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Remote Sensing Data to Detect 
Hessian Fly Infestation in 
Commercial Wheat Fields
Ganesh P. Bhattarai1, Ryan B. Schmid1,2,3 & Brian P. McCornack1,2

Remote sensing data that are efficiently used in ecological research and management are seldom used 
to study insect pest infestations in agricultural ecosystems. Here, we used multispectral satellite and 
aircraft data to evaluate the relationship between normalized difference vegetation index (NDVI) and 
Hessian fly (Mayetiola destructor) infestation in commercial winter wheat (Triticum aestivum) fields in 
Kansas, USA. We used visible and near-infrared data from each aerial platform to develop a series of 
NDVI maps for multiple fields for most of the winter wheat growing season. Hessian fly infestation in 
each field was surveyed in a uniform grid of multiple sampling points. For both satellite and aircraft 
data, NDVI decreased with increasing pest infestation. Despite the coarse resolution, NDVI from 
satellite data performed substantially better in explaining pest infestation in the fields than NDVI from 
high-resolution aircraft data. These results indicate that remote sensing data can be used to assess the 
areas of poor growth and health of wheat plants due to Hessian fly infestation. Our study suggests that 
remotely sensed data, including those from satellites orbiting >700 km from the surface of Earth, can 
offer valuable information on the occurrence and severity of pest infestations in agricultural areas.

Remote sensing approaches have been widely used in ecological and agricultural research and management1,2. 
Spectral data collected by remote sensors mounted on aerial platforms such as satellites, manned aircrafts, and 
small unmanned aircraft systems (sUAS) are used in a broad range of ecological studies such as landcover and 
vegetation analyses, plant community structure and diversity, and ecosystem functioning3–6. However, these data 
are rarely used to detect insect pests in agricultural areas. Remotely sensed data that have shown promising results 
in assessing plant chemistry and functional traits in complex ecosystems6–9 may also provide critical information 
on the status and severity of pest infestations in crop fields.

Multi- and hyper-spectral data from a wide range of aerial and handheld sensors are generally used to develop 
a series of vegetation indices that are related to plant status, chemistry, and physiological activity10,11. Normalized 
difference vegetation index (NDVI) is one of the most common and well understood vegetation indices1,12. It is 
estimated as the normalized difference between leaf reflectance in near-infrared (NIR) region of the spectrum, 
which is scattered by the mesophyll structures of leaves, and red region that is absorbed by chlorophyll13,14. As a 
reliable predictor of plant health, primary productivity, and standing biomass1,12, NDVI serves as an important 
tool in ecological studies. For example, NDVI derived from satellite data are historically used to map land use 
classes in terrestrial ecosystems and assess land cover changes in response to anthropogenic and natural distur-
bances3,4. Similarly, it has been used to predict species richness, animal distribution, and animal performance 
in heterogeneous environments5,15–17. NDVI data are also used to evaluate forest defoliation and tree mortality 
caused by insect outbreaks18,19. Moreover, NDVI is a reliable indicator of biotic and abiotic plant stresses that 
often reduce chlorophyll concentration and, consequently, increase reflectance in red region of the spectrum20.

Despite the technological and analytical advances, and associated ecological applications, remotely sensed data are 
underutilized in the study and management of arthropod pests in agricultural ecosystems. Efforts on this subject are 
primarily limited to laboratory and field experiments evaluating reflectance spectra of pest infested plants collected by 
a sensor located within a few meters of the plant canopy. For a variety of crop species (e.g., wheat, soybean, and cotton) 
and their herbivores (e.g., aphids, and mites), infested plants showed substantially different values for the raw reflec-
tance and indices, primarily NDVI, compared to uninfested plants21–29. Pest infested plants consistently showed lower 
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NDVI than the uninfested plants. Other studies that used aircrafts to collect data from a higher elevation documented 
similar results30,31. Recently, hyperspectral data collected from sUAS have been used to map the distribution of cryptic 
pest species such as grape phylloxera in vineyards32. Spectral data from distant platforms, including satellites, have 
potential to provide frequent, efficient, and cost-effective tools to map pest infestations and spread in agricultural areas.

We performed a field study to evaluate the spectral reflectance of winter wheat (Triticum aestivum, Poaceae) 
fields infested by an introduced insect pest, the Hessian fly (Mayetiola destructor (Say); Diptera: Cecidomyiidae). 
The Hessian fly begins infesting wheat seedlings early in the growing season and results in reduced plant growth, 
biomass, and grain production33,34. In spring 2017, we quantified Hessian fly infestation at multiple sampling 
points in seven commercial wheat fields in Kansas (KS), USA. Then, we analyzed a series of multispectral satellite 
and aircraft data to estimate NDVI for each sampling point across the fields. As an indicator of plant health and 
biomass, NDVI was expected to decrease with pest infestation. Furthermore, we expected high-resolution NDVI 
from aircraft data (see Methods: Remote sensing data) to exhibit a stronger relationship with pest infestation than 
low-resolution NDVI acquired from satellite data. We also predicted a stronger relationship between NDVI and 
pest infestation when smaller plot size was used to estimate NDVI for the same sampling points. Using NDVI 
from different platforms and Hessian fly infestation in the field, we tested the following hypotheses. (1) NDVI will 
decrease with increased infestation by Hessian fly. (2) The relationship between the pest infestation and NDVI 
will increase in strength overtime. (3) High-resolution NDVI from aircraft data will exhibit a stronger relation-
ship with pest infestation in the field than low-resolution NDVI from either platform.

Methods
Study system.  Wheat is one of the major agricultural commodities of the USA. Representing 8.6% of global 
wheat production between 2007 and 2016, US farmers annually produced 59 million metric tons of wheat planted 
on >23 million ha of agricultural land35. A diverse assemblage of arthropods causes substantial damage to wheat 
production. Some of the most important pests in the USA include Hessian fly, and several species of aphids, mites, 
and Lepidopterans36. Detecting pests in the field, preferably early in the infestation stages, could guide efficient 
control measures at targeted areas and minimize loss in productivity. However, vast acreage of wheat fields in the 
USA imposes severe limitations in employing traditional ground-based surveys to detect insect pests in the field.

The Hessian fly is one of the major insect pests in wheat producing areas around the world33. Native to the 
Fertile Crescent region in the Middle East, Hessian fly is one of the earliest recorded introduced invasive species 
in North America37–39. Hessian fly infestation begins early in the growing season of wheat33. In the case of winter 
wheat in KS, seedlings are infested in fall. Females lay eggs on the upper side of leaves. Once hatched, larvae move 
towards the base of the plants and establish feeding sites. Larval damage induces nutritive tissue at the base of 
the leaf that also acts as a nutrient sink within the plant40. In the northern states of the US, the insects overwinter 
as pupae on the plants. Spring infestation may occur following the emergence of adults41. Feeding damage to 
the plant by immature larvae results in slower plant growth, reduced biomass, and occasional death of seedlings 
causing up to 10% reduction in grain production33,41,42. Despite the cost, no effective method has been developed 
to predict Hessian fly infestation in agricultural landscapes leaving field survey as the only tool to guide pest man-
agement43. An efficient remote sensing method to map pest prevalence and severity in the field could contribute 
substantially in the management of this pest.

Field survey.  We surveyed seven commercial winter wheat fields located in Marion and Dickinson Counties, 
KS (Table 1) to examine whether NDVI estimated from remotely sensed data can detect plant responses related to 
Hessian fly infestation. Wheat fields differed from each other in various ways including area, topography, previous 
crops, wheat variety, plant resistance level against key pests, and management practices (Table 1). Fields ranged 
from ~6 to 32 (mean ± se = 23.7 ± 3.5) ha in area. Wheat planting in all fields was complete by mid October 2016. 
All fields were planted with moderate to highly susceptible varieties of wheat. In three fields, wheat was planted 
in the previous year and volunteer wheat between the cropping seasons was controlled. In the other four fields, 
maize was planted in the previous year, which required no volunteer wheat control. None of these local factors 
were shown to influence the severity of pest infestation in the fields43.

Field 
ID County Coordinate

Wheat 
variety

Hessian fly 
resistance 
level

Volunteer 
wheat 
controlled

Crop in 
previous 
year

Area 
(Ha)

Sampling 
points (N)

Imagery dates

Sentinel-2 TerrAvion

1 Marion 38.2107°, −97.1362° Everest 5 No Maize 29.53 23

11/01/2016; 
01/30/2017; 
03/01/2017; 
04/10/2017

04/19/2017; 
05/05/2017

2 Marion 38.2058°, −97.1365° LCS Mint 9 No Maize 18.20 15

3 Marion 38.1909°, −97.1209° Everest 5 No Maize 31.22 50

4 Marion 38.2159°, −97.1686° Everest 5 No Maize 21.65 47

5 Marion 38.2793°, −97.0886° T158 9 Yes Wheat 31.62 50

6 Dickinson 38.9965°, −97.3566° WB 4458 & 
Armour 9 Yes Wheat 27.81 39 Not available

7 Dickinson 38.9998°, −97.3549° WB 4458 & 
Armour 9 Yes Wheat 6.07 34 Not available

Table 1.  Commercial winter fields used in the study. Resistance level of wheat varieties against Hessian fly 
infestation is reported on a 0 (highly resistant) to 9 (highly susceptible) point scale. A blend of two susceptible 
varieties were planted in the fields located in Dickinson County.
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On 19–22 March 2017, we visited all wheat fields to survey Hessian fly infestations. A uniform grid of sam-
pling points (n = 15 to 50 per site, mean ± se = 37.0 ± 5.2, Table 1) was developed for each site using ArcGIS® 
10.2 (ESRI, Redlands, CA). Sampling points within a field were located at least 25 m from each other such that 
no two adjacent points could share the same pixel in aerial data (see Methods: Remote sensing data). Sampling 
points in each field were located using a Trimble® ReconTM GPS System (Trimble, Dayton, OH). At each sampling 
point, plants were visually inspected for infestation by other pest species. No sign of noteworthy infestation was 
observed during field surveys and follow up field visits until the end of April. All wheat plants growing in a 1-m 
row at each sampling point were collected. After all fields were sampled, each plant from individual sampling 
point was examined carefully for the presence of Hessian fly puparia by removing leaf sheaths to the base of the 
stem and the number of puparia was enumerated (see Schmid et al.43 for the detailed methods). These data were 
used to determine the total number of plants, the proportion of plants infested by Hessian fly, and the average 
number of puparia per infested plant at each sampling point. Finally, Hessian fly infestation level at each sam-
pling point was estimated as the product of proportion of plants infested and the average number of puparia per 
infested plant (inverse hyperbolic sine transformed [=ln [xi + (xi

2 + 1)0.5]44). These data represented the intensity 
of fall infestation by Hessian fly in the fields and, therefore, predicted to explain the variation on NDVI in the 
course of this study. Total number of plants along the 1-m row was used as an estimate of plant density at each 
sampling point.

Remote sensing data.  Multispectral remote sensing data were acquired from two imaging platforms for all 
wheat fields. First, Level 1 C Sentinel-2 satellite data (S2A-L1C) were acquired for all seven sites. Sentinel-2 is an 
Earth observation mission developed by the European Space Agency (https://www.esa.int) to monitor terrestrial 
and coastal ecosystems. Orbiting at 786 km above the Earth’s surface, Sentinel-2 satellites collect optical data on 13 
spectral bands in visible, NIR and shortwave infra-red regions. These data are available at 10 m spatial resolution 
for visible (blue: band center [λ] = 492 nm, width = 98 nm; green: λ = 560 nm, width = 45 nm; red: λ = 665 nm, 
width = 38 nm) and NIR (λ = 833 nm, width = 145 nm) bands. Other bands that are available at coarser spatial 
resolution of 20 or 60 m were not suitable for this study. Although each satellite provides global data every 10 
days, sensor perspective and atmospheric factors including cloud cover over sites limited the frequency of data 
availability for our fields to four imagery dates (2016 November 1, 2017 January 30, 2017 March 1, and 2017 April 
10). However, those four dates covered most of the growing season of winter wheat in KS. No atmospheric or 
radiometric correction was applied to these data.

Second, aircraft data for all five sites located in Marion County were acquired from TerrAvion (https://www.
terravion.com; San Leandro, CA), a commercial data provider. TerrAvion provides spectral data on visible and 
NIR bands, and an estimate of plant vigor (NDVI) collected from a manned aircraft flying ~2 km above ground 
level. NDVI was estimated by the data provider using red (λ = 614 nm, width = 76 nm) and NIR (λ = 855 nm, 
width = 50 nm) bands. These data are available at high spatial resolution of 17–20 cm per pixel. TerrAvion data 
were available for only two imagery dates (2017 April 19 and 2017 May 5) in late growing season.

Using NIR and red bands in ArcGIS® 10.2, we developed NDVI maps for each aerial platform and imagery 
date for all field sites. Then, we extracted mean NDVI values for 100 m2 square plots around the sampling points 
from a series of NDVI maps for each platform. The plot size of 100 m2 is equivalent to the area of one pixel for 
Sentinel-2 satellite data. In contrary, higher spatial resolution of TerrAvion data allowed the extraction of mean 
NDVI values at a smaller scale of 1 m2 around the sampling points. NDVI datasets extracted for different plot 
sizes were used to evaluate whether high spatial resolution aircraft data at a finer scale exhibited a stronger rela-
tionship with pest infestation than those estimated at a coarser scale for either platform.

Data analysis.  We used a separate mixed effect model for each remote sensing platform (Sentinel-2, 
TerrAvion) and plot size (100 m2, 1 m2) to examine the relationship between NDVI and Hessian fly infestation 
in the wheat fields. Hessian fly infestation, imagery date, and infestation × date interactions were treated as 
fixed effects. To account for the non-independence of sampling points within a site and repeated estimations 
of NDVI on those points, we treated sampling points nested in the field as random effects. In the case of signif-
icant pest infestation × imagery date interaction, separate mixed effect model was run for each imagery date. 
Quantile-quantile plots were used to evaluate residual distribution and detect the observations with undue influ-
ence for each statistical model. In the cases of outliers, the statistical model was re-run excluding the outlier and 
the outcomes were evaluated. Finally, goodness of fit of each mixed model is reported as marginal (R2

m, variance 
explained by fixed effects) and conditional R2 (R2

c, variance explained by the entire model)45.
We also evaluated the effect of plant density on NDVI from different platforms and plot sizes. A mixed effect model 

was developed for each set of NDVI data using plant density, imagery date, and plant density × imagery date interaction 
as fixed effects and field as a random effect. Similarly, we analyzed the effect of Hessian fly infestation on plant density.

Finally, we used model selection procedure to identify the most informative set of NDVI data in explain-
ing Hessian fly infestation in the fields46. Fields in Dickinson County (n = 2) were excluded in model selection 
because TerrAvion data were not available for those fields. A set of NDVI data that was closest in time to field 
surveys for Hessian fly infestation was selected for each aerial platform (Sentinel-2: 10 April 2017; TerrAvion: 19 
April 2017). In this way, three sets of NDVI data (i.e., determined at 100 m2 plots for each platform, and at 1 m2 
plots for TerrAvion) were used to develop a series of candidate models. Each candidate model was developed as a 
mixed effect model evaluating the effect of each set of NDVI, a fixed effect, on pest infestation. Field was included 
in each model as a random effect. Then, we used Akaike information criteria corrected for finite sample size 
(AICc) to identify the best model explaining the pest infestation in the fields46. Candidate models with ΔAICc > 2 
were deemed significantly less informative than the best model. All statistical analyses were performed in R 3.5.047 
using ‘nlme’48 and ‘MuMIn’49 libraries.
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Results
NDVI estimated from each remote sensing platform declined with increasing Hessian fly infestation in the fields 
(Figs 1, 2). For Sentinel-2 satellite data, NDVI increased with time (F3, 768 = 612.71, P < 0.0001) but decreased 
with pest infestation (F1, 250 = 14.97, P < 0.0001, R2

m = 0.58, R2
c = 0.78, Fig. 1). A weak, but statistically signifi-

cant, negative effect of pest infestation on NDVI was evident in November 2016 (P = 0.021) that strengthened 
in intensity in the subsequent imagery dates in 2017 (January 30: P < 0.0001; March 1: P < 0.0001; April 10: 
P = 0.004; Fig. 1). Although the relationship between NDVI and infestation level was always negative, substantial 
change in the intensity of this relationship over time was indicated by a significant infestation × date interaction  
(F3, 768 = 222.93, P < 0.0001). On average, NDVI increased by ~67% across the fields from November 2016 to April 
2017.

Consistent with the patterns observed in Sentinel-2 data, NDVI estimated from TerrAvion data was negatively 
related to Hessian fly infestation (F1, 179 = 5.59, P = 0.019, R2

m = 0.19, R2
c = 0.96, Fig. 2). NDVI decreased by 10% 

from April 19 to May 5 (F1, 183 = 1628.22, P < 0.0001). Evaluating these relationships using NDVI data extracted 
for 1 m2 plots around the sampling points caused no noticeable change in the results. NDVI determined at the 
finer plot size was also negatively related to Hessian fly infestation (F1, 179 = 4.77, P = 0.030, R2

m = 0.18, R2
c = 0.89).

There was a strong correlation between NDVI values derived from Sentinel-2 and TerrAvion platforms at 
the same sized plots of 100 m2 (r = 0.937, P < 0.0001, Fig. 3a), and at 100 m2 plots for Sentinel-2 and 1 m2 for 
TerrAvion (r = 0.885, P < 0.0001, Fig. 3b). For TerrAvion platform, NDVI data extracted at different sized plots 
were strongly correlated (r = 0.944, P < 0.0001, Fig. 3c). However, NDVI for none of the platforms was related to 
plant density (Sentinel-2: P = 0.40; TerrAvion at 100 m2: P = 0.46; TerrAvion at 1 m2: P = 0.26). Furthermore, there 
was no significant relationship between plant density and Hessian fly infestation (P = 0.65) in the fields.

Despite low resolution, NDVI derived from Sentinel-2 satellite data was the best predictor of Hessian fly infes-
tation in the field (AICc = 286.4, AICc weight = 0.986). For TerrAvion, there was no substantial difference in AICc 
between the models with NDVI estimated at 100 m2 (AICc = 295.8, AICc weight = 0.009) and 1 m2 (AICc = 296.9, AICc 
weight = 0.005) plots.

Figure 1.  Normalized difference vegetation index (NDVI) determined from Sentinel-2 satellite data decreased with 
Hessian fly infestation in the commercial wheat fields in KS, USA. Hessian fly infestation at each sampling point 
was determined as the product of proportion of stems infested and inverse hyperbolic sine transformed number of 
puparia per stem. Relationship between NDVI (calculated at 100 m2 plots) and the level of pest infestation are shown 
for each imagery date: (a) 2016-11-01, (b) 2017-01-30, (c) 2017-03-01, and (d) 2017-04-10. The line fit for each date 
represents the relationship between NDVI and pest infestation determined from a linear mixed effect model.
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Discussion
This study provides evidence that changes in wheat fields in response to insect infestation can be detected by 
optical sensors mounted in aerial platforms including satellites orbiting >700 km above the Earth surface. These 
results are consistent with our hypothesis that NDVI, an indicator of plant biomass and health, declines with the 
increasing Hessian fly infestation. Areas associated with higher levels of pest infestation showed lower NDVI 
values compared to those with lower levels of pest infestation. These results are most likely driven by reduced 
biomass and/or poor health of plants growing in the areas of greater pest infestation. Spectral data collected from 
an aircraft flying ~2 km above the ground provided support to these patterns. Interestingly, neither pest infes-
tation nor NDVI from either platform was related to plant density. These results suggest that the relationships 
between NDVI and Hessian fly infestation are primarily governed by plant biomass or other plant traits related to 
herbivory rather than plant density. Furthermore, this study highlights the significance of low-resolution satellite 
data in mapping and managing pest infested areas in crop fields.

Negative relationships between pest infestation and plant performance are well documented in Hessian fly-wheat 
interactions33,34,41,42. After finding a suitable place in the leaf sheath of a seedling, newly emerged Hessian fly larvae 
induce gall formation that provides the immature stages with protective feeding sites potentially serving as a nutrient 
sink in the plant40. Damage by larvae could result in low NDVI of an individual plant and, consequently, the infested 
area in several ways. First, larval feeding substantially reduces plant growth for the entire growing season and can occa-
sionally cause plant death33,41. For the plants that showed stem elongation after larval feeding, stem lodging and death 
may occur34. These processes result in smaller, damaged, and unhealthy plants. Second, various plant species under a 

Figure 2.  Normalized difference vegetation index (NDVI) determined from TerrAvion aircraft data decreased 
with Hessian fly infestation in the commercial wheat fields in KS, USA. Hessian fly infestation at each sampling 
point was determined as the product of proportion of stems infested and inverse hyperbolic sine transformed 
number of puparia per stem. Relationship between NDVI (calculated at 100 m2 plots) and the level of pest 
infestation are shown for each imagery date: (a) 2017-04-19, and (b) 2017-05-05. The line fit for each date 
represents the relationship between NDVI and pest infestation determined from a linear mixed effect model.

Figure 3.  Relationship between normalized difference vegetation index (NDVI) determined from Sentinel-2 
and TerrAvion platforms and estimated for the sampling points at different plot sizes. Correlation between 
NDVI data from (a) Sentinel-2 and TerrAvion at 100 m2 plots; (b) Sentinel-2 at 100 m2 and TerrAvion at 1 m2 
plots; and (c) TerrAvion at 100 m2 and 1 m2 plots. All correlation coefficients are significant (P < 0.0001). Solid 
line represents the line fit between NDVI data sets using least-square regression, and dashed line represents 1:1 
relationship between them.
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biotic or an abiotic stress show increased reflectance in the red region of light spectrum, an indication of low chloro-
phyll concentration20. Third, death of tillers and seedlings due to pest infestation may create sparse or empty patches 
in the areas of severe infestation. All these mechanisms contribute to lower NDVI of the individual plant and the areas 
under severe infestation. Although the density of seedlings at the time of field survey was not related to pest infestation, 
decreased plant density at the later time in response to insect damage was possible. Conversely, Hessian fly infested 
plants are reported to appear darker blue-green in color during early stages of plant growth34,36. However, analysis of 
individual blue and green spectral bands did not exhibit such patterns (GP Bhattarai unpublished data). Therefore, the 
negative relationship between Hessian fly infestation and NDVI can be attributed to the reduced biomass and/or poor 
health of the plants. Reduced NDVI of plants in response to the severity of herbivore damage likely represents a general 
pattern in plant-herbivore interactions. We assert that these approaches can provide valuable information on pest infes-
tation and dynamics for a variety of plant species in agricultural and natural areas.

Analysis of spectral data in relation to pest infestation in crop plants are primarily limited to NDVI and a few 
additional vegetation indices. For example, NDVI differed substantially between control and pest infested plants 
for cotton26,27, soybean29, and wheat21–25,28. All these studies involved piercing-sucking and rasping insect pests, 
aphids and mites, respectively. Using reflectance data collected from a close distance to the plant canopy, these 
studies provide unequivocal evidence of lower NDVI for crop species suffering from herbivory. Other studies that 
used similar data collected by sensors mounted on aircrafts revealed the same patterns for aphid infested cotton 
and wheat plants30,31. Although our data showed similar patterns, underlying mechanisms for the negative rela-
tionship between pest infestation and NDVI may differ between piercing-sucking or rasping and galling insects. 
For plants infested by piercing-sucking insects, lower NDVI could be the outcome of leaf chlorosis, reduced 
moisture content, and reduced biomass12,20. In the case of Hessian fly, such patterns most likely result from lower 
biomass of the infested plants or plant death associated with pest infestation. Hessian fly-induced plant mortality 
was not measured in the current study, but should be a focus of future research.

Although spectral data captured by sensors from a close distance to the plant canopy have been shown to distin-
guish between infested and uninfested plants, these approaches require improvement to cover a larger spatial scale and 
have practical use in pest management. Using multispectral data from higher elevation platforms, we elaborate these 
approaches to make pest detection and monitoring feasible at larger spatial and temporal scales. We also document that 
relatively low resolution (100 m2 per pixel) orbital data, that were strongly correlated with high resolution aircraft data, 
efficiently represent the variability in plant performance across the fields. Such variations detected from orbital data and 
validated through field surveys can play an important role in pest management. On the other hand, recently developed 
imaging spectroscopy methods are shown to provide detailed assessment of several morphological and chemical traits 
related to nutritional, functional, and defense status of plants7–9,50. These methods exhibit tremendous potential to rev-
olutionize survey and monitoring approaches in relatively homogeneous agricultural landscapes.

We discovered a substantial heterogeneity on the prevalence and severity of Hessian fly infestation within and 
among wheat fields (see also Schmid et al.43). Hessian fly infestation showed patchy distribution within a field43. 
Two of the field sites located in Dickinson County suffered from nearly non-existent pest infestation. Occurrence 
and severity of Hessian fly infestation were independent of the local and landscape level factors43, which high-
lights the challenges in field monitoring using ground-based surveys. Out of several factors evaluated by Schmid 
et al.43, proportion of wheat cover around the field in the previous year was the only factor that was related to pest 
infestation. Interestingly, greater coverage of landscape by wheat fields was associated with the lower infestation 
in the following year. Such a paucity of data on the relevance of local and landscape factors in driving Hessian 
fly infestation leaves the managers and researchers with the only option of regular field surveys and monitoring. 
Current practices are inefficient when pest pressure is low to non-existent and impractical when host cover is 
measured in millions of hectares, which is the case for wheat in KS. In this context, development of a reliable 
remote sensing method using low-cost satellite and aircraft data will play an important role in pest management.

In this study, we demonstrate the relevance of commonly used vegetation indices estimated from remotely sensed 
data in mapping insect pest infestation and plant performance in agricultural areas. These findings highlight the oppor-
tunity for applying readily available orbital data to map agricultural areas under various biotic or abiotic stresses ena-
bling the managers to make an immediate evaluation and response to mitigate the problem. Our study further indicates 
that low resolution satellite data could provide more accurate information regarding spatial distribution and severity 
of pest infestation in an agricultural landscape. On the other hand, these methods and findings open the possibility of 
hierarchical studies involving multiple aerial platforms, including satellites, aircrafts (both manned and unmanned), 
and ground observations, to study plant-insect interactions at the larger temporal and spatial scales. Those studies could 
also help understating the contribution of local (e.g., host quality, competition, enemy pressure, management practices, 
etc.) and large scale (e.g., climate, biogeography, etc.) factors on the spread and dynamics of insect pests.

Data Availability
Data are available from the corresponding author upon reasonable request.
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