4430-4440 Nucleic Acids Research, 2009, Vol. 37, No. 13

doi:10.1093 nar|gkp422

Published online 25 May 2009

Processing of thymine glycol in a clustered DNA
damage site: mutagenic or cytotoxic

Sophie Bellon', Naoya Shikazono?, Siobhan Cunniffe', Martine Lomax" and

Peter O’Neill"*

'DNA Damage Group, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road
Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK and 2Japan Atomic Energy Agency,
Advanced Research Science Centre, 2-4 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1195, Japan

Received February 19, 2009; Revised May 1, 2009; Accepted May 10, 2009

ABSTRACT

Localized clustering of damage is a hallmark of
certain DNA-damaging agents, particularly ionizing
radiation. The potential for genetic change aris-
ing from the effects of clustered damage sites
containing combinations of AP sites, 8-oxo0-7,
8-dihydroguanine (8-0xo0G) or 5,6-dihydrothymine is
high. To date clusters containing a DNA base lesion
that is a strong block to replicative polymerases,
have not been explored. Since thymine glycol (Tg)
is non-mutagenic but a strong block to replicative
polymerases, we have investigated whether clusters
containing Tg are highly mutagenic or lead to poten-
tially cytotoxic lesions, when closely opposed
to either 8-o0xoG or an AP site. Using a bacterial
plasmid-based assay and repair assays using cell
extracts or purified proteins, we have shown that
DNA double-strand breaks (DSBs) arise when Tg is
opposite to an AP site, either through attempted
base excision repair or at replication. In contrast,
8-0x0G opposite to Tg in a cluster ‘protects’ against
DSB formation but does enhance the mutation
frequency at the site of 8-0xoG relative to that at
a single 8-0x0G, due to the decisive role of endonu-
cleases in the initial stages of processing Tg/8-oxoG
clusters, removing Tg to give an intermediate with
an abasic site or single-strand break.

INTRODUCTION

In normal aerobic metabolism, reactive oxygen species are
produced which may interact with DNA to give a variety
of types of lesion. Many of these DNA lesions are chem-
ically indistinguishable from those caused by treatment
of cells with ionizing radiations (1,2). The damaging
potential of ionizing radiation on biological materials
has been proposed to arise largely from the formation of

DNA double-strand breaks (DSBs) and clustered DNA
damage when two or more lesions occur within one or
two helical turns of the DNA by passage of a single radi-
ation track (3,4). Predictions from biophysical models of
interactions of radiation tracks with DNA indicate that
significant levels of DNA lesions are formed in clusters
and that the complexity of the clusters increases with
increasing ionization density of the radiation (4-6).
Consistent with this prediction is the increased biological
effects such as mutagenesis, carcinogenesis, lethality and
the reduced reparability of DNA DSBs with increasing
ionization density of the radiation (1,2), thereby distin-
guishing them from readily repairable endogenous
damage. Recent studies have verified that clustered
DNA damage sites are induced in mammalian cells
(7-10) and Escherichia coli (11) by ionizing radiation.
The likelihood of clustered damage sites arising endogen-
ously is low, as confirmed recently (12,13).

To prevent biological consequences of single lesions,
cells have developed pathways to repair DNA damage
(14). However, in the presence of clustered damage, the
role of the repair machinery can be complicated depending
on the complexity of the cluster. It has been hypothesized
that radiation-induced clustered damage sites are less
repairable than isolated base lesions caused by aerobic
metabolism, and are particularly harmful to cells (3,4).
Sites of clustered DNA damage induced in cells by
radiation are predicted to consist of closely associated
base lesions, such as oxidized guanine [8-ox0-7,8-
dihydroguanine (8-oxoG)] and thymine glycol [5,6-
dihydroxy-5,6-dihydrothymine or thymine glycol (Tg)]
with other types of base lesion or apurinic/apyrimidinic
(AP) sites, as verified by both in vitro and in vivo analyses
(15-17). We and others have shown using cell extracts or
purified proteins that a complex interplay exists between
different repair activities in the processing of specific
forms of base lesion within a clustered damage site,
and this interplay determines the outcome of attempted
repair (18-29).
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The mutagenic potential of bistranded clustered dam-
age sites containing a mixture of AP sites, §-0xoG or
5,6-dihydrothymine (DHT) lesions in E. coli is higher in
comparison with that of the isolated lesions (30-35). These
studies emphasize the importance of the type of lesions,
inter-lesion distance and relative orientation of lesions
within a cluster for the effective processing of clustered
damage sites in the cell. More recently it was shown that
the efficiency/abundance of the base glycosylase, such as
endonuclease 111, in E. coli also plays a decisive role in the
initial stages of processing of DHT/8-0xoG clusters,
removing DHT initially to give an intermediate with an
abasic site or single-strand break (SSB) opposing §8-oxoG
(33). However, some types of clustered damage sites may
lead to a lethal DSB during attempted repair of the site in
E. coli and mammalian cells (11,30,35-37). The generality
of the types of clusters which result in DSB or lead to
enhanced mutation frequencies detected in E. coli and
mammalian cells has now been confirmed using yeast (38).

In this study, we have examined the biological conse-
quences of the cis (5R,6S) isomer of Tg, one of the major
oxidative lesions produced by radiation in mammalian
cells (16), associated with either 8-0xoG or an AP site
within bistranded cluster DNA damage sites. To date,
Tg is a known substrate for the glycosylases, endonuclease
III (Nth) and endonuclease VIII (Nei) (39-42) and is
repaired through the base excision repair (BER) pathways
(43). However, when Tg is located directly opposite an AP
site within a bistranded cluster damage site, a substantial
delay occurs in the rate of repair of the AP site by short-
patch BER (44). This reduced efficiency is in part due to a
3-fold reduced rate of incorporation of dAMP opposite
Tg by polymerase B (44). Since Tg is a non-mutagenic
lesion but is a strong block to both repair and replicative
DNA polymerases in vitro (45-50), we report on whether
a clustered damage containing Tg when closely opposed
to either a 8-0xoG or an AP site is highly mutagenic or
potentially cytotoxic, if the cluster is converted into a
DSB. The findings significantly extend our understanding
on how different types of clusters are processed when
containing a lesion which is a block to replicative DNA
polymerases. Using wild-type and glycosylase-deficient
(fpg, mutY, nth nei and nth nei mutY) strains of E. coli,
as well as a combination of these deficiencies, we present
the first evidence showing that Tg, a block to replicative
DNA polymerases, when present in a cluster with 8-oxoG
or an AP site, dictates whether attempted repair of the
clustered site leads to either the induction of mutations
or a potentially cytotoxic DSB. Therefore, attempted
repair of the clustered damaged site containing a block
to replicative DNA polymerases may significantly influ-
ence the biological outcome of cluster DNA damage sites.

MATERIALS AND METHODS

Substrate oligonucleotides

Oligonucleotides (40-mer) containing a Tg [cis (SR, 6S)
thymidine glycol phosphoramidite, Glen Research,
Sterling, MA, USA] residue were synthesized at 1 umol-
scale on solid support using the ‘Pac phosphoramidite’
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chemistry (Pierce, Milwaukee, WI, USA) with elimination
of the S-terminal DMTr group (‘trityl-off’ mode). The
standard 1 pumol DNA cycle was used on a 392 DNA
synthesizer (Applied Biosystems Inc, Palo Alto, CA,
USA) with modification: the duration of the condensation
was increased 4 times for the modified phosphoramidite
(120 s instead of 30s for a normal nucleoside phosphora-
midite). The modified oligonucleotides were then cleaved
from the solid support and the alkali-labile protecting
groups removed by treatment with 30% ammonia
at room temperature for 4h. The residue dissolved in
TEA-3HF was left overnight. Following precipitations
with n-butanol followed by ethanol, the oligodeoxynucleo-
tides were purified by denaturing PAGE and desalted
on NAP-25 column. Mass measurement by MALDI-
TOF in the negative mode confirmed the purity and struc-
ture of the modified oligonucleotides. (In negative linear
mode, the pseudo-molecular ion found at m/z 12382.3
is in agreement with the calculated mass of 12382.1).
The cis (5R, 6S) thymidine glycol may undergo slow cis
to trans epimerization over 24h to give an equilibrium
concentration containing 87% in the original cis form
(51). To minimize the effects of epimerization, freshly pre-
pared oligonucleotides (see later) were used in the assays
reported.

The oligonucleotides (40-mer) with either uracil
or 8-0xoG modifications were purchased, HPLC purified,
from MWG Biotech (Ebersberg, Germany). The
sequences of the double-stranded oligonucleotides are
presented in Table 1. Strand 2 contains either a uracil or
8-0x0G at a fixed position (position X) opposite to a Tg at
variable positions on strand 1 (position Y). The control 1
oligonucleotide contains either uracil or 8-0xoG (position
X on strand 2). The control 2 oligonucleotide contains a
single Tg (position Y on strand 1). The nomenclature of
the relative positions of the two lesions in the clustered
DNA damage site was developed by David-Cordonnier
et al. (23). A positive or negative number refers to the
separation, in base pairs, of one lesion on strand 1 located
5" (positive number) or 3’ (negative number) to the lesion
on strand 2.

Escherichia coli strains

Isogenic strains CC104 (52), BH980 (mutY.::KanR) and
BH990 (fpg.:KanR mutY::KanR) double mutant strain
were a kind gift from Dr S. Boiteux, CEA/Fontenay-
aux-Roses, France.

Plasmid preparation

Double-stranded oligonucleotides containing a clustered
damage site were ligated into pUCI8 plasmid as pre-
viously described (32). Briefly, 20 pmol of the comple-
mentary oligonucleotides (Table 1) were annealed and
5’-phosphorylated in a forward reaction with T4 polynu-
cleotide kinase. Purified oligonucleotides (5pmol) were
ligated into the Smal site of 200 fmol pUCI8 plasmid
overnight at 16°C with T4 DNA ligase (NEB). After
dialysis using 0.025um Millipore nitrocellulose filters,
30-50% of plasmid molecules were ligated (open circular
form).
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Transformation in electro-competent E. coli

An aliquot of 50 ng of the ligation product was added to
60 ml of electro-competent bacteria in a cuvette and elec-
troporated using a Bio-Rad E. coli pulser, set at 1.8 mV.
Immediately after electroporation, 500ul of SOB was
added to the transformed bacteria which were then incu-
bated for 1h at 37°C. Transformants were selected in
Sml of LB broth containing ampicillin (100 pg/ml) at
37°C for 16 h.

Quantification of mutations of the clustered damage site

Plasmid DNA was retrieved in 50 pl of water from 1.5ml
of the overnight miniculture using a QTAGEN Qiakit-spin
miniprep kit. A 15pul aliquot of the plasmid DNA eluate
was added to 5U of BsmAI at 55°C for 16 h. The samples
underwent electrophoresis for 6 h at room temperature on
a 1% agarose gel (1 pg/ml ethidium bromide) at 4 V/cm.
Following electrophoresis, the gel image was captured
under UV light using a CCD camera. Images were ana-
lysed wusing Bio-Rad Quantity One Quantification
Software and the mutation frequency calculated as
described previously (32,33).

Sequence analysis of plasmid DNA

After the bacteria incubation in SOB (see above), an ali-
quot was removed and plated onto LB agar containing
100 pg/ml ampicillin. The bacteria were incubated at
37°C overnight and colonies were picked randomly to
inoculate Sml of LB broth containing 100 pg/ml ampicillin
and grown at 37°C overnight. The plasmid DNA was
retrieved from the bacteria and prepared for sequencing
using an Applied Biosystems Big Dye sequencing kit. The
forward and reverse primers, 5-CTTCGCTATTACGCC
AGCTG-3 and 5-GGCAGACAGGTTTCCCGACTGG
A-3', allow both plasmid strands to be copied.

Preparation of 5’-end labelled oligonucleotides

Oligonucleotide (0.2 ng) was 5'-end-labelled using 10 U of
T4 polynucleotide kinase (Invitrogen, Paisley, UK) with
25uCi [y->*PJATP (6000 Ci/mmol, 10mCi/ml, Perkin
Elmer, Waltham, MA, USA) in 20ul buffer (70 mM
Tris=HCI pH 7.6, 10mM MgCl,, 100mM KCI, 1mM
B-2-mercaptoethanol) for 30 min at 37°C. Following puri-
fication on a 12% denaturing polyacrylamide gel, the
labelled oligonucleotide was hybridized with a 2-fold
excess of the non-radiolabelled complementary strand
in Tris—sEDTA buffer at pH 8 through heating 5min at
80°C followed by cooling at room temperature over 1h.
Efficient annealing of the oligonucleotides was verified on
a 12% native polyacrylamide gel.

Preparation of an AP site

The purified double-stranded oligonucleotides which
contained a uracil residue were treated with 1U of
uracil-DNA-glycosylase (UDG) (Invitrogen, Paisley,
UK) in 100 ul buffer (10mM Tris—=HCI pH 7.5, 50 mM
NaCl, ImM EDTA) for 30min at 37°C to produce an
AP site. After ethanol precipitation, the AP site containing
oligonucleotides were used in the repair assays.

Preparation of a HAP1-SSB

The purified double-stranded oligonucleotides which
contained an AP site were treated with 25ng HAPI in
50 ul buffer 20 mM HEPES pH 7.9, 100 mM KCI, 1 mM
MgCl,, 0.2mM EDTA, 20% glycerol) for 30 min at 37°C
to produce a SSB with 3-OH and 5'-deoxyribose
5-phosphate (dRP) termini. After ethanol precipitation,
the HAP1-SSB containing oligonucleotides were used in
the repair assays.

Preparation of nuclear extracts

The nuclear extracts were prepared as previously
described (29) from Kugg-deficient xrs5 cells. Briefly, the
cells were harvested in exponential phase in a-com-
plemented minimum Eagle’s medium (Sigma-Aldrich,
Poole, UK) supplemented with 10% foetal bovine serum
(Mycoplex, PAA Laboratories, Teddington, UK),
100 U/ml penicillin (GIBCO-Invitrogen, Paisley, UK),
100mg/ml streptomycin (GIBCO-Invitrogen, Paisley,
UK) and 0.1% vr-glutamine. The pelleted cells were resus-
pended in an equal volume of buffer (10mM HEPES pH
7.9, 100mM KCI, 1.5mM MgCl,, 0.5mM DTT) and
incubated on ice for 15 min. The cells were lysed by draw-
ing the cell suspension into a 0.5 um diameter needle 10
times and the nuclei were collected by a brief centrifuga-
tion at 12000g at 4°C. The nuclear proteins were extracted
by incubation in 2/3 volume high salt buffer (20 mM
HEPES pH 7.9, 420mM NaCl, 25% glycerol, 1.5mM
MgCl,, 0.2mM EDTA, 0.5mM DTT, 0.5mM PMSF)
for 30 min with agitation on ice. Following centrifugation
for 10 min at 12000 g, 4°C, the supernatant was dialysed
twice over a total period of 16h against 11 of buffer
(20mM HEPES pH 7.9, 100mM KCI, 0.2mM EDTA,
20% glycerol, 0.5mM DTT, 0.5 mM PMSF). The protein
concentration, determined using the Bradford colorimetric
technique, was found to be 5.6 mg/ml. Aliquots of nuclear
extracts were stored at —80°C.

Repair assays

For analysis of the AP site or the HAP1-SSB BER pro-
cess, the double-stranded oligonucleotides (10000 c.p.m.,
0.75 fmol) were incubated with 1 pg of nuclear extract in
5 ul repair buffer (70 mM Tris—HCI pH 7.5, 10 mM MgCl,,
10mM DTT, 4mM ATP, 40 mM phosphocreatine, 1.6 pug/
ml phosphocreatine kinase, 0.1 mM each of dATP, dCTP,
dGTP, dTTP) at 37°C for a set time between 0 and 60 min.
The concentrations of extract had been optimized from
titration studies (data not shown). To stop the reactions,
Sul denaturing stop solution (98% formamide, 2mM
EDTA, 0.025% bromophenol blue, 0.025% xylene
cyanol) was added. The samples were then subjected to
electrophoresis on a 12% denaturing polyacrylamide gel
containing 8 M urea in 1x TBE (89 mM Tris—HCI, 89 mM
boric acid, 2mM EDTA pH 8.3) for 60min at a con-
stant power of 90 W. The dried gel was exposed to a
Bio-Rad Phosphorlmager screen for visualization of
repair products using phosphorimaging technology
(Bio-Rad, Molecular Imager FX) and quantified with
Quantity One software (Bio-Rad, Hercules, CA, USA).



When following the time dependence of repair of the AP
site or of HAP1-SSB, the intensity of the bands represent-
ing either single-stranded DNA, single-stranded DNA
with one or five bases added (before ligation; see Results
section) or rejoined DNA [ligation of the SSB following
addition of the missing base(s)] is expressed as a percent-
age of the total intensities for all bands. The efficiencies of
repair of an AP site or a HAP1-SSB contained within a
clustered damage site with Tg were compared with those
for the repair of the respective single lesions in the control
oligonucleotide. The errors represent standard deviations
of the mean from at least three experiments.

A second repair assay, using dideoxynucleoside tri-
phosphate, was performed under the same conditions as
the repair assay using deoxynucleoside triphosphate with
substitution of 10 uM ddATP for 0.1 mM dATP.

Cleavage assays for SSB analysis

The double-stranded oligonucleotides (10000 c.p.m.,
0.75 fmol) were incubated with increasing amounts of pur-
ified glycosylases, endo- or exonuclease or xrs5 nuclear
extracts in 5 pl buffer. Fpg, Nth and xrs5 buffer contained
20mM HEPES pH 7.9, 100mM KCI, 0.2mM EDTA,
20% glycerol, 0.5mM DTT, 0.5mM PMSF. Reactions
were carried out at 37°C for 30min. Exo III reaction
buffer is composed of 25mM CaCl,, 625mM NaCl,
330mM Tris—HCI, 50mM DTT and Endo VIII buffer,
10mM Tris-HCI, 75mM NaCl, ImM EDTA, pH 8.
Reactions were carried out at 37°C for 15min. To stop
the reactions, 5l denaturing stop solution (98% forma-
mide, 2mM EDTA, 0.025% bromophenol blue, 0.025%
xylene cyanol) was added. The samples were then sub-
jected to electrophoresis on a 12% denaturing polyacry-
lamide gel containing 8 M urea in 1x TBE (89 mM
Tris—HCI, 89 mM boric acid, 2mM EDTA pH 8.3) or
12% native polyacrylamide gel for 45min at a constant
power of 90 W. The dried gel was exposed to a Bio-Rad
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Phosphorlmager screen for visualization of repair pro-
ducts using phosphorimaging technology (Bio-Rad,
Molecular Imager FX) and quantified with Quantity
One software (Bio-Rad). The incision/excision efficiencies
were determined for each protein or nuclear extract, com-
paring the single lesion in the control oligonucleotides
with the same lesion within the clustered damaged site,
for the same amount of protein.

Reconstitution of short-patch BER with purified proteins

The [**P]-5'-end labelled double-stranded oligonucleotides
(10000 ¢c.p.m., 0.75fmol) were incubated for 20min at
37°C in the absence or presence of purified BER enzymes,
e.g. 10ng HAPI or 10ng HAP1 + 2ng pol B in a 10pul
reaction solution containing 80 mM HEPES pH 7.9,
10mM MgCl,, 2mM dithiothreitol (DTT), 200uM
EDTA, 4mM ATP, 800pg/ml bovine serum albumin,
40 uM ecach of dATP, dTTP, dGTP and dCTP. The reac-
tions were stopped by the addition of 10 pul denaturating
stop solution (98% formamide, 2mM EDTA, 0.025%
bromophenol blue, 0.025% xylene cyanol). The samples
were subsequently incubated at 90°C for 3min and then
subjected to electrophoresis on a 20% denaturating poly-
acrylamide gel containing 8 M urea in 1x TBE (89 mM
Tris—HCI, 89 mM boric acid, 2mM EDTA pH 8.3).

RESULTS
The mutability of clustered DNA damage in bacteria strains

A plasmid-based assay previously developed in our
laboratory (32) has been used to investigate in E. coli
the mutability of Tg-containing clustered damage sites
also containing either uracil, a precursor to an AP site,
or 8-0xoG on the opposite strand. The oligonucleotide
constructs containing either uracil or 8-oxoG are at a
fixed position in a BsmAlI restriction site and Tg at various
positions from the fixed lesion are shown in Table 1. It was

Table 1. Sequence of oligonucleotides used to generate the DNA clustered damage sites

Position Sequence Name

-5 5'-ctcttagtcaggaaYatgtctctatgctgggagcaaaggce Tg—5
3'-gagaatcagtccttatacaXagatacgaccctecgtttceeg

-1 5'-ctcttagtcaggaatatg¥ctctatgctgggagcaaaggce Tg —1
3'-gagaatcagtccttatacaXagatacgaccctcgtttceceg

+1 5'-ctcttagtcaggaatatgtcYctatgctgggagcaaagge Tg+1
3'-gagaatcagtccttatacaXagatacgaccctcgtttceg

+5 5'-ctcttagtcaggaatatgtctcta¥Ygctgggagcaaagge Tg+5

control 1

control 2

control 3

3'-gagaatcagtccttatacaXagatacgaccctcgtttceg
5'-ctcttagtcaggaatatgtctctatgctgggagcaaagge
3'-gagaatcagtccttatacaXagatacgaccctcgttteeg
5'-ctcttagtcaggaatatg¥ctctatgctgggagcaaagge
3'-gagaatcagtccttatacagagatacgaccctcgtttccg
5'-ctcttagtcaggaatatgtctctatgctgggagcaaagge
3'-gagaatcagtccttatacagagatacgaccctcgtttccg

Control AP, Control 8-oxoG
Control Tg

No damage

X represents either 8-0xoG, an AP site or a HAP1-SSB (following conversion of uracil to AP site and to a HAP1-SSB as described in Materials and
Methods section); Y represents thymine glycol. —5 and —1 indicate the positions on the complementary strand of the X base 3’ from Y base. +1 and
+ 5 are the positions on the complementary strand of the X base 5 from the Y base. Control 1 is control oligonucleotide containing ether an AP site,
a HAPI1-SSB or 8-0x0G as a single lesion. Control 2 is the control oligonucleotide containing Tg as a single lesion. Control 3 is the control
oligonucleotide containing no damage.



4434 Nucleic Acids Research, 2009, Vol. 37, No. 13

confirmed that when either 8-0xoG or Tg as single lesions
are present within the restriction site, BsmAlI, incision is
inhibited (data not shown). Mutation frequencies were
assessed from the efficiency of BsmAlI incision as described
previously (32).

Clustered damage sites containing uracil and Tg lead to
loss of colonies after transformation. Following transfor-
mation of the plasmid constructs containing uracil and
Tg in the bistranded clusters into wild-type E. coli, the
number of surviving colonies is <10-20% of that for the
corresponding plasmid constructs containing no damage
or either uracil or Tg as a single lesion (data not shown).
We have previously shown that uracil is rapidly converted
into an AP site in E. coli (32). Sequence analysis of plas-
mids obtained from the few colonies surviving showed
only a low frequency of mutation with the majority
being either loss of the adenine opposite to the site of
Tg (+1 and —5 oligonucleotides) or deletion of Tg (+5,
0 or —1 oligonucleotides).

Clustered damage sites containing 8-oxoG and Tg lead
to enhancement of the mutagenic potential of 8-oxoG. In
contrast to clusters containing U/Tg, the transformation
frequencies, i.e. the number of colonies lost is similar for
plasmid constructs containing clusters with 8-oxoG/Tg to
those with single or no damage sites in both wild-type and
mutant strains. Bistranded clusters containing 8-oxoG and
Tg do, however, lead to enhanced mutation frequencies
compared with those for either 8-0xoG or Tg as single
lesions in wild-type and particularly in mutY and fpg
mutY mutant E. coli strains as shown in Figure 1, with
the gel data shown in Supplementary Figure 1. The high-
est mutation frequencies for these clusters (37%) were seen
in the fpg mutY mutant strain. The mutation frequency

50+

457 [ wild-type
40 [T fpg mutY nul I
C I mutY null

35-. T
30+
25 ] 1

20+

154
10-

% Mutation frequency
b

5

0- T T T,

) X0 N A q'
SIS 00\/\

(@g"’ &
6{0 OO

(\0
Figure 1. Mutation frequency of the Go/Tg clustered damage site
transformed into wild type, mutY strain and fpg mutY strains of

E. coli. The types of clusters are shown along the x-axis. Error bars
display the standard errors of the mean from three experiments.

decreases with increasing separation between 8-oxoG and
Tg particularly in the mutY and fpg mutY null strains.
Since Tg is a substrate for Nth or Nei, the mutation fre-
quencies with the —1 cluster containing 8-oxoG/Tg
and either Tg or 8-0xoG as a single lesion were also
determined in nth nei and nth nei mutY mutants
(Supplementary Figure 2). The main difference seen is a
small increase in the mutation frequency with the cluster
in the triple mutant relative to that with the mutY null
strain. At present we do not have an explanation for the
mutation frequency seen with the nth nei mutY mutant
relative to that seen with the nth nei mutant for the
8-0x0G/Tg-1 cluster, as the similarity of the mutation fre-
quencies with the nth nei mutY mutant and the mutY null
strain infers that the mutations occur at 8-0xo0G.

To identify the types of mutations, plasmids were
obtained from individual colonies following fpg mutY
transformation with the +1 and —1 clustered 8-0x0G/
Tg. Those plasmids which showed a mutant band follow-
ing restriction with BsmAI were sequenced. The main
mutation seen in >95% of the individual colonies contain-
ing mutant plasmid is a G:C to T:A transversion at the site
of 8-0xoG with no mutations detected at the Tg site. A
deletion of the base pair at the site of 8-0xoG was also
detected. Following restriction of the plasmids obtained
from individual colonies with BsmA1l as described pre-
viously (33), the percentage of mutant band compared
with non-mutant band ranges from 10% to 100% due to
the presence of both incomplete and complete mutations
as shown in Supplementary Figure 3.

Repair of clustered damaged sites in vitro

Having seen reduced transformation frequencies (colony
numbers) and/or mutagenic effects of clustered damaged
sites containing Tg opposite either U or 8-0x0G in E. coli,
we wanted to investigate further the efficiency of repair of
these cluster damage sites.

Efficiency of repair of an AP site or a SSB is retarded in the
presence of Tg. To investigate whether the efficiency of
repair of either an AP site or a HAPI-SSB is affected
when present in a bistranded clustered site containing
Tg, the cluster-containing oligonucleotides were treated
with xrs5 nuclear extracts for 0—60 min. Supplementary
Figure 4A shows a representative profile from a phosphor-
imaging scan allowing each stage of BER to be monitored
over 60 min i.e. incision of an AP site (control) within
I min to a SSB, followed by addition of bases by poly-
merases and ultimately restoration of a repaired intact
40-mer. With the exception of the cluster containing an
AP site at position +1 to Tg, the time course of repair of
the AP site, following its incision to a SSB, is reduced in
the presence of Tg relative to that of the control for each
of the clusters (Figure 2A). Repair of the pre-formed
HAPI-SSB when in the cluster is also reduced
(Figure 2B, representative gel is shown Supplementary
Figure 4B) but to a greater extent than that seen with
an AP site, especially for the —1 and —5 clusters where
the efficiency is reduced by ~2.5-fold. With these latter
clusters, the initial rate of rejoining of the AP site appears
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Figure 2. The effect of Tg on the time for rejoining of an AP site (A) or a HAP1-SSB (B) when in different clustered sites following incubation with
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do not represent fitted curves.

to be independent of the presence of Tg when at positions
—1 or —5.

When ecither an AP site or HAPI1-SSB is at position + 1
to Tg in the cluster, their repair is inhibited (Figure 2A
and B). Additionally as seen in Supplementary Figure 4,
the repair intermediate (SSB+ 1 base) which should have
been formed through addition of a single base by poly-
merase(s) present in the xrs5 extracts is not detected.
Using purified polp and HAPI, it was confirmed that
HAPI incises the AP site when bistrandedly clustered
with Tg at +1 or —1 whereas polf only inserts a base
into the resulting SSB when Tg is at —1 but not when at
+1 as shown in Figure 3. This observation is consistent
with the known polymerase block of Tg (50).

Repair of either an AP site or HAPI-SSB in a bistranded
cluster with Tg occurs by both long and short-patch
BER. Oligonucleotides containing either an AP site or
HAP1-SSB as a single lesion, as previously shown using

xrs5 nuclear extract (24), or in a cluster with Tg at +5
(Figure 2A and B) repair mainly occurs via short-patch
BER as seen in Supplementary Figure 4 from the addition
of one base prior to ligation. With the cluster containing
Tg at +1, repair does not occur or is very inefficient.
In contrast, during repair of either an HAPI-SSB or
an AP site within a cluster containing Tg at —1 or —5,
the sequential addition of more than one base occurs,
representing a mix of short- and long-patch BER
(Supplementary Figure 4). To verify that addition of >1
base occurs, dATP was substituted by ddATP, which is
incorporated as the second base downstream from the
repair gap and as a consequence would lead to reduced
level of repair product by long-patch BER pathway.
Under these conditions and particularly during the
repair of the HAPI1-SSB with Tg at —1 or —5, the
SSB + 1 intermediate accumulates to higher levels within
15min than seen with the control HAP1-SSB (Figure 2C
and D) and the level of repair product at 60 min is low
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(data not shown). Using HAP1-SSB or when clustered
with Tg at +5, we verified that the majority of the
HAPI1-SSB are rejoined in cell extracts by short-patch

repair, by substituting ddATP or ddTTP for the
AP control AP/Tg =1 AP/Tg +1
HAP1 — + + = + o+ - + o+
polB - —_ + - _— + -— (e +
Band 1 —> " - -
Band3 —» - -
Band2 —» W s - - —

Figure 3. Effect of Tg on the incision of an AP site and addition of the
first base when at positions +1 and —1 in a cluster by the proteins
HAP-1 and HAP-1 + pol B, respectively.

A
Fpg protein
-1.2 (+/-0.1) _5
-1.2 (+/-0.2) —1
-2.7 (+/-0.7) +1
1.2 (+/-0.2) +5
% 4 2 2 4
Fold inhibition Fold activation
C
Nei protein
—-1.3 (+/—0.1) -5
—1.3 (+/—0.3) -1
—1.1(+/—0.1) +1
—1.2 (+/—0.1) +5
P T A
Fold inhibition Fold activation

corresponding dNTPs, the second and fifth ANTP to be
incorporated, respectively. ddATP prevents long-patch
repair and ddTTP prevents chain elongation. The differ-
ences in the levels of rejoining for HAP1-SSB or when
clustered with Tg at +5 are consistent with short-patch
repair and not chain elongation, with a contribution from
long-patch repair processes (Supplementary Figure 5).
Few, if any, HAP1-SSB are rejoined if dGTP is substituted
with ddGTP, the first base to be incorporated
(Supplementary Figure 5). All the findings with cell
extracts confirm that repair of HAPI-SSB and, to a
lesser extent, an AP site also proceeds by long-patch
BER, particularly when Tg is present at —1 and —35.

The efficiency of incision of an AP site in the presence of
Tg. As an AP site is rapidly incised by xrsS cell extracts
when clustered with Tg (Figure 2A), the dependence of
the efficiency of incision of an AP site by Fpg, Nth and
Nei glycosylases on the proximity of Tg in the various
bistranded clusters was determined and is shown in
Figure 4A—C. Only minor changes in the efficiency of inci-
sion of an AP site, compared with that for the control AP
site, occur when Tg is situated in any of the tested posi-
tions. In contrast, the incision of an AP site by E. coli
exonuclease III is impaired in the presence of an opposing

B
Nth protein
1.3 (+/-0.4) -5
1.3 (+/-0.3) -1
-2.1 (+/-0.8) +1
1.3 (+/-0.3) +5
D T B
Fold inhibition Fold activation
D
exo |l

0.8 (+/— 0.9)

-4.7 (+/—1.3)

-8.0 (+/- 3.5

0.8 (+/— 0.9)

T T 1

T T T T T T
-14 -12 -10 -8 -6 -4 -2 0 2

Fold inhibition

Figure 4. Effect of Tg on the efficiency of incision of an AP site in the different clustered sites by (A) Fpg (1 pg to 10ng), (B) Nth (1 pg to 10ng),
(C) Nei (0.05-1U) and (D) exo 1T (0.01-0.1 U) in double-stranded oligonucleotides. The fold inhibition/activation was obtained from comparison of
the concentration dependence for incision of the AP site with that for the control AP site. The error bars represent the standard deviation from three

different experiments.
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A
Nth protein 0. B
-1.4 (+/-0.6) -5
80 I
A +3
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= 20 /1
-0.4 (+/-0.1) +5 / 1
: : ‘ ; . . 0kl R
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Fold inhibition Nih (pg)
c D
Nth protein Nei protein
-5 1.9 (+/-0.8) -5 1.1 (+/-1.2)
-1 1.4 (+/-0.3) -1 1.0 (+-1.2)
+1 -4.4 (+/-1.0) +1 -1.1 (+/-0.1)
+5 2.1 (+/-0.3) +5 -1.4 (+/-0.3)
6 4 2 0 2 4 % 4 2 0 2 4
Fold inhibition Fold activation Fold inhibition Fold activation
Fpg protein
13(+/-02) -5
13(+/-02) -1
-1.7 (+/-0.1) +1
1.1 (+/-0.1) +5
T
Fold inhibition Fold activation

Figure 5. Effect of an AP site on (A) the efficiency of excision of Tg. by Nth (I pg to 1 ng) and (B) the dependence for formation of a DSB on the
concentration of Nth determined following native PAGE. Effect of 8-0xo0G on the efficiency of excision of Tg. by Nth (1 pg to 10ng) (C) or Nei
(0.05-1U) (D). Effect of Tg on the efficiency of excision of 8-0xoG by Fpg (1 pg to 10ng) (E). The fold inhibition was obtained from comparison
with the control containing only Tg (A-D) or 8-0xoG (E). The error bars represent the standard deviation from three different experiments.

Tg when at —1 or +1 (Figure 4D), consistent with previ-
ous findings (26).

Efficiency of excision of a Tg in the presence of an AP site
or 8-oxoG. We next asked if the rate of excision of Tg is
influenced by an AP site (or resulting SSB) when in a
bistranded cluster. Tg as a single lesion is not excised
from the oligonucleotide at the highest amount of Fpg
(10ng) or nuclear extracts (0.01-0.5 pg) used. With Nth,

the efficiency of excision of Tg when positioned at + 1 or
—1 to an AP site is drastically reduced by ~40-fold relative
to that of the control which contains a single Tg
(Figure 5A). In contrast, the efficiency of excision of Tg
by Nth is not affected when an AP site is at position + 5 or
—5 to Tg. This observation together with the observation
that Tg does not influence the rate of incision of an AP site
by Nth is consistent with the formation of a DSB when the
AP site/Tg clusters +5 or —5 were treated with Nth
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(Figure 5B). However, DSBs are not formed when Tg and
an AP site are separated by only one base in a bistranded
cluster (Figure 5B), reflecting the reduced efficiency of Nth
to excise Tg in these clusters.

With Nei, an AP site and Tg, but not 8-0xoG, when
present as single lesions, are removed with high efficiency
(Supplementary Figure 5). Since the formation of a DSB
was not observed when the Tg/AP site clusters were trea-
ted with Nei, it is inferred that Tg is not excised by Nei
when clustered with an AP site. The inefficient excision of
Tg by Nei was confirmed when clustered with an AP site
at any of the positions tested (data not shown).

The efficiency of excision of Tg by Nth and Nei proteins
in the presence of 8-0xoG is shown in Figure 5C and D.
The greatest decrease in efficiency of excision of Tg was
seen with Nth when 8-0x0G is present in the + 1 position
to Tg (a 4.4-fold reduction) relative to that seen for Tg
when present as a single lesion. The efficiency of excision
of Tg by Nth when 8-0x0G is present at any of the other
positions tested is only slightly modified. Similarly the effi-
ciency of excision of Tg by Nei was not affected when
8-0x0G is present at all the positions tested. Since Nei
does not excise 8-0xoG from double-strand oligonucleo-
tide (Supplementary Figure 6), it was confirmed that
DSBs are not formed after treatment of Tg/8-0xoG bis-
tranded clusters with Nei (data not shown).

Efficiency of 8-oxoG excision in the presence of Tg. The
influence of Tg on the efficiency of excision of 8-0x0G by
Fpg was determined using the oligonucleotides described
in Table 1 containing either a single 8-0xoG or §-0x0G in
a bistranded cluster with Tg. The presence of Tg at any
of the tested positions does not significantly affect the
efficiency of excision of 8-0xoG by Fpg (Figure 5E).

DISCUSSION

We have shown that Tg, a lesion which is a block to
replicative polymerases but non-mutagenic in E. coli
(45-50) enhances the mutagenic potential of 8-0xoG
when both are present within a bistranded clustered
damage site. This result suggests that the presence of Tg
has interfered with the repair of 8-0xoG, despite the
in vitro experimental data indicating that Tg does not sig-
nificantly influence the excision efficiency of 8-0xoG by
Fpg (Figure 5E). Consistent with previous observations
with DHT in a bistranded cluster with 8-0xoG in E. coli
(33), it is inferred that sequential removal of the lesions
occurs, with Tg being removed initially by Nth to give an
AP site opposing the 8-0xoG lesion. This suggestion is
consistent with our observation that the efficiency of exci-
sion of Tg by Nth or Nei is essentially unaffected by the
presence of 8-0xoG. The AP site resulting from excision of
Tg is then converted rapidly to an SSB by the associated
AP lyase activity of Nth (25,53,54). The resulting AP/
8-0x0G clustered damage substrate can be highly muta-
genic (32), since the presence of the AP site (or SSB)
retards the excision of 8-0x0G so that it persists into plas-
mid replication. Any consequences arising from the poly-
merase blocking action of Tg appear to be minimized
when in a clustered site with 8-0x0G, a finding supported

by the similar transformation efficiencies for plasmid con-
structs containing Tg only or when clustered with 8-0x0G.
Additional evidence pointing to the initial removal of Tg
from the clustered Tg/8-0x0G site comes from the obser-
vation that if 8-0x0G had been removed initially then an
AP/Tg cluster would have been formed as an intermediate.
Plasmid constructs containing Tg/AP sites bistranded
clusters lead to a drastic reduction in the number of
viable E. coli colonies due to conversion of the cluster
into a DSB or for the +1 cluster due to the replicative
polymerase block by Tg, leading to a replication-induced
DSB (see later).

Most strikingly in the present study, we see that the
frequencies of mutation for the Tg/8-o0xoG clusters are
very similar to those from our recent findings with
DHT/8-0x0G, 8-0x0G/8-0x0G (33) and AP/8-0x0G (32)
clustered lesions in the various E. coli strains, clearly sup-
porting the sequential repair model where the same key
intermediate (AP/8-0xoG or SSB/8-0x0G) is involved.
Further, the majority of the mutations occur at the site
of 8-0x0G, consistent with the initial excision of Tg
from the Tg/8-0xoG cluster. That MutY has the most
important anti-mutagenic role with Tg/8-o0xoG clusters
is consistent with the findings with DHT/8-0x0G,
8-0x0G/8-0x0G (33) and AP/8-0xoG (32) clusters. We
have also shown that bistranded clustered damage initially
consisting of Tg opposing 8-oxoG gives rise to incom-
plete mutations after bacterial processing; as previously
described for DHT/8-0x0G clusters (33). In principle,
potentially mutagenic damage on one strand of plasmid
DNA should give rise to both mutant and non-mutant
progeny, providing that damage survives until DNA repli-
cation, as discussed previously with DHT/8-0x0G clusters
(33). The proportion of each plasmid DNA strand repre-
sented in the final progeny will depend on the efficiency
with which the two strands are replicated, and on the
probability of conversion of the damage to a mutation.

In contrast to the observations with 8-oxoG/Tg clusters,
the effect of the replicative polymerase blocking action
of Tg is suggested to be reflected in the transformation
frequency of E. coli when Tg is in a bistranded cluster
with an AP site when compared with that for Tg as a
single lesion. We have confirmed using purified proteins
that Tg acts as a polymerase block when clustered with an
AP site at +1 but not at —1 (Figure 3), consistent with
the known polymerase block of Tg (50) and that the repair
of the AP site when at —1 occurs primarily through
the short-patch BER involving addition of the base into
the gap.

Since Tg does not modify the efficiency of incision of an
AP site by several glycosylases (Figure 4), the AP site is
converted rapidly into a SSB. However, the subsequent
repair of the SSB will be impaired at all tested positions
(Figure 2B). For instance, base addition was not seen
during attempted repair of the resulting SSB when Tg is
located in + 1 position due to the polymerase block of Tg
(see above). For a SSB resulting from incision of the AP
site at —1 to Tg, the rejoining of the SSB is reduced when
compared with that of a single SSB (Figure 2B), leading to
extension of the lifetime of the SSB. The AP site posi-
tioned at either +1 or —1 strongly retards the excision



of Tg by Nth (Figure 5A) and Nei, so that Tg is predicted
to persist to give a SSB/Tg intermediate. If this interme-
diate is not repaired before undergoing replication due to
lifetime extension of the SSB, the SSB-carrying strand
may be lost as previously discussed (32,33) and replication
of the Tg-carrying strand occurs until the replicative poly-
merase(s) reaches the blocking Tg, leading to plasmid loss.
As a consequence, the processing of a cluster containing
Tg and an AP site at +1 or —1 is suggested to lead to the
loss of plasmid and therefore colony loss in E. coli. When
Tg is at position —1 or +1, a proportion of the SSB may
be repaired prior to replication. However, the repair of the
SSB is only a minor pathway as only 10-20% of E. coli
colonies survive to give low levels of mutations.

Repair of the SSB is also reduced when Tg is present at
either +5 or —5 (Figure 2B). However, the presence of an
AP site, or the resulting SSB, at these positions does not
now retard the excision of Tg by Nth, so that a DSB may
be formed. Therefore, in addition to plasmid loss at rep-
lication (discussed above) colony loss may also arise
through the formation of DSB by incision of both lesions
in the bistranded cluster. The loss of colonies with the Tg/
AP site cluster +5 or —5 is consistent with the in vitro
experimental data showing that DSBs are formed when
these clusters are treated with Nth. Low transformation
frequencies have previously been seen within bistranded
clusters containing two AP sites (395).

From comparison of the repair of bistranded clusters
containing Tg with bistranded clusters containing DHT
(Byrne,S. et al., submitted for publication) opposite a
SSB or AP site, the efficiency of repair of the SSB is
reduced similarly by Tg and DHT when present on the
opposing strand in both the 3’ and 5 orientation by
nuclear extracts. However, the efficiency of the repair of
the AP site is only reduced when DHT is present 3’ to the
AP site in contrast to a reduction seen when Tg is in both
the 3" and 5 orientation except for the + 1 cluster when Tg
acts as polymerase block. Consistent with our previous
findings with clusters containing 8-oxoG with an AP site
or HAPI1-SSB (24) or DHT/AP site (Byrne et al., sub-
mitted for publication), repair of a HAP1-SSB cluster con-
taining Tg occurs by both short- and long-patch repair
and not by strand elongation involving polymerases.

The processing of radiation-induced clustered DNA
damage sites containing Tg can give rise to different out-
comes, influenced by the lesion on the opposite strand
to that containing Tg. Whereas Tg opposite to an AP
site gives rise to potentially cytotoxic lesions, 8-0xoG
opposite to Tg in a cluster ‘protects’ against potentially
cytotoxic lesions but enhances mutagenicity, particularly
at the site of 8-oxoG.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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