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Abstract: Understanding the adsorption and interaction between porous materials and protein is
of great importance in biomedical and interface sciences. Among the studied porous materials,
TiO2 and its hybrid materials, featuring distinct, well-defined pore sizes, structural stability and
excellent biocompatibility, are widely used. In this review, the use of four powerful, synergetic and
complementary techniques to study protein-TiO2-based porous materials interactions at different
scales is summarized, including high-performance liquid chromatography (HPLC), atomic force
microscopy (AFM), surface-enhanced Raman scattering (SERS), and Molecular Dynamics (MD)
simulations. We expect that this review could be helpful in optimizing the commonly used techniques
to characterize the interfacial behavior of protein on porous TiO2 materials in different applications.

Keywords: porous materials; TiO2; high-performance liquid chromatography (HPLC); atomic force
microscopy (AFM); surface enhanced Raman scattering (SERS); molecular dynamics (MD) simulations

1. Introduction

Proteins interacting with surfaces of various substrates play a pivotal role in bio-
engineering and medicine and are of fundamental importance for developing new nan-
otechnologies and designing nanomaterials for biological applications [1]. Understanding
the adsorption and interactions between porous materials and biosystems is critical in
environmental and biomedical sciences. One of the most investigated porous materials,
TiO2, has been extensively used in many industrially relevant applications ranging from en-
vironment to life sciences due to its efficient photoactivity, high chemical/thermal stability,
and low cost [2]. Although TiO2 has been intensively studied in various fields, using TiO2
in bio-related applications is much more attractive [3]. This is because TiO2 is a favorable
biomaterial for manipulating biomolecules due to its excellent biocompatibility [3], control-
lable structural properties (morphology, crystal form, chemistry), as well as its long-term
stability compared to other widely-used materials (i.e., porous silica [4], nanoporous sol-gel
arrays [5]). The first studies were reported in the 1990s owing to the use of titanium in
implants and the need to understand the interaction of biomolecules with implant surfaces
covered with oxidized titanium [6,7]. Soon afterwards, this field developed quite quickly,
and the number of publications began to exponentially increase. TiO2 interacting with
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biomolecules establishes a series of nanoparticle/biological interfaces, and their prop-
erties and process performance depend on a combination of different physicochemical
interactions. Probing and determining these various interfacial interactions allows the
development of predictive relationships between structure and properties/performance.

When these porous materials were introduced to the biological field, controlling
the interaction between porous materials and biomolecules became a challenging prob-
lem for different applications, such as bio-separation, biosensors, drug delivery, and bio-
detection [1,8]. It is widely accepted and recognized that the adsorption capacity of proteins
provides a general criterion for determining the interaction strength between the protein
and the adsorbed surfaces [9–12]. The widely and directly used approaches to control
the interactions is through controlling the adsorption capacity. However, the adsorption
capacity alone is not always a good indicator of interaction strength because the adsorp-
tion amount does not always correctly reflect effective protein surface attachment. More
in-depth understanding and characterizations of the interactions between proteins and
porous materials are needed for investigating interfacial interactions.

It is well-known that the performance of proteins separation/purification using chro-
matography mainly relies on regulating the protein interaction with related surfaces. The
retention behavior test by chromatography can qualitatively represent the interaction
strength between the protein and the solid surfaces. Thus, high performance liquid chro-
matography (HPLC) has been used as a reliable technique to study the interaction strength
of proteins with the column materials at the macroscale [13]. However, the chromato-
graphic retention time is unable to provide the information on molecular interactions at the
nanoscale [14,15], and alternative options are needed to determine the interactions at the
nano/microscale.

Atomic Force Microscopy (AFM), which possesses sensitivity at the nanoscale, can
achieve molecular resolution of adsorbed molecules and directly reflect the atomic/molecular-
level interactions [16]. This technique has undoubtedly made a considerable impact on
life sciences in characterizing and manipulating biological interfaces [16,17], and provides
both quantitative and dynamic information about protein interaction at the nanoscale [18,19].
Many studies have been conducted on evaluating protein interactions on a biomaterial
surface [20–25]. The AFM-measured interaction force is related to the effective contact area
between the AFM-tip and the related surfaces [26]. Depending on the number of protein
molecules immobilized on the tip, it is a challenge to obtain the effective number of protein
molecules in direct contact with the surface. Thus, exploring an efficient way to quantify the
AFM-measured interaction force is of great importance.

Raman is another advanced and largely used technique for the structural characteriza-
tion of molecules by analyzing their vibrational transition spectra, which has penetrated to
applications in electrochemistry, catalysis, biology, materials science, and others [27–29]. To
further improve the sensitivity, surface-enhanced Raman scattering (SERS) has been devel-
oped and recognized as a sensitive analysis technique that features significantly amplified
Raman signals, enabling even single-molecule detection [30]. SERS is also a powerful
technique for obtaining the orientation and interaction of adsorbed protein on the active-
substrates through measuring the vibrational spectra of protein molecules adsorbed on the
surface [27,31]. Regulation of SERS active-substrates is often used to improve the sensitivity
and selectivity for bio-detection [30], especially for the semiconductor-based materials
used as SERS active-substrates [32–35] with a low SERS intensity, for instance, structural
optimization, modification and composition. Meanwhile, adjusting the experimental con-
ditions, including pH values [36,37], temperature [38,39], and ionic strength [40,41], is
often used to regulate the interaction strength of the adsorbed proteins [42], leading to
a significant increase in sensitivity [43]. Thus, developing different ways to improve the
semiconductor-based SERS is crucial.

To gain a more quantitative description and understanding of the protein interactions
with solid-surfaces at the molecular level, theoretical studies and simulations can be used
for estimations [15,44–47]. MD simulations are an important tool for exploring the atomistic
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mechanisms involved in the adsorption process in complex biological systems [48]. In
particular, it offers a method to analyze the synergic effects of surface nanomorphology
and chemical compositions on the adsorption dynamics of proteins on nanostructured
substrates [49]. Furthermore, the MD simulations can be applied to predict the adsorptive
behavior and orientation of proteins, which provides a fundamental understanding at the
molecular level.

In this review, the research on using these typical techniques to study the protein-TiO2-
based porous material interactions at different scales was summarized and the scenarios
and scales where the interfacial phenomena play a key role were focused on. The main
techniques include high-performance liquid chromatography (HPLC) at macroscale, atomic
force microscopy (AFM) at mesoscale, surface enhanced Raman scattering (SERS) at nanoscale,
and molecular simulation (MD) at nanoscale. We intend to discuss different techniques for
understanding the protein interaction with the widely-used TiO2-based materials.

2. Materials and Methods
2.1. HPLC-Based Techniques on Biomolecule-TiO2 Interactions

The separation and purification of proteins are important for DNA sequencing, disease
surveillance, and biopharmaceutical analysis [50–54], which mainly relies on the different
interaction strengths of each protein with solid surfaces. An improved understanding of
the protein–surface interaction is critical for predicting and controlling chromatographic
separations [55–57]. The columns of HPLC are usually packed with the materials of pel-
licular or porous particles. The pellicular particles are made of polymer or glass beads
surrounded by a thin, uniform layer of silica, alumina, polystyrene-divinyl-benzene syn-
thetic or other types of ion-exchange resins. Nawrocki et al. had published a comprehensive
review as a general guide to metal oxide affinity chromatography, including a description
of pH stability, particle preparation and surface properties, as well as chromatographic
chemistry [58,59]. Due to its amphoteric nature, hydrolytic stability at extreme pH, higher
isoelectric point (pI) value than silica, TiO2 has been used as an alternative material for
column packing in HPLC [60]. Engholm-Keller et al. summarized the development of TiO2-
based chromatographic strategies for separating different biomolecules from introducing
small molecules over 20 years ago to proteomics applications in 2011 [61].

In 1990s, Kawahara et al. used TiO2 as column packing materials in HPLC to separate
biogenic substances for the first time, revealing a high resistance of TiO2 to both alkaline
and acidic eluents [62]. These porous TiO2 microspheres did further exhibit an excellent
stability under high pressure and a variety of pH conditions, making them very suitable
for HPLC applications. Chemie et al. compared the TiO2 sorbent for HPLC with silica,
alumina, and zirconia sorbent concerning its physical and chemical properties, finding
that the TiO2 sorbent enabled the separation of non-basic isomeric substance mixtures due
to the Ti-OH groups on its surface [63]. Mazanek et al. chose TiO2 as a chemo-affinity
solid phase in HPLC for the selective enrichment of phosphopeptides [64]. Wijeratne et al.
used the TiO2 nanotubes grown radially on titanium wires and the commercial beads to
separate phosphopeptides produced from complex tissue extracts of mouse liver [65]. The
results showed that the TiO2 nanotubes provide comparable efficacy for the enrichment
of phosphopeptides and have the potential to be a low-cost and practical material in
biological studies.

The structure of the material (surface area, pore size, etc.) is of great significance
for the design of anti-fouling surfaces, chromatographic separation, and immobilized
enzyme materials [6,8]. An et al. synthesized a new mesoporous TiO2 and prepared it
as the home-made chromatographic column to study the retention behavior of different
proteins [66]. Inspired by the phenomenon that different surface structures can significantly
affect protein adsorptive behavior, they also demonstrated that the different pore size of
TiO2 did alter the protein–surface interactions. They established a linearly predictive model
between the geometry structure of TiO2 and protein adsorption (Figure 1a), and combined
the chromatographic retention behavior with this model (Figure 1b). In this predictive
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model, the adsorption amount of proteins is translated into 1-dimensional interaction by
squared root processing. Meanwhile, the geometrical parameters are combined due to the
possibility of protein molecules contacting the TiO2 surface by cubic root processing. The
HPLC findings further verified and demonstrated the accuracy of the predictive adsorption
model. The results showed that the affinity for the different proteins onto TiO2 surfaces
follows the order: lysozyme > BSA > myoglobin.
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Figure 1. (a) A linearly predictive model between the geometry structure of mesoporous TiO2 and
protein adsorptive behavior. (b) HPLC measurements of each protein samples after passing through
the imprinted home-made TiO2 column. Reprinted from Ref. [66] with permission from Elsevier.

Dong et al. examined the interaction strength of protein with mesoporous TiO2 at
the macroscale under different pH conditions with the HPLC measurements. They also
investigated the effect of pH conditions on the molecular force of the protein molecule
with TiO2 to guide the HPLC measurements [42]. They found that the molecular force was
related to the effective contact area of the charged protein molecule (Figure 2A), which
further can be used directly to design the HPLC measurements by tuning the retention
behavior of the protein under different pH conditions (Figure 2B), indicating that the
retention behavior at the macroscale is related to the molecular force at the nanoscale
and the larger the molecular force, the longer the retention time. Furthermore, they also
studied the contributions of ionic strength on the protein−surface interaction, as well as
the effects on the retention behaviors of the proteins tested by HPLC [67]. They found that
the interaction between protein and TiO2 became weaker when the ionic strength is high,
and the retention behavior of the proteins by HPLC can be effectively detected under high
ionic strength, corresponding to the shorter retention time and larger peak area.
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More and more TiO2-based hybrid materials have been widely used as chromato-
graphic packing materials. Kupcik et al. reported using the amorphous TiO2 nanotubes
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(TiO2NTs) and the corresponding hybrid materials decorated with Fe3O4 nanoparticles
(TiO2NTs@Fe3O4NPs) to achieve highly selective phosphopeptide enrichment [68]. Com-
pared to those well-established TiO2 microsphere materials, the enrichment efficiency and
selectivity of TiO2NTs and TiO2NTs@ Fe3O4NPs for phosphopeptides were increased to
28.7% and 25.3%, respectively. It indicated that both TiO2NTs and TiO2NTs@ Fe3O4NPs
provided good physicochemical properties which are favorable for highly selective phos-
phopeptide enrichment. Shen et al. used the titania-coated silica core−shell hybrid compos-
ites (TiO2/SiO2) as adsorbent, and combined with a liquid chromatography−tandem mass
spectrometry for extraction and quantification of phospholipids from shrimp waste [69].
Recently, Dong et al. used the choline-based amino acid ionic liquid (IL) as the trace
additives and loaded on mesoporous TiO2 surface physically for the separation of two
highly similar proteins (size, molecular weight, pI), lysozyme and cytochrome c [70]. The
hydration properties of the ionic liquids loaded on the TiO2 surface increased as the pH
increased from 5.0 to 9.8, further weakening the protein interaction strength with the TiO2
substrates, especially for lysozyme. They also studied the retention behavior of the mixed
proteins passing through the TiO2 column using HPLC and found that the introduction of
ionic liquids (ILs) can separate the two highly similar proteins effectively.

Thus, TiO2-based materials have been introduced as a popular material for affinity
chromatography of biomolecules, where the behavior of biomolecules interacting with TiO2
materials can be adjusted effectively, and the scope of applications of TiO2-based chromatog-
raphy in separation of various biomolecules has continuously expanded and increased.

2.2. AFM-Based Techniques on Biomolecule-TiO2 Interactions

Different to the techniques that determine the interactions at the macroscale, atomic
force microscopy (AFM) has been used as an effective and popular tool to reveal the
mechanisms and investigate the interactions at the molecular level. The interaction force is
exploited to keep the distance between the tip and the sample as a constant [71]. The most
important feature of AFM is its ability to image samples in liquids, which is important for
biological studies. AFM can enable the imaging of biological interfaces from cellular to
molecular scales, indicating that it can directly visualize adsorbed proteins on different
surfaces. In addition to imaging the surfaces, AFM can be used to obtain the interaction
force between the tip and the sample by measuring the tip perpendicular to the surface
while obtaining the force-distance curves [72].

In 2000, Cacciafesta et al. studied the fibrinogen adsorption on the ultraflat TiO2
surfaces with AFM at molecular resolution [73]. The results showed that the ultraflat TiO2
surface allowed visualization at the molecular resolution of both individual fibrinogen
molecules and aggregates, while inferring a stronger interaction between the protein and
the TiO2 surface. Sousa et al. used AFM to perform the roughness and imaging analyses
before and after protein adsorption. As shown in Figure 3, the roughness results revealed
that the TiO2 surfaces exhibited a lower roughness in air than in water before protein
adsorption, which is probably due to the effect of the previously reported formation of the
gel-like TiO2 with a hydrated layer, rather than dehydrated oxides. While after protein
adsorption, the height and phase images differed in morphology and contrast from the
images on the surface without protein adsorption, and the roughness values were similar
in air and in water [74].

Li et al. prepared the laccase-immobilized bacterial cellulose/TiO2 functionalized hybrid
membrane, and the installation of both TiO2 and the functionalized hybrid membrane were
confirmed by AFM [75]. The results showed that the surface was completely covered with
laccase after the immobilization of laccase on the oxidized bacterial cellulose/TiO2. Since
TiO2 is hydrophilic and has a high surface area, laccase can be easily loaded onto its surface.
Meanwhile, the immobilized laccase showed better pH, temperature stability and reusability.
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A newly developed AFM-based single molecule force spectroscopy (SMFS) has been
established as a reliable standard method to study single-molecule interactions [76–81].
Hoffmann and Dougan published a tutorial review about the SMF, and introduced two
main operation modes for the force spectroscopy: force-extension and force-clamp [80].
They described the use of polyproteins to obtain clear mechanical fingerprints to monitor
the protein response to applied mechanical forces [80]. Ganbaatar et al. performed the
surface force analysis on TiO2 with AFM by mounting a single amino acid residue on
the AFM probe for the first time at the molecular level [82]. Force analysis on surfaces
with three different crystal orientations revealed that the TiO2 (110) surface has the unique
property of adsorbing glycine molecules, showing different characteristics compared to
the TiO2 (001) and (100). Leader et al. used the single force spectroscopy to measure the
adhesion forces between hydrophobic, aromatic and polar amino acids and TiO2 surfaces.
Compared with hydrophobic and uncharged amino acids, the aromatic and positively
charged amino acids dominate in the affinity to the TiO2 surface in this work [83].

AFM can be used to measure not only the conformational changes of proteins adsorbing
on biomaterial surfaces, but also the interaction force between the proteins and the substrates
by immobilizing the protein clusters onto the AFM tips according to the self-assembled
monolayer (SAM) methods. Vergaro et al. investigated the interactions between human
serum albumin (HSA) and different anatase TiO2 nanoparticles, and found that the adhesion
forces depended on the degree of hydrophilicity of the TiO2 substrates. Surface roughness
measurements showed that the molecules of HSA were arranged in a more globular manner
on some of the nanocrystals. For nanocrystals with smaller primary particle size, lower protein
affinity was found, which may correspond to their higher biocompatibility [84].

Although AFM can achieve a stretching of a single molecule or even measure a single
bond [78,79], the results cannot reflect the overall effects of the solid surface at the nanoscale.
This is because the solid surface, e.g., porous TiO2, with different surface structures such
as pore size and roughness, was utilized to control the protein interaction by adjusting the
effective contact area between the protein and the substrate. This indicated that the AFM-
measured interaction force is a total force which is related to the surface structure-induced
contact area. How to obtain the molecular interaction of one single molecule with the solid
surface decomposed from the interaction between the clusters and solid surface measured
by AFM is of great interest but faces a difficult challenge. Dong et al. have created a series
of works to quantify the molecular force of proteins with TiO2 surfaces by combining the
macroscopic experiment with microscopic measurements of AFM. In 2017, a new AFM-based
approach was presented for the first time by Dong et al. to determine the molecular force
between proteins and mesoporous TiO2 with different surface roughness [85]. They reported
that the molecular force was independent of the surface topography of the materials, as shown
in Figure 4. Furthermore, they also extended the study to examine the effect of pH conditions
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on the molecular force of protein molecule with TiO2 using AFM [42]. They found that the
molecular force is proportional to the pH-induced different effective diameter of charged
protein, which is mainly due to the different corresponding effective contact area of one
charged-protein molecule on the TiO2 surface.
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To improve the conductivity of TiO2, surface modification to form hybrid TiO2−carbon
materials has been an efficient strategy. These hybrid TiO2−carbon materials simultane-
ously possess both the electron conductivity of carbon and the corrosion resistance of TiO2
materials. Dong et al. found that the molecular force of protein with TiO2 measured by
AFM can be enhanced by the heterogeneous carbon modification of the TiO2 surface, as
shown in Figure 5. The stronger interaction was due to the carbon modification being able
to remove the -OH on the TiO2 surface, weaken the hydration ability, and further enhance
the hydrophobicity of TiO2, leading to a stronger interaction with protein. The molecular
force is independent of the surface roughness and structures but related to the chemistry of
the C-TiO2, especially depending on the carbon coverages on the C−TiO2 surface, and a
carbon coverage of 58.3% achieves the largest molecular interaction force [86].
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Besides the modification of the surface chemistry of TiO2, using additives to form com-
posite TiO2 substrate has been proposed as a desirable method to regulate the interactions
between the adsorbed molecules and the related surfaces. Due to their unique physico-
chemical properties, including high ionic conductivity, tunable chemical structures and
stability, ionic liquids (ILs) have rapidly been widely-used in the field of biological analysis
and protein chemistry. Meanwhile, due to their highly heterogeneous micro-compositions,
ILs can change the microenvironment to adjust the interactions [87,88]. Based on this,
Dong et al. loaded ionic liquid (IL) on the TiO2 surface to investigate the protein interfacial
interaction on the IL-TiO2 hybrid materials [89]. By quantifying the AFM-based adhesion
force, the molecular interaction forces of cytochrome c with TiO2 and IL-TiO2 surfaces were
determined. The molecular forces of protein with TiO2 for the systems, without IL, with
IL in protein solution, and with ILs immobilized on the substrate, corresponded to the
values of 1.65, 1.32, and 1.16 nN, respectively. It was shown that the molecular force was
weakened after the addition of IL due to the hydration properties of the cation and anion
of the IL.

The use of AFM has greatly advanced beyond high-resolution imaging to directly
probe biomolecular interactions. Thus, AFM provides helpful insights into TiO2-based
material design and protein-TiO2 interactions toward biological applications at the molecu-
lar level. Especially, the molecular force between the protein and the TiO2-based material
quantified by AFM through decomposing from the total adhesion forces are of great signifi-
cance. Extending this method to quantify the molecular interaction force of other molecules
is worth exploring.

2.3. SERS-Based Techniques on Biomolecule-TiO2 Interactions

SERS spectroscopy is an effective and advanced technique for detecting biomolecules,
owing to its high sensitivity to molecular structures, and is a nondestructive analysis
method. In terms of signal intensity, the active substrate plays an important role in affecting
the SERS performance. Semiconductors, i.e., TiO2, ZnO, and Fe3O4, have been paid more
and more attention to as SERS-active substrates, due to their superior properties, such as
high stability, biocompatibility, and low cost [33,90–92]. A short review published by Cong
et al. summarized the charge transfer transitions which are often the main contributors to
the enhanced SERS activities in non-metal substrates, as shown in Figure 6 [93]. Based on
the charge-transfer (CT)-induced SERS enhancement, a variety of semiconductor materials
from inorganic to organic have been developed as novel SERS substrates [94].
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Typically, as the most studied semiconductor materials, TiO2-based materials have
exhibited good SERS activity for detecting probe molecules [33,95–97]. Zhao et al. observed
the SERS performance for the first time of the molecules adsorbed on the TiO2 nanoparticles
in 2008, which is attributed to the charge-transfer mechanism of TiO2-to-molecule related to
the surface state energy level of TiO2 [96]. They also systematically investigated the effects of
different crystallinity of TiO2, pH conditions, and adsorption time on the SERS behavior and
the interactions between adsorbed molecules and TiO2 [97,98]. Subsequently, Musumeci et al.
observed strong enhancement of biologically active enediol molecules adsorbed on TiO2
nanoparticles with selected Raman active modes (Figure 7), and a molecule-to-TiO2 charge-
transfer mechanism was also proposed to explain this enhancement [33].
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However, since TiO2 is a low-conductivity semiconductor material, the detection
sensitivity of TiO2 materials for protein detection is low [99]. Thus, many works focused on
using TiO2 as a supporter of gold or silver to improve their SERS performances [100–103].
In addition to doping noble metals, the particle size, structure, surface defects, and optical
band gap of substrates have been reported to have significant impacts on adjusting SERS
performance [34,86,96–98,104,105]. Weidinger et al. prepared the TiO2 electrodes with
different nanostructures as a platform for SERS and electrochemistry [104]. The SERS
performance is ascribed to the enhanced local electric field derived from the synergistic
effect of adjacent TiO2 nanorods. The results showed that the rougher surface could
improve the SERS performance, and these nanostructured TiO2 electrodes exhibited an
excellent electric field enhancement, which was due to the high anisotropy of the TiO2
nanostructure. Yang et al. observed that the SERS enhancements of probe molecules on
TiO2 nanoparticles with different phase structures exhibit different degrees. Moreover, the
mixed crystal structure TiO2 with a suitable ratio of rutile and anatase phase is favorable to
SERS enhancement of molecules [97].

As a unique structure, TiO2 nanotube arrays have attracted more and more attention
and are used as a new kind of SERS-active substrate for protein detection, due to their
intrinsically uniform structures, high stability, and electronic properties [100–103,106–109].
Öner et al. found that the TiO2 nanotube electrodes can preserve the structural integrity
and redox behavior, and then they used these TiO2 nanotube electrodes with high biocom-
patibility and extraordinary spectroscopic properties to study the SERS performance of
cytochrome b5 [108]. A strong SERS signal of the heme unit of cytochrome b5 was observed
when the protein matrix was covalently immobilized to the TiO2 nanotube electrode. The
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higher SERS enhancement was attributed to the enhanced localized electric fields caused
by the specific optical properties of the TiO2 nanotubular geometry. Meanwhile, the SERS
enhancements generally depend on the features of the substrates, especially the surface
roughness. Dong et al. found that the rougher surface of TiO2 substrates can adsorb more
protein molecules and the SERS performance of Cyt c on TiO2 nanotubes can correlate
quantitatively with the surface roughness of the substrates [110]. Furthermore, the enhance-
ment factor (EF) is often regarded as a key standard in SERS, while accurately obtaining EF
in SERS is a long-term problem, and the main challenge is to obtain the amount of proteins
effectively excited by the laser [111,112]. In this article, the values of EFs were successfully
calculated by combing the AFM-measured adhesion force and the quantified molecular
force, further revealing that the effective amount of adsorbed proteins contributed directly
to the protein interaction with the related electrode surfaces, as shown in Figure 8.
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Recently, Dong et al. proposed an effective and new method to optimize the topogra-
phy and structure of TiO2 nanotube arrays through controlling the fluoride contents in the
electrolyte. A significant enhancement of the SERS performance of Cyt c on these optimized
TiO2 nanotube arrays was obtained, demonstrating the importance of the structural in-
tegrity of the nanotubular on achieving excellent SERS performance in the trace detection of
proteins, as shown in Figure 9 [113]. This is because the fluoride contents in the electrolyte
can affect the sizes of cracks and the tube ruptures of TiO2 nanotube arrays. It was found
that the 0.2 wt % fluoride content can effectively provide the excellent and flat topography
of TiO2 nanotube arrays. Meanwhile, the results also showed that the interaction force
between protein and TiO2 nanotubes increased with decreasing the fluoride contents. They
also found that the values of EF increased with the increase of the pore size of the TiO2
nanotube arrays, which is generally a key factor affecting the SERS performance [114–117].
It indicated that the structure and topography can affect not only the properties of TiO2
nanotubes, but also the interaction between the proteins and TiO2.

Besides using the pure TiO2 materials, Rajh et al. modified the semiconductors (e.g.,
TiO2, Fe3O4, et al.) with enediol ligands and found that the intensity of the SERS enhance-
ment depends on the electron density of the ligands, the number of surface binding sites,
and the dipole moment. The SERS performance was observed for the bioconjugated system,
and the potential was further investigated for the system in developing Raman-based
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in vivo and vitro detection [118]. Zhao et al. prepared the TiO2/ZnO semiconductor het-
erojunction and found that the charge-transfer efficiency and SERS performance can be
significantly improved, where an EF of 105 can be achieved for a non-resonance molecule
with the lowest detection concentration down to 10−8 M [119]. Das et al. prepared porous
Ag–TiO2 film with nanocaged l structures as sensitive, recyclable, and low-cost SERS sub-
strates to detect the various concentrations of blood urea for the first time. This new kind of
porous Ag–TiO2 film can be used as a level-free biosensor for the analysis of biomolecules in
biological and clinical applications [120]. Dong et al. modified the TiO2 with carbon to form
the C-TiO2 hybrid materials and observed an enhanced SERS performance of cytochrome c
on these C-TiO2 hybrid materials compared with the pure TiO2 [86]. This is because the
modification can form the graphene types of carbon, further leading to an enhanced SERS
performance [121]. Furthermore, Dong et al. also chose the ionic liquids as trace additives
to synthesize the ionic liquid–TiO2 hybrid materials and used these hybrid materials as
the active substrates to study the SERS performance of cytochrome c [87]. To the best of
our knowledge, adding ionic liquids as additives into the SERS measurement to adjust the
micro-environment has not been investigated before this work. The results showed that the
determined EFs were 2.30 × 104, 6.17 × 104, and 1.19 × 105, for the systems without ionic
liquids, with ionic liquids in protein solutions and with ionic liquids immobilized on the
substrate, respectively. These ionic liquid–TiO2 hybrid materials allowed the obtaining of
an exceptionally low detection limit even down to 10−9 M. The mechanism is due to the
dissociation and hydration of ionic liquids occurring in the SERS system; the hydration
properties of the ionic liquids result in an improved electron transfer ability of ionic liquids
and further lead to an excellent SERS performance in protein detection [122,123]. This work
stimulates the development of the use of ionic liquids in SERS and related applications in
bioanalysis and nanoscience.
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Figure 9. Schematic representation of SERS from Cyt c adsorbed on TiO2 nanotube arrays with
different structural integrities through optimization of the topography. Reprinted from Ref. [113]
with permission from American Chemistry Society.

SERS is a highly selective, sensitive, and versatile technique to achieve fast data
acquisition, showing considerable promise for qualitative and quantitative analysis for life
science. Studying SERS performance of adsorbed proteins on TiO2 meets the demands
on trace detection in a variety of applications, also simulating the further development of
TiO2-based materials on trace detections.

2.4. Molecular Simulations

Experimental methods have been widely used to study the protein adsorptive behavior
and interactions on a related surface, whereas molecular simulations are also well suited to
provide insights into protein behavior on surfaces, i.e., orientation, conformation, and to
providing molecular-level information [15,44,124]. A review of multiscale modeling and
simulation methods for describing protein adsorption on surfaces with different properties
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was presented by Quan et al. [125]. The water molecules at the interfaces play a key role
in protein adsorption. Guo et al. found that a sufficient amount of interfacial hydration
near the surface of nanostructured TiO2 also promoted the attraction of fibronectin [126].
Kang et al. used molecular dynamics (MD) simulations to study the adsorption of human
serum protein on non-hydroxylated and hydroxylated rutile TiO2 surfaces [127]. Their
results indicated that the distribution of interfacial water molecules caused by surface
modification plays an important role in protein adsorption. The TiO2 surface with the
modification of hydroxyl groups was found to have a greater affinity to the protein, as
shown in Figure 10. Zheng et al. studied the synergetic effects of hydroxylation state,
surface nanostructure, and bioactive ions on the adsorption of collagen tripeptides to TiO2
surfaces using molecular dynamics (MD) simulations [128]. They found that a dense water
layer on the non-hydroxylated surface prevented tripeptide adsorption, but the water
exhibited a less ordered and more dispersed distribution on the hydroxylated surfaces,
which was suitable for adsorbing tripeptides.
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Wu et al. studied the conformational dynamics of the fibronectin adsorbed on the rutile
TiO2 (110) surfaces by molecular dynamics (MD) simulations [129]. Their investigations
showed that the binding strength and loss of protein secondary structure changed obviously,
which depended on the surface topology of the substrate. Wu et al. also studied the binding of
a negatively charged residue, aspartic acid, onto a negatively charged hydroxylated rutile TiO2
(110) surface in an aqueous solution, containing monovalent cations by molecular dynamics
(MD) simulations [130]. Their results indicated that ionic radii and charges would significantly
affect adsorption geometry, hydration, and distance of cations from the rutile surface, further
leading to the regulation of the Asp/rutile binding mode. Yang et al. investigated the
orientation and conformation of myoglobin adsorbed on rutile TiO2 (110) and (001) surfaces
through the combination of the Monte Carlo and molecular dynamics (MD) methods [131].
Their simulation results showed that the adsorbed myoglobin conformations are not obviously
affected by surfaces due to the strong hydrophilicity of both surfaces. However, the pathway
of the electron transfer of myoglobin is closer to the rutile TiO2 (001) surface, which is favorable
for achieving the faster electron transfer (Figure 11).

Due to TiO2 being easily contaminated by carboxylic acid (i.e., formate) in ambient
environments, Wu et al. studied the different adsorptive behaviors of BSA on pure and
formate-contaminated rutile TiO2 (110) surface, respectively, for the first time [132]. They
found that recontamination made further experimental studies difficult, despite numer-
ous studies demonstrating that decontamination enhances albumin adsorption, which in
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turn improves hemocompatibility on TiO2 surfaces. Their MD simulation results showed
that BSA could stably adsorb on the pure surface but the formate-contamination could
decrease the TiO2 surface polarity and then the adsorption of BSA (Figure 12). Furthermore,
they controlled the surface wettability by imposing the formate contamination on the
rutile TiO2 (110) surface, and the adsorption properties of albumin and fibrinogen on the
hydrophilic/hydrophobic TiO2 surface were systematically investigated by MD simula-
tions [133]. Their results found that the albumin is favorable to adsorb on the hydrophilic
surface due to the albumin having a higher proportion of charged residues. However,
the fibrinogen is favorable to adsorb on the hydrophobic surface due to the hydrophobic
surface being able to help the fibrinogen diffuse to the surface and adjust its orientation to
achieve stable adsorption.
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MD simulation is a great tool which can provide many microscopic mechanisms and
phenomena that cannot be observed directly in experiments. Especially for TiO2-based
materials, the simulation can provide detailed information on the effect of different crystal
faces on the protein interaction, which behaves as a powerful tool to verify the interaction
and clarify the mechanism at the molecular level.

3. Summary and Future Perspectives

In this review, different techniques for investigating the protein interaction with
TiO2-based materials are presented, including the HPLC retention behavior, atomic AFM-
based topographies and interaction forces, SERS-induced detection performance, and MD
simulations of orientation, conformation, and molecular-level information. Quantifying
the molecular force between protein and TiO2 under different realistic conditions (pH
condition, surface structure and roughness, heterogeneity, etc.) is especially innovative,
where the quantified molecular n forces can be used as a guideline at the nanoscale to design
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the experiments at the macroscale, such as HPLC-based protein separation, SERS-based
protein bio-detection, and so forth. However, each technique is currently independent or
qualitatively related due to the different scales studied. How to quantitatively correlate or
combine these techniques at different scales is challenging. Researchers have also made
many efforts to improve the combination of different techniques. For example, some in-
situ techniques have been developed recently, such as Tip-Enhanced Raman Scattering
(TERS) [134,135], which combines AFM and Raman with extremely high spatial resolution.

Moreover, the measured AFM-based interaction forces for the protein–solid surface
systems can also be used to parameterize the force fields in molecular dynamics (MD) sim-
ulations. For such a complex interfacial system, MD simulations with all-atom force fields
cannot fully grasp the interfacial properties, such as surface roughness and the adsorption
of large amounts of proteins. The coarse-grained force field from AFM measurements
could be an alternative for modeling the protein–solid interaction. Both the high precision
AFM force measurement and the suitable model for a coarse-grained force field need to
be advanced. Thus, it is expected that this review could be helpful for optimizing or
combining these techniques for characterizing the interfacial behavior of protein on porous
TiO2 materials in different practical applications.

In addition to the techniques summarized in this review, some other techniques can
also be used to investigate the interactions of protein-TiO2 in the future. For example,
Quartz crystal microbalance-dissipation (QCM-D), another advanced technique which
enables real-time tracking of the adsorbed amount and viscoelastic properties of attached
molecules at solid–liquid interfaces in biomolecular interaction processes [136–138]. Some
optical techniques with the features of extremely high sensitivity have also been used to
investigate the protein adsorptive behavior and trace detections, including ellipsometry,
resonant waveguide gratings (RWG), surface plasmon resonance (SPR) [139], coupled
plasmon-waveguide resonance spectroscopy (CPWR) [140], optical waveguide light-mode
spectroscopy (OWLS) [141], and grating coupled interferometry (GCI) [142]. More and more
advanced techniques are worth exploring to study the interactions between biomolecules
and TiO2-based materials.

Furthermore, for studying the protein interaction with hybrid TiO2-based materials,
introducing ionic liquids has been proved as an efficient method, i.e., ionic liquid-loaded
TiO2 on separating proteins and the addition of ionic liquid on TiO2 on SERS detection.
However, the analysis of the mechanisms still needs to be more in-depth. MD simulations
could support understanding the mechanisms at the molecular level. Meanwhile, the
classification of ionic liquids in the application of biological fields is also worth exploring.
Furthermore, using different complementary methods to study more dynamic properties of
protein with porous TiO2-based materials, including frictional behavior, lubrication, drug
delivery, and so forth, should be discussed in a simple tutorial type of summary.
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