid (TFA), potassium ferricyanide, and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) were
purchased from the Sigma-Aldrich Co. (St. Louis, MO, USA).

2.2. Preparation of Bovine Casein Hydrolysate (BCH)

Casein was dissolved in pH 7.4 phosphate buffer (0.04 mol/L) to an initial protein concentration
of 75 g/L. The enzyme concentration of AS1.398 neutral protease was fixed to 5% (w/w protein).
The temperature during hydrolysis was kept at 45 ◦C in a stirred water bath. Accordingly, the pH value
of the hydrolysis system was controlled at 7.0 by the continuous addition of 1 mol/L NaOH using a pH
meter (Sartorius, Co., Ltd., Shanghai, China). After a 6-h hydrolysis reaction, AS1.398 neutral protease
was inactivated by heating at 95 ◦C for 10 min. The obtained hydrolysate was centrifuged at 4000 g for
30 min, and the supernatant was ultrafiltrated through a 10-kDa molecular weight cut-off membrane
under a pressure of 20 bar at 25 ◦C. The obtained permeates (less than 10 kDa) were lyophilized as
bovine casein hydrolysate.

2.3. Preparation of Maillard Reaction Products (MRPs)

Bovine casein hydrolysates (3 g) and xylose (3 g) were mixed in 100 mL of distilled water.
A compound of casein peptides and xylose were put in a sealed screw-top glass tube, and their initial
pH was regulated to 8.0 with 4 mol/L NaOH. Sample solutions were heated at 100 ◦C in an oil bath
equipped with a continuous stirring system, and collected after thermal treatment of 0, 1, 2, 3, 4, 5, 6,
7 and 8 h, respectively. Subsequently, sample solutions were immediately quenched in ice water and
lyophilized. Heated bovine casein hydrolysates and xylose (60 mg/mL) were also conducted as control
experiments. Besides, the pH value of sample solutions was measured at 25 ◦C.

2.4. Measurement of Browning Intensity

According to the techniques of Morale [5], the browning of the Maillard reaction can be monitored
by the increase in the absorbance at 420 nm. Samples were diluted to a concentration of 0.3 mg/mL
with distilled water.

2.5. Analysis of Fluorescence Properties

The excitation and emission spectrum of xylose-BCH MRPs and BCH samples were determined
through a F-4500 Fluorescence Spectrometer (Hitachi. Co. Ltd., Tokyo, Japan). Samples were diluted at
a protein concentration of 0.3 mg/mL. The slits were at 5 nm with the scan rate of 120 nm/min. At the
excitation wavelength of 340 nm, emission spectra were carried out from 370 to 600 nm. Accordingly,
at the emission wavelength of 425 nm, excitation spectra were completed from 300 to 400 nm.
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2.6. Determination of Free Amino Groups Content

The free amine groups of xylose BCH MRPs and BCH samples were calibrated by OPA methods [13].
In short, a 30-mL sample was mixed up with 1 mL of OPA reagent. A blank reading was determined
by using distilled water. The change in free amino groups contents was finally showed as relative
concentrations (%) compared to that of unheated samples.

2.7. The Molecular Size Distribution of MRPs

The size exclusion chromatography of xylose-BCH MRPs and BCH samples were performed by
using a TSK gel G 2000 SW (600 × 7.5 mm,10 µm, Tosoh Corporation, Tokyo, Japan) equipped with TSK
guard column (75 × 7.5 mm, 10 µm). The eluent was 30% acetonitrile solution containing 0.1% TFA
distilled water and the flow rate is 0.5 mL/min. First, 20-µL samples (2.5 g/L) were injected, and their
absorbances were measured at 214 nm. Bovine serum albumin (66,409 Da), ovalbumin (44,300 Da),
trypsin inhibitor (20,100 Da), β-lactoglobulin (36,000 Da), lysozyme (14,300 Da), α-lactalbumin
(14,147 Da), oxidized glutathione (612.63 Da), and reduced glutathione (307.32 Da) were adopted as
molecular weight (MW).

LogMW = −0.1082x + 7.573, with elution time expressed in minutes,R2 = 0.9878

2.8. Measurement of DPPH Free Radical Scavenging Capacity

The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging capacity of xylose-BCH MRPs
and BCH samples was analyzed using the method of Saiga et al. [14]. The sample (160 µL) was
dissolved in 1 mL of a DPPH solution, which was daily prepared at 0.1 mol/L in ethanol. With 95%
ethanol as the reference solution, after the mixture was centrifuged at 4000 g for 10 min, its absorbance
was observed at 517 nm. The percentage of DPPH free radical scavenging capacity was calculated
as follows:

DPPH free radical scavenging capacity% =

(
1−

A−Ai
A j

)
× 100% (1)

where A is the absorbance of samples and DPPH ethanol, Ai is absorbance of samples and 95% ethanol,
and Aj is the absorbance of DPPH ethanol without samples.

2.9. Measurement of Ferrous Reducing Activity

The ferrous reducing activity of xylose-BCH MRPs and BCH was observed on the basis of the
method of Zhu et al. [15]. First, a 0.1-mL sample was diluted 12-fold and mixed with 0.5 mL of
0.2 mol/L Na3PO4 (pH 6.6) and 0.5 mL of 1% potassium ferricyanide. After centrifugation at 25 ◦C for
10 min, 0.5 mL of supernatant was withdrawn and mixed with 0.5 mL of distilled water and 0.2 mL of
0.1% (w/v) ferric chloride solution. Subsequently, this mixture was maintained at 50 ◦C for 20 min; then,
10% TFA (0.5 mL) was added. Furthermore, after a further reaction for 10 min at room temperature,
its absorbance was recorded at 700 nm.

2.10. Statistical Analysis

Analyses including the measurement of pH, browning intensity, molecular size distribution of
MRPs, fluorescence property, free amino groups contents, DPPH free radical scavenging capacity,
and ferrous reducing activity were run in triplicate. Size exclusion chromatography measurements
were carried out in duplicate. All the data are expressed as mean ± standard deviation (SD). By using
Duncan’s multiple range tests by the SPSS system, a difference of means were identified (SPSS 19.0 for
Mac OS X, SPSS Inc., Chicago, IL, USA).
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3. Results and Discussion

3.1. Effect of Reaction Time on pH of Xylose-BCH MRPs

The effect of the Maillard reaction time on the pH of xylose-BCH MRPs was shown in Figure A1.
There was a significant difference in the pH changes between BCH and xylose-BCH MRPs. The pH of
xylose-BCH MRPs was remarkably lower than that of heated BCH with the Maillard reaction time
increasing from 0 to 8 h (p < 0.05). The pH of heated BCH slightly increased with the Maillard reaction
time extended from 0 to 8 h, potentially on account of the thermal protein degradation [16]. However,
the pH of xylose-BCH MRPs and heated xylose greatly decreased after the heat treatment of 8 h
(p < 0.05). The pH of heated xylose was the minimum compared to that of xylose-BCH MRPs and
BCH during heat treatment of 8 h, which was probably due to its sugar degradation being much faster
under alkaline pH conditions [17]. Accordingly, the initial pH of xylose-BCH MRPs dropped from
8.0 to 5.47 after 8 h of thermal treatment. The pH of casein-glucose MRPs also decreased at 102 ◦C with
the reaction time extended from 0 to 130 min [18]. The decrease in the pH was potentially owing to the
production of organic acids, including formic acid and acetic acid derived from intermediate MRPs [1].
Additionally, Rufianhenares et al. [19] reported that 1-deoxyglucosone and 3-deoxyglucosone produced
from monosaccharide degradation products further formed formic and acetic acids. Meanwhile,
it was also found that the pH value of the galactose–glycine model system decreased as the sugar
concentration increased at 60 ◦C, 75 ◦C, and 90 ◦C [1]. Besides, Liu et al. [20] proposed that the decrease
in pH is also related to the formation of reductones and melanoidins, leading to increased reducing
power and radical scavenging capacity.

3.2. Effect of Reaction Time on Browning Intensity of Xylose-BCH MRPs

The occurrence of a Maillard reaction is indicated by the development of a brown color, and usually
monitored by absorbance increase at 420 nm [5]. The advanced reaction stage involves condensation,
leading to the formation of oligomers and polymers of high molecular weight, and brown color as
melanoidins [21,22]. The effect of reaction time on the browning intensity of xylose-BCH MRPs was
shown in Figure A2. The browning intensity of xylose-BCH MRPs was higher than that of xylose or
BCH, and significantly increased with a reaction time up to 8 h (p < 0.05). A similar result was found
for the browning of porcine plasma proteins as a consequence of the increasing time [3]. Moreover,
the colored components of nonenzymatic browning might contain the low or high molecular weight
products and melanoidins. Under less acidic conditions, the reactive cyclic compounds such as hydroxy
methyl furfural were polymerized to a dark-colored insoluble substance containing nitrogen atoms [23].
In comparison, the browning intensity of xylose and heated BCH did not remarkably change during
the thermal treatment of 8 h (p > 0.05). It was also confirmed that the browning of the sugar–amino
acid mixture was derived from MRPs without sugar caramelization [24].

3.3. Effect of Reaction Time on Fluorescence Properties of Xylose-BCH MRPs

The fluorescent compounds are precursors that form brown pigments during the Maillard
reaction [25]. Generally, there was a different trend regarding the fluorescence development between
BCH and xylose-BCH MRPs. Fluorescence spectral analysis was previously used to characterize the
Maillard reaction [26]. The effect of reaction time on the fluorescence spectrum and fluorescence
property of xylose-BCH MRPs is shown in Figure A3A,B, respectively. The optimal excitation and
emission wavelength of xylose-BCH MRPs was detected at 349 ± 1 and 431 ± 1 nm, respectively.
The fluorescence property of xylose-BCH MRPs initially increased, and afterwards decreased with the
reaction time extended up (p < 0.05). This indicated that the reaction time could remarkably affect the
patterns of fluorescent formation in xylose-BCH MRPs. It is also reported that the development of
fluorescent compounds of α-lactalbumin-ribose and β-lactoglobulin-ribose had a similar trend with
reaction time [27]. However, the fluorescence property of ribose-casein MRPs increased as a function
of reaction time [28].
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After heat treatment for 4 h, the fluorescence property of xylose-BCH MRPs reached the maximum,
and its fluorescence property was approximately 66-fold higher than that of unheated xylose-BCH
MRPs. Furthermore, the fluorescence properties of hydrolyzed β-lactoglobulin and heated glucose
was only approximately 1% and 2% of the fluorescence property in glucose-β-lactoglobulin MRPs after
18 h of heat treatment at 100 ◦C [29]. Likewise, Saeki et al. [30] demonstrated that the ribose-casein
MRPs displayed a 10-fold greater fluorescence property than glucose-casein and fructose-casein MRPs,
which reached a maximum and then plateaued after four days of heating. These results indicated that
the long heat treatment could influence the fluorescent development patterns of MRPs.

3.4. Effects of Reaction Time on the Loss of Free Amino Groups Content of Xylose-BCH MRPs

The carbonyl groups of reducing sugars react with ε-NH2 groups of amino acid and terminal
α-amino groups of peptides at an early stage of the MR [31]. Therefore, the loss of free amino
groups content determined with the OPA method could be an indicator in the reaction degree of the
Maillard reaction.

The effect of reaction time on the loss of free amino groups in heated BCH and xylose-BCH MRPs
was shown in Figure A4. The loss of free amino groups in xylose-BCH MRPs was higher than that in
BCH (p < 0.05). The loss of free amino groups in heated BCH and xylose-BCH MRPs continuously
decreased during the thermal treatment of 8 h (p < 0.05). For example, the loss of free amino groups
of BCH and xylose-BCH MRPs was 9.48% and 57.71%, respectively. This result was in accordance
with those of Dong et al. [29], which demonstrated that the disappearance of free amino groups
also occurred in the Maillard reaction between hydrolyzed β-lactoglobulin and glucose at 90 ◦C for
18 h. Zeng et al. [2] also proved that the disappearance of free amino groups also occurred in the
Maillard reaction between four reducing sugars (fructose, psicose, sorbose, and tagatose) and a tuna
backbone hydrolysate of up to 48 h at 55 ◦C. Differently, the free amino groups of the psicose-lysine
and fructose-lysine systems both decreased sharply and were subsequently followed by a steady state
during the thermal treatment [32]. It was further reported that the consumption of amino groups in
bovine serum albumin (BSA) glucose was higher than those of heated BSA [33].

3.5. Effect of Reaction Time on Molecular Size of Xylose-BCH MRPs

The effect of reaction time on the molecular size of xylose-BCH MRPs and heated BCH was
shown in Figure A5A,B. There are similar shapes in the chromatogram with the same peaks showing
increasing areas at increasing reaction times. This observation indicated that a large amount of MRPs
with different molecular weight were generated.

The main molecular weight of unheated xylose-BCH MRPs was about 2388 Da. Following the 8 h
treatment, it becomes significantly higher (7551 Da), thus indicating that a molecular rearrangement of
peptide bonds takes place. This finding was already reported in the literature [34], and was also found
concerning the covalent cross-linking between BCH and galactose [35] as well as the aggregation found
between α-lactalbumin or β-lactoglobulin and ribose during heat treatment [27].

3.6. Effect of Reaction Time on Antioxidant Activity of Xylose-BCH MRPs

3.6.1. DPPH Free Radical Scavenging Capacity

During the Maillard reaction, final brown polymers or intermediates can function as hydrogen
donors and can be beneficial to scavenge DPPH free radical scavenging capacity [3,36]. The DPPH free
radical scavenging capacity of xylose-BCH MRPs and BCH significantly increased during the whole
reaction time (p < 0.05), as shown in Figure A6. These results were similar to those reported in the
past [27]. The DPPH free radical scavenging capacity can be shown by MRPs from sugar amino groups,
sugar peptide and sugar protein model systems [27,32]. Furthermore, Chen et al. proved that the size
of the peptides could affect the antioxidant ability [37]. The DPPH free radical scavenging capacity
of xylose-BCH MRPs was stronger than that of BCH. Accordingly, the DPPH free radical scavenging
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capacity of MRPs was 22-fold higher than that of BCH after 8 h of thermal treatment. The DPPH free
radical scavenging capacity of xylose-BCH increased from 14.12% to 91.98%, corresponding to 1 h and
8 h, respectively (p < 0.05), which is part of the reason that the sugar caramelization can cause the
destruction of DPPH radical activity [3]. The DPPH free radical scavenging capacity of MRPs had
similar activities with (p < 0.05) increased from 67.95% to 78.91% with a heating time of 3 to 5 h. Besides,
Benjakul et al. showed that the DPPH free radical scavenging capacity of MRPs derived from galactose
and fructose increased as the heating time extended [3]. Similarly, the DPPH free radical scavenging
capacity of hydrolysate from casein and fish was improved by 20–30% when reacted with glucose [38].
Additionally, grass carp protein–xylose MRPs showed antioxidant activity in virtue of the production of
large quantities of pyrazines, furans N-heterocyclic compounds, and ketones [39]. Furthermore, it was
also proved that the antioxidative effects of scallop female gonad hydrolysates–ribose MRPs might
be due to the intermediate chemicals (including furans, reductones, and pyrazines), and melanoidin
manufactured during heating [40].

3.6.2. Ferrous Reducing Activity

Ferrous reducing activity is also an assay method of evaluating antioxidant activity [35].
The hydroxyl and pyrrole groups of MRPs are important ways to contribute to the reducing
activity [41,42]. The effects of reaction time on the ferrous reducing activity of xylose–BCH MRPs, BCH,
and xylose are shown in Figure A6B. There was a significant difference in the ferrous reducing activity
between BCH and xylose–BCH MRPs. After the thermal treatment of 8 h, the ferrous reducing activity
of xylose–BCH MRPs increased significantly as the reaction time increased (p < 0.05), being attributed
to formed colored melanoidins from aldol condensation and aldehyde–amine polymerization in the
final stage [43]. MRPs have been reported to quench hydrophilic free radicals more efficiently than
hydrophobic free radicals [30]. Furthermore, the pyrrole and hydroxyl groups of MRPs, through their
redox potential of transferring electrons, have a vital role in the process of ferrous reduction. This was
in line with the opinions of Shazly et al. [44], who reported that there could be a higher reducing power
for glucose–glycine MRPs as the heating time increased. The ferrous reducing activity of a porcine
hemoglobin hydrolysate–sugar model system was about four times higher than that of individual
hydrolysate [3]. Actually, the results showed that there could be a positive correlation between the
ferrous reducing activity or DPPH free radical scavenging activity and browning intensity.

4. Conclusions

This study represents the first evaluation of the impact of reaction time on the antioxidant activity
and physicochemical properties of a xylose–BCH system. Up to 8 h of reaction time, the pH values and
free amino groups content of xylose–BCH MRPs remarkably decreased. After heat treatment of 4 h,
the fluorescence property of xylose–BCH MRPs reached the maximum value. The molecular weight
distribution range gradually increased, and more polymeric substances were formed. The DPPH free
radical scavenging capacity and ferrous reducing activity of xylose–BCH MRPs gradually increased.
Therefore, this study showed an effective method for the Maillard reaction to ameliorate the antioxidant
activity of bovine casein hydrolysate.
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