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1 | INTRODUCTION

The medical field is becoming inundated with a rapidly growing se-
lection of tools to treat cancer, including the new suite of cytotoxic
drugs, molecular-targeted drugs, and immune checkpoint inhibitors
used to complement chemotherapy and radiotherapy. Although
chemotherapy regimens have improved considerably in recent years
and remain a mainstay treatment choice, there is still large variabil-
ity in the efficacy and toxicity of these regimens among individual
patients, along with physical and mental distress, decreased patient
quality of life (QOL), and a varied set of typical adverse drug reac-
tions (ADRs).%? While it is of course preferable to select drugs that
produce the maximum therapeutic effect with minimal ADR, such
stratified treatment for patients with cancer is still rudimentary, and
tailoring therapy to each individual patient, in what is commonly

(ADRs). However, molecular-targeted drugs can still cause characteristic ADRs that,
although rarely severe, can be life-threatening. Therefore, it is becoming increasingly
important to be able to predict which patients are at risk of developing ADRs after
treatment with molecular-targeted therapy. The emerging field of pharmacogenetics
aims to better distinguish the genetic variants associated with drug toxicity and effi-
cacy to improve the selection of therapeutic strategies for each genetic profile. Here,
we provide an overview of the current reports on the relationship between genetic

variants and molecular-targeted drug-induced severe ADRs in oncology.

adverse drug reaction, molecular-targeted drug, pharmacogenetics, polymorphism, precision

referred to as “personalized or precision medicine,” is still somewhat
based on trial and error.

In recent years, there has been significant progress in the field
of pharmacogenetics, which aims to identify the genetic variants
associated with toxicity and drug response. This, in turn, allows phy-
sicians to select a more targeted therapeutic strategy to suit the ge-
netic profile of each patient (Figure 1).> Pharmacogenetics follows
2 main approaches: (1) the candidate gene approach and (2) the ge-
nome-wide approach. In the candidate gene approach, genetic as-
sociation studies are carried out on specific genes that are thought
to be related to drug metabolism (pharmacokinetics: PK) or drug
response (pharmacodynamics: PD). These genes of interest are pre-
cisely targeted, with assays conducted to ascertain the involvement
of these genes in particular disease states or phenotypes. The ge-

nome-wide approach, conversely, is much less specific, with various
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FIGURE 1 Schematic representation of the use of genetic
profiles for personalized therapy. Pharmacogenetics contributes to
select a more targeted and low-risk therapeutic strategy

genomic interrogative tools, such as whole-exome or whole-genome
sequencing, used to scan the genome to identify genetic variants,
such as single nucleotide polymorphisms (SNPs), insertions/dele-

tions, or copy number variations, that may be linked with various

conditions.*> These genome-wide investigations tend to be large-
scale studies, whereas the candidate gene approach tends to hone in
on a few genes involved in a specific pathway or cellular mechanism.
Both approaches, however, provide insight into the genetic basis of
drug efficacy and toxicity; albeit, the results, at times, can be unpre-
dictable and often overlap.

One recent notable result was the association between a germ-
line polymorphism in uridine glucuronosyltransferase 1A1 (UGT1A1)
and irinotecan-induced neutropenia.® Irinotecan is used to treat var-
ious cancers, such as lung, gastric, and colorectal cancers. Through
detailed genetic analyses, it was revealed that patients harbor-
ing UGT1A1*28/*28, UGT1A1*28/*6 or UGT1A1*6/*6 genotypes
were likely to develop neutropenia if treated with irinotecan.’”
Neutropenia, defined as an abnormally low count of a type of neu-
trophil, can lead to a higher risk of infection. This knowledge thus
allows for the appropriate selection of patients without these geno-
types foririnotecan treatment. Similar associations have been shown
for various other drug-gene combinations. For example, a germline
polymorphism in nudix hydrolase 15 (NUDT15) is associated with
severe leukopenia or alopecia totalis in Asian persons, which are in-
duced by thiopurine drugs: purine antimetabolites that are used to
treat types of leukemia and other autoimmune diseases.®”

The use of pharmacogenetic testing in the clinical setting is still
limited to a few drugs, but genetic testing is covered by insurance
in the USA, Japan, and some other countries.”*®! In Japan, only
the aforementioned 2 genetic tests (UGT1A1 and NUDT15) are cov-
ered by insurance to avoid or predict the likelihood of the patient
developing severe ADRs in response to cancer treatment. At pres-
ent, none of the genetic tests for molecular-targeted drug-induced
severe ADRs are covered by insurance. Therefore, it is becoming
increasingly important to identify variants associated with drug
response and toxicity for the plethora of clinically available drugs
to improve treatment safety and to help physicians select the best
treatment strategy in medical decision making. This review summa-
rizes the current reports on the relation between genetic variants

and molecular-targeted drug-induced severe ADRs in oncology.

2 | MOLECULAR-TARGETED THERAPY
AND ADVERSE DRUG REACTIONS IN
ONCOLOGY

Molecular-targeted drugs are a newer type of anticancer drug that
have been used to treat cancer since the late 1990s.1? The more re-
cently developed molecular-targeted drugs are based on tumor mo-
lecular profiling, and this has led to a marked change in the concept
of treatment selection among patients with cancer.*® These drugs
are designed to interfere with the expression of genes (proteins)
that are frequently overexpressed or mutated in cancer cells, and
thus these drugs are considered to attack cancer cells specifically,
thereby leading to fewer ADRs.™ However, in some cases, there are
specific ADRs that depend on drug-targeted molecules and signaling

pathways. Severe ADRs, such as cardiotoxicity and interstitial lung
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TABLE 1

Effect on

PK/PD for

Odds ratio

trastuzumab

Definition of cardiotoxicity

(95%Cl) P-value

Alleles

Approach Gene Variant

N

Ethnicity

Reference

NR

LVEF < 45% or LVEF < 50% with an

6.00E-06

4.46 (2.30-8.47)

C>A

Japanese 481 GWAS Intergenic rs9316695

Nakano

absolute decrease of 10% from baseline

etal®*

NR

8.88E-05

5.48(2.21-13.69)

G>A
C>T
T>C

rs28415722

rs7406710

Intergenic

NR

1.07E-04
1.42E-04
1.60E-04
5.60E-04

6.64 (2.19-27.01)
3.20(1.70-6.23)

Intergenic

NR

rs11932853
rs8032978

Intergenic

NR

5.83(2.30-13.51)

13.73

A>G

Intergenic

EYS

NR

>10% decrease of LVEF compared with

before trastuzumab treatment

T>C

rs139944387

WES

Japanese 243

Udagawa
etal®®

(4.27-44.21)

Abbreviations: GWAS, genome-wide association study; LVEF, left ventricular ejection fraction; NR, not reported; PK/PD, pharmacokinetic/pharmacodynamic; WES, whole-exome sequencing.
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*Target molecule of trastuzumab.

disease (ILD), although not as common, can be life-threatening, and
itis important to be able to predict which patients have a high-risk of
developing such complications before commencing therapy by iden-
tifying how these drugs lead to ADRs through pharmacogenetic and
pharmacodynamic analyses. Next, we focus on the pharmacogenetic
associations established to date for some of the more frequently
used anticancer agents.

3 | PHARMACOGENETICS OF ADRS
3.1 | HER2 inhibitor: Trastuzumab

Trastuzumab (Herceptin) is a humanized monoclonal antibody
that is used to treat human epidermal growth factor receptor
(EGFR) type 2 (HER2)-positive cancers. Trastuzumab binds to
the extracellular domain of HER2, and prevents the activation
of HER2 signaling, inducing antibody-dependent cellular cyto-
toxicity (ADCC).2> However, one of the most serious side ef-
fects of trastuzumab is cardiotoxicity, with approximately 5% of
patients developing left ventricular ejection fraction decline.r’
As a result, there has been significant focus on the gene encod-
ing HER2, Erb-b2 receptor tyrosine kinase 2 (ERBB2), as a means
to identify polymorphisms associated with trastuzumab-induced
cardiotoxicity. In particular, the germline lle655Val polymorphism
is associated with trastuzumab-induced cardiotoxicity in White
patients.’820 Cells expressing the lle655Val polymorphism show
higher growth capacity and increased sensitivity to trastuzumab in
vitro.X® Similarly, the germline polymorphism Pro1170Ala in ERBB2
is also a predictor of trastuzumab-induced cardiotoxicity.?%?2
However, these particular SNP-based associations remain conten-
tious among White populations, and have not been confirmed in
Japanese patients.2>?* This discrepancy may be in part due to dif-
ferences in the definition of cardiotoxicity among studies (Table 1)
or interethnic differences in allele frequency.?®

A genome-wide association study (GWAS) in a White popu-
lation identified germline SNPs in numerous other genes as po-
tential genetic markers of trastuzumab-induced cardiotoxicity:
rs55756123 in LIM domain binding 2 (LDB2); rs10117876 in BMP/
retinoic acid-inducible neural-specific 1 (BRINP1); rs707557 in
RAB22A, member RAS oncogene family (RAB22A); rs77679196 in
transient receptor potential cation channel subfamily C member
6 (TRPC6); rs7698718 in long intergenic non-protein coding RNA
1060 (LINC01060); and rs4305714 in intergenic region on chromo-
some 6p22.3 (P = 8.93 x 1078 to 7.73 x 107%).%° In another GWAS
study, 5 germline loci (rs9316695 on chr13q14.3, rs28415722 on
chr15qg26.3, rs7406710 on chr17q25.3, rs11932853 on chr4q25,
and rs8032978 on chr15g26.3) were associated with trastuzum-
ab-induced cardiotoxicity among a Japanese cohort (P = 6.00 x 107
to 1.60 x 1074 odds ratio (OR) = 3.20 to 6.64). Using these 5 SNPs,
a predictive scoring system was designed and shown to be capable
of predicting the risk of cardiotoxicity prior to trastuzumab therapy
(P=7.82x 10712
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Finally, some rare germline genetic variants have been analyzed
in a Japanese population following treatment with trastuzumab, and
a possible association between trastuzumab-induced cardiotoxicity
and rs139944387 in Eyes shut homologs (EYS) has been reported
(P=5.60 x 1074 OR = 13.73).2°

3.2 | EGFR inhibitor: Gefitinib and erlotinib

EGFR is a cell-membrane receptor tyrosine kinase. EGFR signaling
is frequently activated in cancer through somatic mutations in the
coding sequence of the EGFR gene or following overexpressing of
the receptor.?® Thus, EGFR has long been an attractive target for
cancer treatment, and has incited the development of a range of
antibodies and inhibitors. Gefitinib (Iressa) and erlotinib (Tarceva)
are 2 well characterized drugs that selectively inhibit EGFR tyros-
ine kinase.?”?® However, EGFR is also expressed in normal tissues
and plays an important role in cell proliferation, differentiation, and
other aspects of tissue development.29 As such, EGFR tyrosine ki-
nase inhibitors (TKIs) also result in ADRs in treated patients.

Several studies have sought to investigate associations between
germline genetic polymorphisms in EGFR and the typical ADRs that
develop in response to EGFR-TKI treatment. The simple sequence
CA repeat in intron-1 of the EGFR gene is associated with EGFR

mRNA expression and protein levels?¢-3°

and patient responses to
gefitinib (eg, patients harboring shorter lengths of germline CA re-
peat showed improved progression-free survival).>*%2 However,
there have been no reports of a significant association between this
polymorphism and skin or gastrointestinal toxicity.??*3% In con-
trast, in an Italian cohort, 3 different EGFR germline polymorphisms,
-216G>T, -191C > A, and R497K, were associated with gefitinib-in-
duced grade 2 2 diarrhea (P < .01; P <.001; and P =.02, respectively)
but not with grade 2 2 skin rash (P =.31, .99, and .99, respectively).33

Various other studies have explored the pharmacogenomics of
EGFR inhibitors with genes involved in drug transport and metabo-
lism. Whereas the germline polymorphism rs2231137 in ATP binding
cassette subfamily G member 2 (ABCG2) was significantly associated
with skin rashes (P = .046) in a Japanese population, both germline
polymorphisms rs1045642 in ABCB1 and rs2231142 in ABCG2 were
not.%® In a Chinese population, associations were found between er-
lotinib-induced ADRs (eg, skin rash and/or digestive tract injury) and
the germline polymorphisms rs1064796 in cytochrome P450 family
4 subfamily F member 11 (CYP4F11) and rs10045685 in UDP gly-
cosyltransferase family 3 member A1 (UGT3A1) (P = .003 and .017,
respectively).®’

One of the most severe ADRs is drug-induced ILD (DIILD), with
an extremely high mortality rate.®® Although pharmacogenetic stud-
ies for EGFR-TKI-induced ILD are limited, interethnic differences in
its frequency exist between Japanese (1.6% to 4.3%) and non-Jap-
anese (0.3% to 1.0%) populations.®® Such interethnic differences
may indicate that, although a drug regime will work for 1 cohort,
it may not work or may work differently in another cohort, poten-

tially resulting in unpredictable ADRs.? In a case-control association

Cancer Science NI e

study, whole-genome sequencing was performed on germline DNA
samples from 13 Japanese patients with lung cancer and EGFR-TKI-
induced ILD (compared with population controls).*® Although 7 sin-
gle nucleotide variants (SNVs) (rs75399069, rs417168, rs442281,
rs17690253, rs184448987, rs10165147, and rs1348851) showed
possible associations with ILD (P = 2.39 x 107 to 8.59 x 107,
OR = 6.06 to 154.04) (Table 2), no SNVs reached a significance level
because the sample size was too small.

3.3 | Multikinase inhibitor: Sunitinib

Sunitinib (Sutent) is a small-molecule multikinase inhibitor that tar-
gets a range of receptor tyrosine kinases, including vascular en-
dothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3),
platelet-derived growth factor receptors (PDGFRa and PDGFRB),
Kit receptor, Fms-like tyrosine kinase-3 receptor (FLT3), and the
receptor encoded by the ret proto-oncogene (RET).** Multikinase
inhibitors like sunitinib are known to cause diverse ADRs, includ-
ing liver injury, hypertension, diarrhea, mucositis, myelotoxicity, and
hand-foot syndrome.*? These ADRs can lead to treatment delays
(38% of patients), dose reduction (32%), and treatment discontinu-
ation (8%).*® Asian patients have been noted to have a higher inci-
dence of severe sunitinib-induced toxicities compared with White
patients.***°

Several previous studies have reported associations between
SNPs in various genes that are related to the PK and PD of sunitinib,
and sunitinib-induced ADRs (Table 3).4652 | particular, in Japanese
patients with severe ADRs, the germline polymorphism rs2231142
in ABCG?2 is significantly associated with grade = 3 thrombocytope-
nia (P = 8.41 x 1073, OR = 1.86)°%; whereas, in Korean patients with
severe ADRs, the same germline polymorphism is associated with
grade = 3 thrombocytopenia (P = .04, OR = 9.90), grade = 3 neu-
tropenia (P = .02, OR = 18.20), and grade > 3 hand-foot syndrome
(P = .01, OR = 28.46) (Table 3).>* Two studies with White patients
found associations between the germline polymorphism rs4646437
in CYP3A4 and grade = 3 hypertension (P = .021, OR = 2.43)* and
any toxicity at grade = 3 (P = .03, OR = 0.27).%¢

3.4 | Vascular endothelial growth factor (VEGF)
inhibitor: Bevacizumab

Bevacizumab (Avastin) is a humanized monoclonal antibody that
targets VEGF and blocks VEGF binding to its receptors.”” VEGF is
a key factor that induces vascular endothelial cell proliferation and
migration, and tumor neovascularization. Whereas VEGF inhibition
primarily affects angiogenesis of tumor cells leading to tumor cell
death, it can also result in ADRs. Regardless of grade, ADRs asso-
ciated with bevacizumab treatment include hypertension, hemor-
rhage, and proteinuria.’® Severe ADRs, such as hemorrhage and
gastrointestinal perforation, can result in death. Pharmacogenetic

studies performed to date have mainly focused on the association
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of bevacizumab with hypertension, which is considered the most

[a] o (0] 9] <
a 5 5 5 & common bevacizumab-induced ADR. The germline polymorphism
X o 8a 8o 8 o 2
% E SE ZE g2E E rs2010963 in VEGFA, which encodes for VEGF, has been linked with
g E ; S ; I ; = 2 thrombo-hemorrhagic events (P = .0044, risk allele: C),%’ any toxicity
" (2] w wv
g g % o ED ke .ED o "2 S at grade = 1 (P = .012, risk allele: 0),%% and grade = 3 hypertension
(] =
. o (P = .031, risk allele: G).®* However, the risk alleles of these studies
o
o are inconsistent, and the underlying mechanisms of the association
o~ o~ I o~ o~ s
o E E E Q E o between rs2010963 polymorphism and bevacizumab-induced ADRs
i w —
[ o o o o o c .
> o S s} 1 o 5 remain unknown.
. o ¥ o « S Germline polymorphisms rs1799983 and rs2070744 in nitric
S
< _ < ® g %‘ oxide synthase 3 (NOS3) are associated with grade > 3 hypertension
o ) R R
. % S Z .: o o and proteinuria (P = .0002),°% and grade = 1 proteinuria (P = .004),°®
.2 = © o
® = 3 N < S g 2 respectively. These 2 SNPs are known to be related to nitric oxide
" O \ > o = e K . ) . . .
é &\: 3. § 8 2;_ o f! ® N 2 (NO) production, which plays an important role in the regulation of
0N o o ! 5] . .
02 « - o N S} é vascular tone, and therefore might be associated with bevacizum-
g; ab-induced ADRs through the inter-individual differences of NO
‘é production. In other candidate gene studies, the germline polymor-
$ < < < < < % phism rs1129660 in RB1-inducible coiled-coil 1 (RB1CC1), an auto-
— o
2 A A A A A 5 hagy-related d th li | hi 9381299
= 5 phagy-related gene, an e germline polymorphisms rs
< O (@] @] (G O]
,5 and rs834576 found upstream of the heat shock protein 90 alpha
:‘;“ family class B member 1 (HSP90AB1)—a NO signaling related gene—
§ have been reported as hypertension-related genes for bevacizumab
8 (P =.001 to .03).5%%° Finally, in a GWAS, a germline polymorphism
— T
g g g § § % 8 rs6453204 in synaptic vesicle glycoprotein 2C (SV2C) was iden-
-~ —_ O
S 5 » bt 3 3 L o< tified and validated to be associated with grade = 3 hypertension
BN N N ) ) 0 =
s & o9 9 3 3 g3 (P = 6.00 x 1078 t0 3.70 x 1072, OR = 2.2 to 3.3)° (Table 4) in re-
> ¢ ¢ ¢ g o > 2
§ 2 sponse to bevacizumab treatment.
© © o .©
< < o O
N o~ o X X a9
o O Q O ) N <c 9
c O O o aQ a =R
o 0 @ @ > > s o
0O < < < O @) Qa
= T .
g 9 3.5 | Immune checkpoint inhibitor: Nivolumab
e T
) - 33
Al [sp) o
5 - = g g The anticancer mechanism and ADRs of immune checkpoint in-
& L = @ s 3
) ) o (,3 2)' ; 9 = hibitors (ICls) obviously differ from those of cytotoxic anticancer
Py A o0 @ < L 2 0o
S L Ko ° e % v 3 drugs or other molecular-targeted drugs. ICls are relatively new
S 3 c o Ky c g o
° ) qé. %” g e < i = drugs, and thus pharmacogenetic studies that characterize im-
> o IS < .
2 2 > 2 g @ s R & mune-related adverse events (irAEs) for ICls are few. One example
1<} @ 8 e (5 £ S o3
> L 3 e s s & CRP= is nivolumab (Opdivo), an ICI that targets programmed cell death
§: = 5 8§ §8 £ #38%
'g S 2 g o 3 S % E E protein 1 (PD-1), which is expressed on the surface of T lympho-
T z I = S . L
= F < 2 E G Eo cytes. Nivolumab binds to the PD-1 receptor and blocks its inter-
o— =~
= o 9 I § - § action with the ligand, thereby enhancing T cell responses against
§ é ) é ) % ) £ gci, % i cancer cells.®” A later study showed that a germline polymorphism
= w0
§ S8 S& §% 2 § = § rs2227981 in programmed cell death 1 (PDCD1), the gene that en-
o) S £ > codes for PD-1, was potentially associated with any grade irAEs in
[y £ 20
n ~ o X 3 2 3 . the exploration cohort, however these findings were not validated
z ° < 3 o D « T =2
g 'E’D 8 85 in another cohort.®® Recently, there has been an interest in the rela-
£ . 335 o € . . . .
8 5 0 <o 3 tionship between patient human leucocyte antigen (HLA) type and
2 2 c g = %_ 2 v o the appearance of irAEs. In 1 case-control association study, HLA
2 = S 8 & 55=EEo
£ é g = < c 2 E ?D %‘ S typing was performed on germline DNA samples from 11 patients
= frri = =2 o © 25X L . -
S z o $ 8 E receiving nivolumab or other ICls (pembrolizumab or ipilimumab)
S s 3 S o < 2
- o < é 3 % 5 = : who presented with pituitary irAEs (as compared with population
o 2 0 2
w 5 M £ w93 8 g 9 g % Q controls). The authors showed that HLA-DR15, B52 and Cw12 were
S [0} v = — = ™M = 0
t::_:ul wg £ ﬁ % é ;: g go i S E 3 associated with pituitary irAEs (P = .0014, .0026, and .0013, respec-
< x ¥ [a) > a © = 50 a3 . 69 . .
- < EFEsSsFdPe tively).®” Finally, case reports have alluded to a relationship between
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HLA type and ICl-induced type 1 diabetes mellitus (TLDM)”%73: pa-
tients who developed ICl-induced T1DM tended to have HLA types
(eg, DRB01*03 or 04, and DR3-DQ2; DR4-DQ8) that increase the
risk of TADM in the general population.”®”* However, these relation-

ships remain contentious and further study is warranted.”>”®

4 | CONCLUSION

Candidate gene- and genome-wide association studies have sig-
nificantly contributed to the identification of genetic variants that
could be biomarkers for severe ADRs. However, the current evi-
dence surrounding the potential use of ADR-related biomarkers
in cancer therapy is inconsistent, and there is a need to validate
and confirm the relationships between these genetic variants and
ADRs. Furthermore, the identification of ethnic-specific biomarkers
for drug response is imperative. In addition to the severe ADRs re-
viewed in this article, there are numerous other relatively common
reactions for which pharmacogenetic reports are limited or lacking.
In conclusion, we believe that pharmacogenetic studies for severe
ADRs induced by molecular-targeted therapy are essential to pro-

vide advanced precision medicine.
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