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Prophylaxis for and treatment of graft-versus-host disease (GVHD) are essential for
successful allogeneic hematopoietic stem cell transplantation (allo-SCT) and mainly
consist of immunosuppressants such as calcineurin inhibitors. However, profound
immunosuppression can lead to tumor relapse and infectious complications, which
emphasizes the necessity of developing novel management strategies for GVHD.
Emerging evidence has revealed that tissue-specific mechanisms maintaining tissue
homeostasis and promoting tissue tolerance to combat GVHD are damaged after allo-
SCT, resulting in exacerbation and treatment refractoriness of GVHD. In the
gastrointestinal tract, epithelial regeneration derived from intestinal stem cells (ISCs), a
microenvironment that maintains healthy gut microbiota, and physical and chemical
mucosal barrier functions against pathogens are damaged by conditioning regimens
and/or GVHD. The administration of growth factors for cells that maintain intestinal
homeostasis, such as interleukin-22 (IL-22) for ISCs, R-spondin 1 (R-Spo1) for ISCs
and Paneth cells, and interleukin-25 (IL-25) for goblet cells, mitigates murine GVHD. In this
review, we summarize recent advances in the understanding of GVHD-induced tissue
damage and emerging strategies for the management of GVHD.

Keywords: allogeneic hematopoietic stem cell transplantation, GVHD, graft-versus-host disease, intestinal stem
cells, tissue stem cells, microbiota, Paneth cell, goblet cell
INTRODUCTION

Mature epithelial cells in the gut, skin, and liver have long been recognized as the primary target of acute
graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-SCT).
Mature epithelial cells in the gut are composed of functionally distinct populations, including
enterocytes, Paneth cells, goblet cells, tuft cells, and enteroendocrine cells. Each of these epithelial
populations contributes to the maintenance of tissue homeostasis (Table 1). Thus, injury of these
epithelial cells results in alteration of the tissue microenvironment and disruption of tissue homeostasis,
potentially amplifying GVHD-induced tissue damage. Furthermore, emerging evidence indicates that
adult tissue stem cells are primarily targeted by GVHD, which decreases tissue resilience in GVHD target
organs (5, 7, 19). Here, we review recent advances in the understanding the cellular and molecular
mechanisms of GVHD-induced tissue damage and disruption of the tissue microenvironment.
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Ara and Hashimoto Mechanism of GVHD-Induced Tissue Damage
This review mainly focuses on gastrointestinal GVHD, while recent
findings on the injury of tissue stem cells in the other organs are
also summarized.
TISSUE DAMAGES IN GVHD

It has been recognized that bacterial and fungal pathogen-associated
molecular patterns (PAMPs) such as lipopolysaccharide and a-
mannan, play a critical role in initiating GVHD (20–23). PAMPs
enhance production of proinflammatory cytokines, host alloantigen
presentation, and infiltration of innate cells into the gastrointestinal
tracts early after conditioning (21, 24, 25). Recent advances revealed
the critical role of sterile damage-associated molecular patterns
(DAMPs) in pathophysiology of GVHD. Tissue damage induced
by conditioning chemotherapy and/or irradiation promotes release
of DAMPs from damaged cells and initiates the inflammatory
cascade which culminates in expansion of donor alloreactive T
cells and development of acute GVHD. DAMPs are comprised of
various molecules that are sequestrated in the cells in the steady
state, while released into the extracellular space by cellular damages.
Extracellular ATP activates host antigen presenting cells and
inflammatory monocytes via the purinergic P2X7 and P2Y2
receptors, respectively, that exaggerates mouse GVHD (26, 27). It
has been shown that lack of nucleotide-binding oligomerization
domain–like (NOD) receptor protein 3 (NLRP3), a known target of
ATP/P2X7 receptor signaling, in the recipient mice ameliorated
GVHD, suggesting that ATP exaggerates GVHD via activation of
NLRP3 inflammasome (28). ATP-induced NLRP3 activation in
myeloid-derived suppressor cells reduces anti-GVHD effects of
Frontiers in Immunology | www.frontiersin.org 2
these cells after adoptive transfer (29). Another NLRP3 activator,
uric acid is released into the extracellular space after conditioning
and exaggerates GVHD (28). Interleukin-33 (IL-33) is released from
epithelial cells after injury and promotes effector T-cell
differentiation of donor T cells, that results in the exaggeration of
GVHD (30, 31). Heparan sulfate and high-mobility group box 1
protein bind to toll like receptor 4 and induce GVHD after allo-SCT
(32, 33).

DAMPs and PAMPs primarily activate myeloid inflammatory
cells such as neutrophils and monocytes, and antigen presenting
cells such as dendritic cells and macrophages. Conditioning-
induced tissue damage promotes accumulation of host
neutrophils and production of reactive oxygen species in the
gastrointestinal tract, that in turn amplifies the tissue injury (25).
Interestingly, neutrophils accumulated in the gastrointestinal
tract early after conditioning migrate to mesenteric lymph
nodes and promote activation of host antigen presenting cells
and donor T cells (34). It has been shown that donor neutrophils
also exaggerate GVHD (35). In patients’ samples, higher density
of neutrophil infiltration in the gut was associated with worse
outcomes of GVHD, further emphasizing critical role of
neutrophils in pathophysiology of acute GVHD (36).
Monocytes and inflammatory macrophages also contribute to
development of GVHD by producing proinflammatory cytokines
in response to DAMPs and PAMPs and promoting activation of
donor T cells (23, 27, 37). Importantly, IL-12 produced from
monocytes and macrophages after irradiation enhances antigen
presentation by host non-hematopoietic cells and exaggerates
GVHD (24). On the other hand, host tissue resident macrophage,
the ontogenetically independent population from monocytes and
TABLE 1 | Intestinal cells that maintain intestinal homeostasis.

Cell Type Location Function Mouse
GVHD

Human
GVHD

References

DCS cell LI Secrete ISC growth factors such as EGF and NOTCH ligands Unknown Unknown Sasaki et al. (1), PMID: 27573849
Goblet Cell SI/LI Maintain the mucus layers by mucin production ↓ ↓ Ara et al. (2), PMID: 32611682
ILC2 SI/LI Secrete goblet cell growth factors such as IL-4/IL-13 in response to

IL-33 and IL-25
↓ a) ↓ a),b) Bruce et al. (3), PMID: 28375154

Munneke et al. (4), PMID: 24855210
ILC3 SI/LI Secrete a ISC growth factor, IL-22 ↓ Unknown Hanash et al. (5), PMID: 22921121

Lindemans et al. (6), PMID: 26649819
Munneke et al. (4), PMID: 24855210

ISC SI/LI Differentiate into all types of intestinal epithelial cells ↓ ↓ Takashima et al. (7), PMID: 21282378
Takashima et al. (8), PMID: 31811055

L Cell SI/LI Secrete a ISC growth factor, GLP-2 ↓ ↓ Norona et al. (9), PMID: 32542357
LEC SI Secrete a ISC growth factor, R-Spondin 3 ↓ Unknown Ogasawara et al. (10), 30013036
MRISC LI Secrete a ISC growth factor, R-Spondin 1 (Production of R-Spondin1

is enhanced in response to gut injury).
Unknown Unknown Wu et al. (11), PMID: 33658717

Paneth Cell SI Secrete ISC growth factors such as EGF and Wnt3
Secrete antimicrobial peptides, such as a-defensins

↓ ↓ Eriguchi et al. (12), PMID: 22535662
Jenq et al. (13), PMID: 22547653
Hayase et al. (14), PMID: 29066578
Levine et al. (15), PMID: 23760615

Telocyte
(at crypt
base)

SI/LI Secrete a ISC growth factor, R-Spondin 3 Unknown Unknown Shoshkes-Carmel et al. (16), PMID: 29720649

Tuft Cell SI/LI Stimulate ILC2 by production of IL-25 Unknown Unknown Gerbe et al. (17), PMID: 26762460
von Moltke et al. (18), PMID: 26675736
DCS cell, deep crypt secretory cell; ILC2, type 2 innate lymphoid cell; ILC3, type 3 innate lymphoid cell; ISC, intestinal stem cell; LEC, lymphatic endothelial cell; LI, large intestine; MRISC,
Map3k2-regulated intestinal stromal cell; SI, small intestine.
a) Prolonged ILC2 reduction is induced by irradiation and/or chemotherapy. b) Reduction of ILC2 has been only demonstrated in the peripheral blood.
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Ara and Hashimoto Mechanism of GVHD-Induced Tissue Damage
inflammatory macrophages, plays a protective role against
GVHD by suppressing donor T cell expansion (38–40).
TISSUE STEM CELLS AS TARGET
OF GVHD

Injury of ISCs in Intestinal GVHD
Histological features of intestinal GVHD include epithelial
apoptosis, crypt degeneration, and mucosal sloughing, as well as
inflammatory cell infiltration (41). Early preclinical studies
pointed out that proliferation of crypt cells was enhanced in
less severe GVHD, while more severe GVHD abrogated crypt cell
proliferation in association with villus atrophy and loss of the
crypt; these findings indicated that severe GVHD targets putative
tissue stem cells residing in the intestinal crypt (42). More
recently, leucine-rich-repeat-containing G protein-coupled
receptor 5 (LGR5) was found to be a unique marker for cycling
intestinal stem cells (ISCs) residing at the crypt base of the small
intestine and colon (43) (Figure 1). In the steady state,
approximately 10 cells are produced every hour in each crypt
and migrate to the villus tip in 2-3 days, and a lineage-tracing
study using the LGR5-Cre reporter system revealed that LGR5+

ISCs give rise to all gut epithelial lineages (43, 44). Depletion of
Frontiers in Immunology | www.frontiersin.org 3
LGR5+ ISCs in the mice, in which diphtheria toxin receptor
(DTR) was specifically expressed in LGR5+ cells, significantly
delayed epithelial regeneration after irradiation-induced intestinal
damage, suggesting that LGR5+ ISCs are important also for the
regenerative process after gut injury (45). Adoptive transfer of
eGFP-specific TCR-transgenic T cells (Jedi T cells) depleted
LGR5-eGFP+ ISCs and profoundly impaired the regenerative
response after irradiation, suggesting that ISCs are susceptible
to T cell-mediated injury (46–48). Furthermore, the crypt base
region is the primary site infiltrated by donor T cells after allo-
SCT; donor T cells migrate to the crypt base region in a
MAdCAM-1-dependent manner as early as day 4 after murine
allo-SCT, suggesting that ISCs are the primary target of gut
GVHD (49).

A landmark study by Takashima et al. demonstrated that ISCs
marked by another ISC-specific marker, olfactomedin-4 (Olfm4),
are targeted by intestinal GVHD (7) (Figure 2). The reduction of
LGR5+ ISCs in intestinal GVHD was then confirmed using a
LGR5 reporter system (5). Due to the rapid turnover of gut
epithelial cells, depletion of cycling ISCs in the crypt in intestinal
GVHD soon leads to villus atrophy and causes refractory colitis
(44). In the small intestine, quiescent Bmi1+ stem cells exist at
four cell diameters above the base of the crypt and are called +4
stem cells (50). These cells are activated only after severe gut
A B

C

FIGURE 1 | The mechanism maintaining intestinal homeostasis. ISCs residing at the crypt base give rise to all cell lineages in the epithelium and are supported by
growth factors produced by definitive and putative niche components. SCFAs produced by commensal bacteria serves as energy source of intestinal epithelial cells.
(A) In the small intestine, Paneth cells and telocytes produce Wnt3, telocytes and LECs produce R-Spo3, L cells produce GLP2, and ILC3s (green round cells in the
figure) produce IL-22. Paneth cells also produce a large amount of AMPs such as a-defensins and REG3, and maintain healthy intestinal microbiota. (B) In the colon,
deep crypt secretory cells produce EGF and NOTCH ligands, telocytes produce WNT3, and MAP3K2-regulated intestinal stromal cells produce R-Spo1. There are
tremendous numbers of bacteria in the colonic lumen, which is segregated from epithelial cells by the inner mucus layer containing mucins produced by goblet cells
and antimicrobial molecules such as REG3 and LYPD8 produced by enterocytes. IL-25 produced from Tuft cells stimulates ILC2s (blue round cells in figure) to
secrete goblet cell growth factors such as IL-4 and IL-13. SCFAs produced by commensal bacteria serves as energy source of intestinal epithelial cells. (C) The
intestinal epithelial tight junctions exhibit both size and charge selectivity and regulate the selective paracellular permeability, inhibiting penetration of bacteria and
bacterial components while permitting the passage of water, ions, and small molecules. AMP, antimicrobial peptide; EGF, epithelial growth factor; GLP-2, Glucagon-
like peptide 2; LEC, lymphatic endothelial cell; ILC2/3, type 2/3 innate lymphoid cell; IL-4/13/22/25, interleukin-4/13/22/25; ISC, intestinal stem cell; LYPD8, Ly6/
PLAUR domain-containing protein 8; R-Spo1/3, R-spondin 1/3; SCFA, short-chain fatty acid.
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injury or depletion of LGR5+ ISCs and differentiate into all types
of epithelial cells, including LGR5+ ISCs (51, 52). However, the
fate and role of this second stem cell population in GVHD remain
to be clarified. The mechanisms by which GVHD causes injury of
LGR5+ ISCs have been studied intensively using a gut organoid
culture system. Single LGR5+ ISCs isolated from the intestine give
Frontiers in Immunology | www.frontiersin.org 4
rise to crypt–villus organoids containing all differentiated cell
types of the intestinal epithelium without the support of niche
cells (53). Coculture of intestinal organoids with activated T cells
induced caspase-3/caspase-7 cleavage and apoptosis of LGR5+

ISCs in the organoid, while IFN-g blockade prevented T cell-
mediated injury of the organoids, indicating that activated T cells
A B

C

FIGURE 2 | Pathophysiology of gastrointestinal graft-versus-host disease (GVHD). (A) In the small intestine, activated alloreactive donor T cells (pink round cells in figure)
migrate to the crypt base region early after allogeneic transplantation in a MAdCAM-1-dependent manner and damage ISCs, resulting in impairment of mature intestinal
epithelial cell regeneration. Paneth cell injury causes the reduction of AMP production and loss of function as an ISC niche. IFN-g plays an important role in both ISC and
Paneth cell injury in GVHD, and ruxolitinib protects ISCs and Paneth cells against GVHD. Moreover, growth factors of ISCs such as R-Spondin 3, IL-22, and GLP-2 are
reduced in the intestine due to GVHD-induced reduction of LECs, ILC3s, and L cells. The expression of tight junction molecules such as claudin-4 are also reduced in
GVHD, resulting in disruption of intestinal epithelial barrier function. (B) In the large intestine, goblet cell injury in GVHD results in disruption of the mucus layers bleaching
both chemical and mechanical barrier functions of the intestinal mucosa. ILC2s, producer of goblet cell growth factors, are profoundly depleted by conditioning
radiotherapy or chemotherapy, likely inhibiting regeneration of goblet cells. (C) Microenvironmental perturbation after allo-SCT induced by administration of antibiotics
and/or total parenteral nutrition, reduction of AMP production, and lactose malabsorption leads to intestinal dysbiosis, frequently accompanying Enterococcus domination.
Dysbiosis and disruption of barrier function of the intestinal mucosa enhance bacterial translocation, further exaggerating GVHD. Replacement of growth factors for ISCs,
Paneth cells, and goblet cells ameliorate GVHD. Allo-SCT, allogeneic hematopoietic stem cell transplantation; DAMP, damage-associated molecular pattern; EGF,
epidermal growth factor; IFN-g, interferon-g; KGF, keratinocyte growth factor; LYPD8, Ly6/PLAUR domain-containing protein 8; PAMP, pathogen-associated molecular
pattern; REG, regenerating islet-derived protein; R-Spo1, R-spondin1; uhCG, urinary-derived human chorionic gonadotropin.
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damage LGR5+ ISCs in an IFN-g-dependent manner (8, 54). In
mouse models of allo-SCT, significantly more LGR5+ ISCs
persisted after transplantation with IFN-g-deficient donor T
cells than after transplantation with wild-type (WT) donor T
cells (54). Furthermore, administration of IFN-g significantly
reduced LGR5+ ISCs in the mice conditioned with total body
irradiation, while it induced a proliferative response in the crypt
in nonirradiated mice (54). Thus, IFN-g seems to be more
harmful for ISCs in the presence of genotoxic stress, such as
irradiation, in vivo, while a high concentration of IFN-g alone
could induce apoptosis of ISCs in vitro. Alternatively,
radiosensitive niche components could protect ISCs from IFN-g
in vivo to some extent.

Injury of the ISC Niche
The ISC niche, which provides survival and growth factors for
ISCs, is also targeted by GVHD (Figures 1 and 2). Interleukin-22
(IL-22) produced by type 3 innate lymphoid cells (ILC3s) is a
well-described growth factor of LGR5+ ISCs (5). Total body
irradiation (TBI) enhances IL-22 production from radioresistant
ILC3s in an interleukin-23 (IL-23)-dependent manner, which is
believed to promote regeneration of epithelial cells from
radiation-induced damage. IL-22-producing ILC3s persisted
after syngeneic bone marrow transplantation, while they were
depleted after mouse allogeneic transplant, indicating that
GVHD targets ILC3s. A reduction in IL-22 producing ILC3s in
GVHD is associated with prolonged depletion of ISCs and
exacerbation of gut GVHD.

Crypt bases have enriched transcription of Wnt target genes,
and Paneth cells produce high levels of Wnt3, suggesting that
Paneth cells are an ISC niche component (55, 56). Although the
survival and proliferation of LGR5+ ISCs were not affected in
Paneth cell-deficient mice in the steady state, Paneth cells may
protect ISCs against gut injury (57). Because Paneth cells are also
susceptible to IFN-g-induced apoptosis in GVHD, regeneration
of the gut epithelium from ISCs could be further disturbed in
intestinal GVHD (12, 13). On the other hand, Paneth cell-
derived Wnt3 is redundant with that produced from
subepithelial telocytes (16, 58–60). It remains to be clarified
whether telocytes are targeted by GVHD. In the colon, which is
devoid of Paneth cells, deep crypt secretory (DCS) cells residing
at the crypt base act as the niche for LGR5+ ISCs by producing
NOTCH ligands and epidermal growth factor (EGF) (1). While
DCS cells do not produce Wnt ligands, stromal tissues
surrounding colonic crypts produce Wnt ligands and support
colonic ISCs (58). It also remains to be clarified whether DCS cell
are targeted by GVHD. R-spondins are the ligands of LGR4,
LGR5, and LGR6 and enhance Wnt/b-catenin signaling by
preventing ubiquitination and degradation of the Wnt receptor
Frizzled (61, 62). The R-spondin family is composed of four
molecules. R-Spo1-R-Spo4 share a similar structure, and each of
these four molecules can bind to LGR4, LGR5 and LGR6 (63).
We found that R-Spo3 is the major molecule produced in the
small intestine (10). Although it has been reported that
mesenchymal cells, including telocytes, produce R-Spo3, we
found that CD90+CD31+podoplanin+ lymphatic endothelial
Frontiers in Immunology | www.frontiersin.org 5
cells are the main producers of R-Spo3 in the intestine (10,
16). Importantly, both the R-Spo3 production and absolute
numbers of lymphatic endothelial cells are significantly
reduced in GVHD (10). On the other hand, it remains to be
clarified whether R-Spo3-producing telocytes are targeted by
GVHD. The importance of R-Spo3 was also demonstrated in
an antibody-mediated inhibition study, in which administration
of anti-R-Spo3 antibodies alone reduced LGR5+ ISCs in naïve
mice and suppressed the regenerative response after irradiation
(64). Although this study showed that anti-R-Spo2 antibodies
and anti-R-Spo3 antibodies work synergistically in the depletion
of LGR5+ ISCs, the cellular source of R-Spo2 in the intestine
remains to be clarified. Interestingly, recent study showed that
Map3k2-regulated intestinal stromal cells (MRISCs) residing
around the crypt base enhance production of R-Spo1 in
response to dextran sodium sulfate (DSS)-induced colitis and
protect colonic ISCs (11). Map3k2-deficient mice are more
susceptible to DSS-induced colitis compared with wild type
controls, further emphasizing a protective role of MRISCs
against inflammation of the colon (11). These findings suggest
that there are distinct ISC niche systems in the small intestine
and the colon, and further studies are required to assess the fate
of these ISC niches in GVHD.

GVHD Prophylaxis and Treatments
Targeting ISCs
Strategies that protect ISCs or induce their regeneration could be
therapeutic options for GVHD that avoid strengthening immune
suppression, which could lead to infection or leukemia relapse.
As mentioned above, the reduction in IL-22 produced by ILC3s
in GVHD leads to depletion of ISCs. IL-22 induces the
proliferation and differentiation of ISCs and inhibits the
apoptosis of ISCs after genotoxic stress (65). Replacement of
IL-22 by administration of F-652, a recombinant fusion protein
consisting of an rhIL-22 dimer and Fc fusion protein, after
mouse allogeneic bone marrow transplantation enhanced the
recovery of ISCs, increased epithelial regeneration, and
ameliorated GVHD (6). However, the potential benefit of IL-
22 could be limited because IL-22 secreted from donor T cells has
been shown to aggravate GVHD by reducing Tregs and
enhancing inflammatory responses (66–68). It has been
suggested that IL-22 induces Th1 cell infiltration in the
gastrointestinal tract via a host type I interferon dependent
manner (69). Thus, the safety and efficacy of IL-22
replacement therapy must be evaluated in clinical studies; F-
652 is now being tested for the treatment of lower
gastrointestinal acute GVHD (NCT02406651). Because ILC3s
produce IL-22 in response to bacterial metabolites such as short-
chain fatty acids (SCFAs), probiotics that produce SCFAs could
be used for GVHD prophylaxis (70).

Administration of R-spondins is also promising for GVHD
prophylaxis, as this strategy protects ISCs against mouse GVHD.
Recombinant human R-Spo1 (rhR-Spo1) was found to stimulate
the proliferation of epithelial cells in the intestinal crypt (71).
Subsequently, it was shown that rhR-Spo1 expands ISCs in naïve
mice and mice undergoing allo-SCT. Importantly, rhR-Spo1
August 2021 | Volume 12 | Article 713631
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administered in the peritransplant period protects ISCs against
GVHD and ameliorated GVHD after allo-SCT in TBI-
conditioned mice (7). In contrast, rhR-Spo1 does not impact
the severity of GVHD after allo-SCT without conditioning,
potentially indicating synergistic effects of TBI and T-cell-
derived IFN-g on ILC injury (7, 54). Administration of a Robo
ligand, Slit2 works synergistically with R-Spo1 in preventing ISC
loss after chemoradiotherapy, suggesting that this combination
could be useful for GVHD prophylaxis (72).

Type III interferon plays a protective role against gastrointestinal
GVHD. Type III interferon family was discovered in 2003 and
consists of four molecules, IFN-l1 (IL-29), IFN-l2 (IL-28A), IFN-
l3 (IL-28B), and IFN-l4 (73). Among them, IFN-l2 and IFN-l3
are expressed in both humans and mice, while IFN-l1 gene is a
pseudogene in mice, and IFN-l4 gene is absent in mice. IFN-l
receptor consists of two chains, including a unique subunit, IFN-l
receptor 1 (IFNLR1) and common IL-10 receptor-b (IL-10RB)
chain, which is shared with cytokines of the IL-10 family. IFNLR1 is
preferentially expressed in gastrointestinal epithelium, suggesting
that IFNl is a key effector cytokine in mucosal immunity (74, 75).
Recently, Henden and colleagues showed that IFNl treatment
improves the proliferative and regenerative capacity of LGR5+

ISCs independently of IL-22 and ameliorates murine GVHD (76).
Since, pegylated recombinant IL-29 is being developed as an
adjunctive therapy for Hepatitis C, this agent may be rapidly
testable for clinical GVHD (77).

Ruxolitinib, a JAK1/2 inhibitor, has been shown to ameliorate
mouse and human GVHD and has been approved by the Food
and Drug Administration (FDA) in the United States for the
treatment of steroid-refractory acute GVHD (78, 79). Ruxolitinib
profoundly suppresses T cell activation, proliferation, and
differentiation toward T helper 1 (Th1), Th17 and cytotoxic T
cells (79). Given the critical role of IFN-g in ISC injury, it has been
tested if ruxolitinib could protect ISCs against GVHD by
inhibiting JAK1/2-STAT1 pathway, an indispensable pathway
in IFN-g receptor signaling. Organoid culture systems have
demonstrated that allogeneic T cells induce apoptosis of
organoids and ISCs in an IFN-g-dependent manner (8).
Ruxolitinib protected ISCs and Paneth cells in organoids from
IFN-g and allogeneic T cells (8, 54). Furthermore, ruxolitinib
prevented IFN-g-induced ISC injury after syngeneic SCT,
indicating that ruxolitinib protects ISCs independent of
suppression of allogeneic T cell activation (54). These ISC-
targeting strategies for GVHD prophylaxis and treatment are
promising and could promote regeneration of all types of
intestinal epithelial cells after GVHD-mediated injury (Figure 2).

Tissue Stem Cells in Other Organs
Tissue stem cells in other target organs, such as the skin and liver,
could be involved in GVHD pathophysiology. The fate of skin
stem cells in acute cutaneous GVHD has been studied. Multiple
tissue stem and/or progenitor populations of epithelial cells have
been identified in the skin. The bulge of hair follicles has long
been recognized to foster tissue stem cells because long-lived
label-retaining cells exist in the hair bulge (80). More recently, it
became possible to identify hair follicle stem cells (HFSCs) in the
Frontiers in Immunology | www.frontiersin.org 6
lower part of the bulge as CD34+, cytokeratin 15 (CK15)+, and
LGR5+ cells using flow cytometric or immunofluorescent studies
(81–83). These HFSCs alone can regenerate all structures of hair
follicles and hair shafts and contribute to regeneration of the
epidermis after skin injury (19, 82, 84). In addition to HFSCs,
LGR6+ stem cells residing directly above the bulge and leucine-
rich repeats and immunoglobulin-like domains 1 (Lrig1)+ stem
cells in the isthmus maintain the upper pilosebaceous units (85,
86). Other than stem cells in the hair follicles, there are CK15+

epidermal progenitor and/or stem cells in the rete-like
prominences (RLPs) of mouse tongues, a surrogate of human
epidermal rete ridges of the skin.

Early studies demonstrated that donor T cells primarily
migrate to stem cell-rich parts of the skin, such as mouse
RLPs, human rete ridges, and the bulge of hair follicles,
suggesting that skin stem cells could be targeted by GVHD
(87–90). Among multiple stem cell populations, CK15+ stem
and/or progenitor cells in mouse RLPs have been shown to
undergo cytokine-induced apoptosis in cutaneous GVHD (90–
92). Recently, we found that LGR5+ HFSCs were significantly
reduced in mouse cutaneous GVHD, in association with reduced
numbers of hair follicles, alopecia, and delayed wound healing
(19). This finding was rather surprising because a previous study
showed that injection of eGFP-specific Jedi T cells did not
deplete LGR5-eGFP+ HFSCs, suggesting that these LGR5+

HFSCs are immune privileged (47). This discrepancy suggests
that HFSCs are not inherently immune privileged and that the
environment and/or HFSC niche protect HFSCs against
immune-mediated injury. An extensive inflammatory
environment or disruption of the HFSC niche could be
responsible for HFSC damage in cutaneous GVHD. One of the
HFSC niche components, subcutaneous fat, which acts as
regulator of hair cycling and energy reservoir for HFSCs,
becomes atrophic in cutaneous GVHD, which can lead to a
reduction of LGR5+ HFSCs (19, 93–95). Although the
mechanism by which GVHD depletes LGR5+ HFSCs and
CK15+ RLP stem cells remains to be clarified, it is worth of
note that topical administration of ruxolitinib protects these
stem cells from mouse GVHD (19). On the other hand, topical
corticosteroids demonstrate direct toxicity that leads to depletion
of HFSCs after syngeneic and allogeneic SCT, even though
topical steroids dramatically reduce donor T cell infiltration to
the skin in cutaneous GVHD. Protection of LGR5+ HFSCs with
topical ruxolitinib was associated with suppression of alopecia
and enhancement of wound healing after allo-SCT, while topical
corticosteroid was not (19). Based on its protective effects on
both ISCs and skin stem cells, ruxolitinib could be an ideal
therapeutic agent for GVHD (78, 79). The fate of other stem cell
populations in the skin, such as LGR6+ stem cells and Lrig1+

stem cells in the hair follicles, remains to be clarified (85, 86).
The liver, another major target organ in acute GVHD, is a

highly regenerative organ, and there are two main epithelial
populations: hepatocytes and biliary epithelial cells (BECs).
Lineage-tracing studies have shown that there are stem and/or
progenitor populations of hepatocytes that maintain the
hepatocyte pool in steady states, for example, studies in Axin2-
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Cre/ER reporter mice (96). However, some of these lineage-
tracing strains have aberrant proliferation of labeled hepatocytes,
possibly due to deletion of exons of the target molecule, which
potentially leads to overestimation of the contribution of labeled
cells to tissue regeneration after liver injury (97). More recently,
it has been shown that mid-lobular hepatocytes cycle and
maintain whole hepatocytes in the liver, except glutamine
synthetase (GS)-expressing hepatocytes facing the central vein,
which are maintained independently from other hepatocytes (97,
98). In certain contexts of liver injury, LGR5+ and Sox9+

hepatocytes endowed with the potential to differentiate both
into hepatocytes and BECs emerge, and BECs proliferate and
contribute to the reconstitution of hepatocytes after severe liver
injury (99–103). Because jaundice and biliary dysfunction are the
cardinal features of liver GVHD, it should be more important to
study BEC stem cells rather than stem cells of hepatocytes. Huch
et al. found that single LGR5+ cells isolated from the hepatic duct
give rise to liver organoids that can be differentiated into both
hepatocytes and BECs (99). The fate of BEC stem cells needs to
be clarified in future studies.
ALTERATION OF THE
MICROENVIRONMENT INDUCES
INTESTINAL DYSBIOSIS IN GVHD

Intestinal dysbiosis is frequently observed after allo-SCT and is
associated with exacerbation of GVHD and transplantation-related
death (13, 104, 105). Multiple factors, such as antibiotics and total
parenteral nutrition, can lead to dysbiosis after allo-SCT (Figure 2
and Table 1). In addition, GVHD-induced tissue injury can
generate a microenvironment related to dysbiosis. a-Defensins,
major antimicrobial peptides (AMPs) produced from Paneth cells,
exert potent bactericidal effects on pathogenic bacteria that occupy a
minor proportion of the healthy microbiota but are minimally
effective on nonpathogenic commensals that dominate the healthy
gut microbiota (106, 107). Paneth cells are highly sensitive to
GVHD, and a-defensin production is profoundly decreased in
GVHD (12, 13, 108). This reduction is mediated by IFN-g
signaling, and ruxolitinib can protect Paneth cells against GVHD
(54). R-Spo1, a growth factor of ISCs, is also a potent inducer of
Paneth cell differentiation from ISCs, and we found that
administration of rhR-Spo1 induced expansion of Paneth cells in
naïve mice, leading to marked elevation of fecal levels of a-defensins
such as cryptdin-1 (Crp-1) and cryptdin-4 (Crp-4) (14). In mouse
GVHD, peritransplant administration of R-Spo1 protects not only
ISCs but also Paneth cells, resulting in preserved a-defensin
production and prevention of intestinal dysbiosis after allo-SCT
(14). Short-term oral administration of Crp-4 to allogeneic recipient
mice temporally mitigated intestinal dysbiosis and inflammation in
the gut after allo-SCT, while dysbiosis developed after cessation of
Crp-4 treatment, indicating that long-term administration of Crp-4,
until Paneth cell regeneration, is required for the prevention of
dysbiosis after allo-SCT (14). Paneth cell numbers in duodenal
biopsies from transplanted patients are negatively related to gut
Frontiers in Immunology | www.frontiersin.org 7
GVHD severity, further emphasizing the protective role of Paneth
cells against GVHD (15).

REG3, another major AMP in the intestine, is produced by
intestinal epithelial cells, including Paneth cells and enterocytes,
and diffuses into the inner mucus layer, segregating luminal
bacteria from the gut epithelium (109, 110). In mouse models of
allo-SCT, the expression levels of REG3g, the mouse homolog of
human REG3a, in the small intestine were significantly reduced
in GVHD, and REG3g leaked from the gut to the blood, leading
to elevation of plasma levels of REG3g (111, 112). In clinical allo-
SCT, the plasma levels of REG3a and ST2 are now widely
appreciated as diagnostic and prognostic biomarkers of acute
GVHD (113–115). In mouse models of steroid-refractory
GVHD, it has been shown that IL-22 produced by donor Th/
Tc22 cells stimulates REG3g production in the intestine, and
excess REG3g leads to dysbiosis and exacerbation of GVHD (67).
Thus, REG3g could be a therapeutic target for treating steroid-
refractory GVHD.

Enterococcus domination, defined as a status in which 30% or
more of all the bacteria in the fecal microbiota are enterococci,
develops frequently after allo-SCT and is associated with blood
stream infection, development and exacerbation of GVHD, and
GVHD-related death after allo-SCT (105, 116–119). Because the
presence of theVanA gene in fecal samples from allo-SCT recipients
has been associated with Enterococcus domination, antibiotics likely
contribute to the development of Enterococcus domination (119).
However, Enterococcus domination is also observed after murine
allo-SCT in which no antibiotics are used, indicating that antibiotics
are not the only reason for Enterococcus domination and that
GVHD may induce a microenvironment suitable for the
expansion of enterococci. The growth of enterococci is strictly
dependent on lactose, and the expression of lactase, a critical
enzyme for the absorption of lactose from the diet, in the
intestine is reduced in GVHD (119, 120). The reduction in lactase
in GVHD leads to ineffective absorption and an increase in lactose
availability in the gut lumen, leading to enterococcal expansion.
Importantly, the lactose intolerance allele is associated with the
persistence of Enterococcus domination after the cessation of
antibiotics. These data suggest that a lactose-free diet or lactase
administration could be used for prophylactic treatment of
Enterococcus domination, which could improve the outcomes of
allo-SCT. In addition to antibiotic administration and lactase
reduction, reduction of a-defensins, which exert potent
bactericidal effects on Enterococcus, could contribute to
enterococcal expansion after allo-SCT (107).
THE BARRIER FUNCTION OF GUT
EPITHELIAL CELLS IN GVHD

The intestinal mucosa has the complex task of acting as a
semipermeable barrier that allows the absorption of nutrients
and water while limiting the transport of potentially harmful
microbes and microbial components. Sheets of gut epithelial cells
are bound to each other via tight junctions, acting as a physical
barrier against luminal components (Figure 1). Conditioning and
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allogeneic T cell responses damage epithelial cells (Table 1),
leading to the loss of the physical barrier function of the
mucosal epithelium against bacteria and bacterial components ,
which fosters an environment prone to GVHD development
(121). Thus, epithelial growth factors have been proposed as
therapeutic options for acute GVHD (Figure 2). Keratinocyte
growth factor (KGF) promotes the proliferation and
differentiation of epithelial cells. It was suggested that ISCs are
also supported by KGF; however, whether KGF protects ISCs
against GVHD has not been explored using specific ISC markers,
such as LGR5 (122, 123). Although it has been reported that KGF
ameliorates murine gut GVHD (124, 125), human recombinant
KGF did not demonstrate significant beneficial effects on the
incidence and severity of GVHD in randomized clinical trials
(126–128). Although the reason for this discrepancy between
preclinical and clinical studies is not fully understood, it has been
suggested that KGF could exert more potent anti-GVHD effects
in recipients conditioned with TBI alone than in those
conditioned with TBI in combination with cytotoxic agents; the
latter strategy is used in the clinical setting (126).

Glucagon-like peptide 2 (GLP-2) is another growth factor of
gut epithelial cells, and administration of a GLP-2 analog
protects ISCs against irradiation-induced injury (129). GLP-2-
producing enteroendocrine L cells are targeted by GVHD, and
reduction of L cells in the patients’ colon is associated with worse
outcome after allo-SCT. Because GLP-2 is inactivated by DPP-4,
a DPP-4-resistant GLP-2 analog, teduglutide, was tested for a
GVHD prophylaxis. Peritransplant administration of teduglutide
protected ISCs and Paneth cells against GVHD, and prolonged
survival after mouse allo-SCT (9). Furthermore, GLP-2 and
GLP-2 analogues enhance the expression of tight junction
molecules such as claudin-4, possibly enhancing intestinal
barrier function in GVHD (9, 130). A clinical trial in which
teduglutide is tested for treatment of short bowel syndrome
(NCT04733066) is ongoing, and future clinical studies
are required to test if teduglutide could protect patients
against GVHD. Interestingly, a small-scale phase II study
demonstrated that peritransplant administration of high-dose
sitagliptin, a DPP-4 inhibitor, prevented the onset of acute
GVHD (131). Although it is most likely that DPP-4 inhibition
prevents GVHD by suppressing donor T cell activation (132),
DPP-4 inhibition may mitigate damage to the intestinal
epithelium by inhibiting GLP-2 degradation (133). The impact
of DPP-4 inhibitors on GVHD-induced damage to gut epithelial
cells needs to be clarified in future studies.

In rodent models of radiation colitis, administration of EGF
enhanced gut epithelial regeneration (134, 135). In a phase I
clinical trial, it has been shown that administration of a urinary-
derived human chorionic gonadotropin (uhCG) agent
containing abundant EGF was safe and possibly effective for
the treatment of high-risk or steroid-refractory acute GVHD
(136). This agent may improve GVHD via EGF-induced
protection of gut epithelial cells, while the Treg expansion
observed after administration of this agent could contribute to
GVHD suppression, too. This inexpensive and commercially
available uhCG agent will be studied in phase II and III trials.
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In mouse GVHD, the TNF-a/MLCK210 axis increases tight
junction permeability to larger molecules (137). IFN-g also
regulates tight junction permeability (138). Thus, GVHD
actively increases permeability through tight junctions, which
promotes the absorption of bacterial components, further
recruiting donor T cells and propagating GVHD (137).
Prevention of increase of tight junction permeability could be
another prophylactic strategy against GVHD.

Loss of commensals in intestinal microbiota after allo-SCT
leads to the reduction of bacterial metabolites which contribute to
maintenance of tissue homeostasis. Among these metabolites,
butyrate is mainly produced by commensal anaerobes such as
Clostridia and Blautia, and mitigates harmful immune reactions
by promoting differentiation of regulatory T cells (139).
Microbiota-derived butyrate is also taken up by intestinal
epithelial cells through G-protein coupled receptor, GPR43 and
serves as a major energy source of intestinal epithelial cells.
Butyrate acts as a histone deacetylase (HDAC) inhibitor and
promotes tricarboxylic acid cycling, improving integrity of barrier
function of intestinal mucosa (140, 141). Thus, dysbiosis with the
reduction of butyrogenic bacteria reduces butyrate in the
intestinal epithelial cells and impairs the resilience of the gut
epithelium after allo-SCT (142). Probiotics containing
butyrogenic bacteria or prebiotics containing butyrogenic fibers
and starch are promising therapeutic options against mouse and
human GVHD (140, 143). The urinary levels of 3-indoxyl sulfate
(3-IS) are positively correlated with the abundances of
Lachnospiraceae and Ruminococcaceae in the gut microbiota,
and higher levels of urinary 3-IS predicts better survival after
allo-SCT. Although the direct role of 3-IS in GVHD remains to be
clarified, 3-IS could act as a ligand for aryl hydrocarbon receptor,
the critical receptor for maintenance of intestinal epithelial barrier
function and production of AMPs (144–146).
THE ROLE OF THE GUT MUCUS LAYER
IN GVHD

The intestinal mucus layer constitutes a critical barrier that
segregates millions of microbes and environmental antigens in the
gut lumen from the host immune system (Figure 1). The mucus
layer serves as the first line of innate defense, and gel-forming
mucins secreted by goblet cells form the basic scaffold of the mucus
layer. Mice lacking theMuc2 gene, encoding the major gel-forming
mucin in the intestine, are devoid of mucus layers and prone to
developing severe colitis, suggesting that direct contact between
luminal bacteria and the intestinal mucosa triggers inflammation
(147, 148). The large intestine has a system with two mucus layers;
the inner mucus layer is enriched with antimicrobial molecules
(AMMs), such as Ly6/Plaur domain-containing 8 (LYPD8), and
devoid of bacteria, suggesting that the mucus layer also acts as a
chemical barrier against luminal bacteria (149, 150).

As noted above, GVHD-induced Paneth cell injury and
lactose malabsorption together with other factors, such as
antibiotic administration and induction of total parenteral
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nutrition, lead to intestinal dysbiosis after allo-SCT. In such a
situation, the mucosal barrier must act as the final line of defense
against pathogenic bacteria expanding in the gut lumen.
However, GVHD leads to a reduction in intestinal goblet cells,
which results in disruption of the mucus layer due to its rapid
turnover (Figure 2 and Table 1); the mucus layer is renewed
every 1 to 2 hours by newly produced mucus from goblet cells
(151–153). Recently, we studied the role of goblet cells and the
inner mucus layer in the pathophysiology of acute GVHD using
mouse models of acute GVHD (2). First, we confirmed that
goblet cells were profoundly and persistently reduced in the
colon after allo-SCT, which led to disruption of the colonic two-
layered mucus system in allogeneic recipients in association with
enhanced bacterial translocation, elevated plasma levels of
proinflammatory cytokines, and exacerbation of GVHD.
Although the mechanism by which GVHD targets goblet cells
remains to be clarified, it is possible that goblet cells are reduced
due to GVHD-induced depletion of ISCs considering the rapid
turnover of goblet cells (3 to 7 days) (154). In the steady state and
after parasite infections, ILC2s produce growth factors of goblet
cells, such as interleukin 13 (IL-13), in response to interleukin-25
(IL-25) secreted from Tuft cells (17, 18). We found that
pretransplant administration of IL-25 expanded goblet cells
that persisted after GVHD, preventing bacterial translocation,
elevation of proinflammatory cytokines, and exacerbation of
GVHD (2). Conditioning TBI and chemotherapy lead to
prolonged depletion of ILC2s in mice and humans (3, 4),
which could further reduce goblet cells or impair regeneration
of these cells. Bruce et al. showed that donor ILC2 infusion
promotes IL-13 production by ILC2s and enhances the survival
of donor myeloid suppressor cells, suppresses donor T cell
production of proinflammatory cytokines, and reduces GVHD
(3). Although this study demonstrated that transfer of donor
ILC2s improves intestinal epithelial integrity, the impact on
goblet cells was not addressed. Deficiency of NOD-like
receptor family pyrin domain-containing 6 (NLRP6), the
critical molecule for goblet cell secretion of mucus, in
nonhematopoietic cells of recipients mitigates goblet cell injury
after allo-SCT and ameliorates intestinal GVHD, suggesting that
NLRP6 is another target molecule for protection of goblet cells
after allo-SCT (155).

LYPD8 is produced by enterocytes in the colon and enriched
in the inner mucus layer (149). LYPD8 binds to flagellated
bacteria such as Escherichia coli and prevents bacterial
translocation by inhibiting bacterial motility. Based on these
findings, we studied the protective role of LYPD8 in murine
GVHD using LYPD8-deficient mice as recipients (2). First, we
found that disruption of the inner mucus layer in allogeneic
recipients led to disappearance of the LYPD8-rich layer in the
mucus layer. Next, we found that bacterial translocation was
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dramatically enhanced in LYPD8-deficient recipients compared
to WT recipients after allo-SCT, in association with exacerbation
of GVHD. Furthermore, goblet cell expansion using IL-25 did
not ameliorate GVHD in LYPD8-deficient recipients, suggesting
that the mucus layer containing LYPD8 is critical for goblet cell-
mediated GVHD suppression (2).
CONCLUDING REMARKS

The discovery of specific markers for tissue stem cells has
enabled us to study the fate of tissue stem cells in mouse
GVHD, and we found that ISCs and HFSCs are targeted by
GVHD. Furthermore, niche components that support tissue
stem cells are also damaged after allo-SCT, likely inhibiting the
recovery of tissue stem cells after GVHD-mediated injury.
Emerging evidence also indicates that human and mouse
GVHD targets specific epithelial populations, such as Paneth
cells, L cells, and goblet cells, resulting in disruption of tissue
homeostasis (Figure 2 and Table 1). Strategies to promote
recovery of tissue stem cells and maintenance of the tissue
microenvironment are promising adjuncts to standard
immunosuppressive GVHD prophylaxis and treatment, which
may enable the separation of GVHD and graft-versus-
leukemia effects.

There remain many unanswered questions in this field.
Although the existence of LGR5+ ISCs is also demonstrated in
the human intestine, the fate of LGR5+ tissue stem cells in the
intestine and skin after human allo-SCT remains to be clarified
(156). The role and fate of BEC stem cells need to be studied both
in human and mouse liver GVHD. Furthermore, the role of tissue
stem cells in pathophysiology of chronic GVHD has not been well
studied, and studies about intestinal dysbiosis in chronic GVHD
has only just begun (157). Although it has been shown that
protection of intestinal stem cells, Paneth cells, or goblet cells
represents a promising anti-GVHD treatment, these strategies
have been tested only in mouse models of GVHD in a
prophylactic manner. It should be tested if these strategies are
also useful for treatment of established GVHD.
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