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Abstract

Facial information is processed by our brain in such a way that we immediately make judgments

about, for example, attractiveness or masculinity or interpret personality traits or moods of other

people. The appearance of each facial feature has an effect on our perception of facial traits. This

research addresses the problem of measuring the size of these effects for five facial features (eyes,

eyebrows, nose, mouth, and jaw). Our proposal is a mixed feature-based and image-based

approach that allows judgments to be made on complete real faces in the categorization tasks,

more than on synthetic, noisy, or partial faces that can influence the assessment. Each facial feature

of the faces is automatically classified considering their global appearance using principal compo-

nent analysis. Using this procedure, we establish a reduced set of relevant specific attributes (each

one describing a complete facial feature) to characterize faces. In this way, a more direct link can

be established between perceived facial traits and what people intuitively consider an eye, an

eyebrow, a nose, a mouth, or a jaw. A set of 92 male faces were classified using this procedure, and

the results were related to their scores in 15 perceived facial traits. We show that the relevant

features greatly depend on what we are trying to judge. Globally, the eyes have the greatest effect.

However, other facial features are more relevant for some judgments like the mouth for happiness

and femininity or the nose for dominance.

Keywords

face perception, facial features appearance, facial traits, face judgments

Date received: 27 May 2019; accepted: 01 September 2020

Corresponding author:

Jose A. Diego-Mas, i3B—Institute for Research and Innovation in Bioengineering, Universitat Politecnica de Valencia, 46022

Valencia, Spain.

Email: jodiemas@dpi.upv.es

i-Perception

2020, Vol. 11(5), 1–18

! The Author(s) 2020

DOI: 10.1177/2041669520961123

journals.sagepub.com/home/ipe

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution

4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution

of the work without further permission provided the original work is attributed as specified on the SAGE and

Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-3698-3411
mailto:jodiemas@dpi.upv.es
http://dx.doi.org/10.1177/2041669520961123
journals.sagepub.com/home/ipe


Humans have highly developed their ability to perceive faces and to process the information
extracted from them (Bruce & Young, 1986; Damasio, 1985). The fusiform face area
(Kanwisher et al., 1997) and the posterior superior temporal sulcus (Schobert et al., 2018)
are a specialized neural network of our brains able to identify people; guess their gender, age,
or race; or even, judge the emotions and intentions of the owners of the faces. Through this
behavioral capacity to perceive faces, we use the facial appearance to make attributions such
as personality, intelligence, or trustworthiness (Bruce & Young, 2012). Therefore, faces affect
our everyday decisions (Little et al., 2007; Todorov, 2011; Todorov et al., 2008; Zebrowitz &
Montepare, 2008) such as mate selection (Bovet et al., 2012; Dixson et al., 2016; Keating &
Doyle, 2002), voting decisions (Little et al., 2007; Todorov et al., 2005), criminal justice
decisions (Eberhardt et al., 2006; Wilson & Rule, 2015), or how social partners are chosen
(Langlois et al., 2000). Due to the importance of appearance-driven judgments of faces, face
perception has become a major focus not only for psychological research but also for neuro-
scientists, engineers, and software developers (Jack & Schyns, 2015).

Visual perception research has shown that the human brain processes faces in a different
way to other kind of objects (Piepers & Robbins, 2012). Part-based perceptual models sup-
pose that objects are processed on the basis of their components or parts (Biederman, 1987);
although it is commonly agreed that this is the way in which we process most objects, faces
are thought to be processed in a different way. In relational (Diamond & Carey, 1986) or
configural (Bartlett et al., 2003) models of perception, basic face features are processed in a
part-based way, however, the perception relies heavily on the variations in the positioning of
and the spacing between these basic features. Holistic perceptual models integrate facial
features into a gestalt whole when the human brain processes facial information (holistic
face processing; Tanaka & Farah, 1993; Young et al., 1987). The holistic models do not
exclude part-based processing from the global holistic face perception process (Mckone &
Yovel, 2009; Rossion, 2008), and some part of the perception relies on part-based processing
of faces.

The main objective of this work was to measure the effect size of each basic facial feature
(e.g., two specifics eyes, a particular nose, a mouth, etc.) on the opinion of the observers
about some of the whole face traits. Hereinafter, we will consider a face trait as any judgment
that an observer can make about the physical characteristics of the face (e.g., attractiveness,
masculinity/femininity, etc.) or about the emotional state of the face owner (e.g., sadness,
happiness, fear, etc.). It is important to remark that we are considering each facial feature as
a whole. For example, in this study, we consider the global appearance of the noses more
than specific characteristics like dimensions or shapes.

Our secondary objective was to obtain models that predict the facial traits of faces from
the combination of facial features that conform them. There are interactions between the
facial features during face recognition tasks. However, regarding the facial traits assessment,
although interactions between the features also exist, a more direct relationship with specific
facial features can be established. For example, larger eyes, higher eyebrows, and smaller
noses are perceived as baby-faced, and faces with some of these features are also perceived as
baby-faced (Keating & Doyle, 2002; Zebrowitz & Montepare, 2008). A comprehensive dis-
cussion on this approach can be found in Zebrowitz-McArthur and Baron (1983). Although
how the traits of a face are perceived depends on the whole face, the individual effect of each
feature can explain part of the variation within the appraisals of the faces (Cabeza & Kato,
2000; Rakover, 2002). Accordingly, some studies have used additive models of the facial
attributes appraisals which explains most of the feasible explained variance (Gill, 2017;
Maloney & Dal Martello, 2006). Other studies have related individual facial features to
perceptions of the targets’ personalities (Paunonen et al., 1999) or have predicted facial
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trait evaluations from facial features accurately (Rojas et al., 2011). Obviously, unexplained
variation must remain due to the interaction between the features under consideration and
because the facial features included in the models do not cover the whole face.

There are some previous works in this field (Brahnam & Nanni, 2010; Paunonen et al.,
1999). In these studies, some specific characteristics of facial features are used as independent
variables in the models (e.g., eye size, mouth fullness, nose width . . . ) or local techniques for
face recognition are used. However, these approaches do not consider the global appearance
of each feature or they consider characteristics that do not belong to the features themselves.
Therefore, we propose a different approach to measure the effect size of each facial feature
on observed traits and to build predicting models.

The different points of view in the face perception literature are reflected in the compu-
tational methods for analysis of facial information. A comparison of techniques shows dif-
ferent approaches to deal with faces (Rojas et al., 2011). Feature-based approaches
automatically encode the geometry of faces using several significant points or areas and
relationships between them, doing a metric or morphological assessment of the facial fea-
tures. Examples of these kinds of techniques are those based on SIFT feature descriptors
(Meyers & Wolf, 2008), point distribution models (Cootes et al., 2001), or local binary
patterns (Ahonen et al., 2006). Image-based approaches rely on entire image of faces, con-
sidering all the information available, and encompassing the global nature of the faces.
Image-based techniques include, for example, Fisherfaces (Belhumeur et al., 1997) or
Eigenfaces (Turk & Pentland, 1991). Some work on facial features characterization has
been done mixing feature-based and image-based techniques (Klare & Jain, 2010). Finally,
artificial neural networks, support vector machines, and deep learning methods (Dizaji et al.,
2017; Huang et al., 2014) are currently used for facial feature extraction, yielding good
results (Xie et al., 2016).

The problem of relating facial information and social judgments is compound by the fact
that the space of possible hypotheses (what features drive specific social perceptions) is
infinitely large (Todorov et al., 2011). Conventional (or direct) approaches to obtaining
perception models systematically manipulate the stimulus in order to achieve different
responses. The stimulus–response relationships are obtained by correlating the attributes
of those manipulated stimuli together with their corresponding responses. However, using
these direct approaches is difficult when the number of independent variables (attributes) and
the number of possible values of such variables are great. In the case of faces, the number of
variables that must be used to describe the facial features that can drive social perceptions is
huge. There are no clear definitions of the basic facial features such as eyes, noses, or mouths.
For example, an eye could be a collection of smaller features (e.g., upper eyelid, lower eyelid,
pupil, eyelash . . . ), and each of them can be described as a collection of lines, shadows, or
surfaces. Even considering only a small number of features, the combination of all the
possible feature values rapidly proliferate.

To face these problems, feature-based approaches use only specific attributes of the face
such as the relationships among a small number of key points or regions of interest. This
approach reduces the amount of information used to describe the face using only some
attributes perceived to be relevant or descriptive of the face. These approaches establish
relationships between face descriptors and the evaluated social trait. Whole image-based
approaches, such as Fisherfaces or Eigenfaces, use appearance-based representations of
faces, which encode all available information about a face in a few meaningful variables.

Our proposal is a mixed feature-based and image-based approach. We are interested in
the size of the effect of the basic facial features on the perception of some social traits. In a
first step, we establish a reduced set of relevant specific attributes to describe a face: the basic
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facial features. Then, we use a principal component analysis (PCA) on the facial features to
encode all the available information about each feature in a few meaningful variables. Then,
we use these variables to categorize the facial features by their global appearance. In this
way, we are avoiding the problem of the standard definition of face parts. We consider that a
basic facial feature, such as a mouth, is defined by all the attributes in the image of the
mouth, and we are considering all of them simultaneously. Finally, we use these few mean-
ingful variables obtained from the PCA to cluster the facial features by appearance. Features
belonging to the same category or cluster have similar appearances and are supposed to have
the same effect size on the face traits. In this way, it is possible to describe specific faces by
the clusters to which their features belong. Using this procedure on a large set of faces,
relationships between the clusters of the features and the traits perceived in the faces can
be established.

Method

Selection of Faces, Facial Traits and Facial Features

To examine the influence of the appearance of each facial feature on the facial traits, we need
a set of faces assessed by several observers with respect to the facial traits to be analyzed. On
the other hand, the features of the faces must be classified by the similitude of their
appearances.

Our faces express emotions by changing the shape of their features. Observers can judge if
the observed person’s current emotional state is happy, angry, or sad based on these changes.
For example, the owner of a smiling face looks happy but bored or tired if the face is
yawning. Regardless of the expression, people make social trait inferences based on the
facial appearance of faces in a neutral state. These inferences are not related to an instan-
taneous emotional state, although they are driven in part by their structural resemblance to
emotional expressions (Petrican et al., 2014; Said et al., 2009). In this way, a neutral face can
elicit in the observer sensations such as happiness, sadness, or dominance. The face’s owners
can seem to be happy people although they are not smiling or laughing. In this work, we are
interested in these facial traits that are not related to the instantaneous emotional state of the
faces. For this reason, we used only neutral faces in our study, without expressions or
deformations of the facial features.

Therefore, our first step was to obtain a set of photographs of faces with neutral expres-
sions. After reviewing several well-known databases (Chihaoui et al., 2016), we selected the
Chicago Face Database (Ma et al., 2015). This database contains high-resolution standard-
ized images of real faces. The faces of the database belong to people between the ages of 18
and 40 living in the Chicago (U.S.A) area. All the images in the database have the same size
and resolution; faces have the same position, pose, and orientation, and the background and
illumination are uniform. The homogeneity of the conditions in which the images were
obtained was an important factor to select this face database because, for example, differ-
ences in the contrast of the image (Russell, 2003) or pose (Åsli et al., 2017; Favelle et al.,
2011) can affect the way in which a face is perceived. For this study, we selected the subset of
93 photographs of White males with neutral expressions.

Using the Chicago Face Database supposes another advantage for our study. Each pho-
tograph is accompanied by information about the target face, and it has been rated by 74
participants on average (this number was calculated with the information available in Ma
et al., 2015) on several facial traits: Afraid, Angry, Attractive, Baby-faced, Disgusted,
Dominant, Feminine, Happy, Masculine, Prototypic, Sad, Surprised, Threatening,
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Trustworthy, and Unusual. Participants responded on a 1 to 7 Likert-type scale (1¼ not at
all, 7¼ extremely) except for Prototypic, that was responded to on a 1 to 5 Likert-type scale.
Prototypic was defined as to which degree the face seems typical. The raters showed a high
degree of agreement in their assessments of the targets in all the traits. Detailed information
on the database generation and characteristics of the participants is available in Ma et al.
(2015). The mean scores of each facial trait for each face in our subset of 93 photographs are
shown in Table S1 in Supplementary Material.

The facial features analyzed in this work were selected considering previous studies.
Internal features (i.e., eyes, nose and mouth) seem to have significant importance in face
recognition (Keil, 2009; Kwart et al., 2012). Among the internal features, eyes play a key role
in face information processing (Fox & Damjanovic, 2006). Some authors include the eye-
brows in the eye area (Saavedra et al., 2013; Sadr et al., 2003) or consider the eyebrows as a
major factor in the perception of a face (Lundqvist et al., 1999). Blais et al. (2012) found that
the mouth area is an important cue for both static and dynamic facial expressions, which was
consistent with previous researches (Terry, 1977). However, external facial features such as
hair or the shapes of the cheek, the chin, or the jaw also play an important role in the way in
which the brain process the face information. According to Axelrod and Yovel (2010), the
fusiform face area of the brain is not only sensitive to external features but also sensitive to
their influence on the representation of internal facial features. Some works found that the
face shape contributes significantly to face discrimination (Logan et al., 2017; Yamaguchi
et al., 2013). From these previous works, we decided to consider the internal facial features
(eyebrows, eyes, nose, and mouth) and the jaw contour in this study. Although other features
have effects on face perception, for example, hair and facial hair, skin tone, and facial
proportions (Dixson et al., 2016; Fink et al., 2006; Hagiwara et al., 2012; Jones et al.,
2004; Pallett et al., 2010; Tsankova & Kappas, 2015), we limited our study to those features
that have a main effect on face perception, rather than considering features that may vary
from time to time such as hair (people can get a haircut).

Classification of Facial Features by Appearance

To classify a big set of facial features is a complex task for humans. Classifying by appear-
ance a very big set of elements in an undefined number of groups easily overwhelms our
capacities for information processing (Miller, 1956; Scharff et al., 2011), and algorithms are
more consistent for this task. Moreover, our brain integrates facial features into a gestalt
whole when it processes a face’s information (Tanaka & Farah, 1993; Young et al., 1987),
decreasing our ability for processing individual traits or parts of faces (Taubert et al., 2011).
On the other hand, individual differences exist in face recognition ability (Wang et al., 2012)
and some matters, like the race of the face, influence the performance in processing features
and the configuration of facial information (Hayward et al., 2008; Rhodes et al., 2009). This
is reflected in low interobserver and intraobserver agreement in the evaluation of facial
features (Ritz-Timme et al., 2011). To deal with these problems, we propose an automatic
procedure to perform this task.

In a previous work (Fuentes-Hurtado et al., 2019), we developed an algorithm to auto-
matically process images from the database and to extract individual images of the facial
features of each face. Our objective was to extract the internal features (eyebrows, eyes, nose,
and mouth) and the jaw contour. The RGB full-face photographs were used as the input of
the algorithm for facial features extraction. The facial landmarks of each feature were
detected, and the features separately extracted in images of the same size for each feature.
This was accomplished using the CHEHRA facial key-point detector (Asthana et al., 2014).
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In this way, a set of landmarks was obtained for each photograph and, based on these

landmarks, a mask for each feature was automatically created. The masks were used to

extract the part of the image corresponding to each facial feature. The features were aligned

with respect to the centroid of the previously acquired landmarks and saved as individual

files. Figure 1 shows the set of eyes obtained using this procedure on our set of 93 photo-

graphs of White males with neutral expressions.
Figure 2 shows the set of mouths extracted from the database. As can be seen, the back-

ground of the images of the mouths is black. This is because the presence of hair around the

mouth of men is common. In our first tests, we detected that the presence of hair greatly

affected the process of grouping the mouths; therefore, we decided to remove the surround-

ings of the original mouth obtaining a shaved mouth. The procedure followed to shave the

mouths was as follows: First, the outer landmarks of the mouth were selected to form a

polygon. Then, this polygon was enlarged by five pixels in every direction to ensure the whole

mouth was taken inside the mask. Finally, a Gaussian Blur Filter (sigma¼ two pixels) was

applied to the mask in order to smooth the transition between the skin and the black back-

ground of the image.
At this point, PCA (Sirovich & Kirby, 1987) was used on the five sets of images (one per

feature type) in order to characterize each facial feature. Before proceeding, all the obtained

images were converted to gray scale. In mathematical terms, this PCA aims to find the

principal components of the distribution of faces, or the eigenvectors of the covariance

matrix of the set of face images, treating each image as a vector in a very high dimensional

space. These eigenvectors can be thought of as a set of features that together characterize the

variation between images and are ordered accounting for the explained variance. Each indi-

vidual face can be represented exactly in terms of a linear combination of the eigenvectors, or

Figure 1. Left and Right Eye Images Obtained From 93 Photographs of White Males With Neutral
Expressions. Right eyes were horizontally mirrored.
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using the eigenvectors that explain the largest variances, and therefore account for the most
variation within the set of images. The first M eigenvectors span an M-dimensional subspace
of all possible images. Using this procedure over each set of facial features, it was possible to
characterize each feature by a set of M eigenvalues, reducing the quantity of information
used to describe the features. This procedure allows us to consider the global appearance of
facial features while summarizing the central information to characterize them.

A PCA was performed on each subset of facial features. To facilitate the subsequent
clustering process, the same number of eigenvectors (45) for each subset was selected bearing
in mind that the explained variances were about 85% or higher in all cases and including
more eigenvectors caused negligible gains (Fuentes-Hurtado et al., 2019). At this stage, the
appearance of each feature could be characterized using 45 real values (eigenvalues). A K-
means clustering algorithm (Macqueen, 1967) was selected to cluster the facial features using
their eigenvalues as characteristics. A drawback of using this method is that the number of
clusters (K) must be predefined. The approach used to face this problem was to perform
several K-means executions varying K and to calculate the Dunn’s Index (Dunn, 1974) for
each set of clusters. The Dunn’s Index measures the compactness and separation of the
clusters obtained for each K. A higher Dunn’s Index points to a small intracluster variance

Figure 2. Members of the Clusters M7, M4 and M2 of Mouths.
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and a high intercluster distance, namely, that the features included in each cluster are more
similar to each other, and more different from the features belonging to other clusters.
Therefore, we carried out several executions of the K-means algorithm varying K between
5 and 25, and the number of clusters for each feature was selected as the K that maximized
the Dunn’s Index. The detailed clustering procedure and the complete set of results can be
found in Fuentes-Hurtado (2018) and Fuentes-Hurtado et al. (2019).

Using this procedure, eyebrows were classified in 10 clusters (EB1 to EB10), eyes in 16 (E1
to E16), noses in 12 clusters (N1 to N12), mouths in 9 clusters (M1 to M9), and jaws in 11 (J1
to J11). As an example, Figure 2 shows the mouths included in the clusters M7, M4, and M2.
Each facial feature in this figure is coded with the name of the face to which it belongs.
Therefore, it is possible to classify each one of the 93 faces of the database using the clusters
of its features. The last five columns of Table S1 in Supplementary Materials show the
clusters of the facial features of the 93 faces of the database.

Design

A general linear model (Searle, 1983) was fitted for each facial trait. Each model had five
fixed factors (eyebrow, eye, nose, mouth, and jaw) and one of the 15 facial traits as depen-
dent variable. The values of the dependent variables were the average ratings provided by
human subjects (Ma et al., 2015). Our available data set consists of 93 observations with
missing factors combinations. The 15 models were built considering only the main effects,
without interactions. Some observations with abnormal studentized residuals were consid-
ered outliers and removed from the models. Depending on the facial trait analyzed, between
zero and six faces were removed from the sample (marked with an asterisk in Table S1 in
Supplementary Materials). The data were analyzed for each facial trait using an analysis of
variance (ANOVA) with eyebrow (EB1–EB10), eye (E1–E16), nose (N1–N12), mouth (M1–
M9), and jaw (J1–J11) as the main factors. The IBM SPSS Statistics 23.0 and Statgraphics
Centurion v.XVII.II programs were used. The significance level was set at .05 for all tests.

Results

The detailed results of each analysis for the effect of facial features on facial traits can be
consulted in Table S3 in Supplementary Materials. The overall ANOVA results were statis-
tically significant for all facial traits except Disgusted, F(53, 39)¼ 1.163, p¼ .313. It is not
possible to reject the null hypothesis that all the data come from groups that have identical
means for Disgusted. Because of this, and as no significant effects of facial features were
found on this facial trait, Disgusted will be excluded from the results and conclusions
detailed hereafter. For the remaining 14 traits, R2 varied in the range of .738 (Happy) to
.898 (Prototypic), with adjusted R2 values of .340 and .744, respectively. The fitted models
(predicted vs. observed values) are shown in Figure S1 in Supplementary Materials.
Individual tests found different statistically significant main effects by trait (Table 1 shows
the significant effects with bold characters). The effect size of each facial feature on the
dependent variable was measured by means of partial eta squared (gp

2). In this case, gp
2

describes the proportion of total variance in each facial trait attributable to each facial
feature. The complete set of values of gp

2 is shown in the ANOVA tables in
Supplementary Materials (Table S3), and the effect size of each facial feature by facial
trait is shown in Table 1.

gp
2 is usually preferred for effect size measurements in ANOVA (Richardson, 2011).

However, to represent the effects size as percentages, another statistic, eta squared (g2),
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Table 1. Effect Size (gp
2) and Statistical Significance of the Effects of Facial Features on Facial Traits.

Eyebrow Eye Nose Mouth Jaw

Afraid

Effect size gp
25 0.42 gp

25 0.70 gp
250.59 gp

25 0.51 gp
25 0.55

Significance F(9,34)5 2.717

p5 .017

F(14,34)55.675

p< .0001
F(11,34)5 4.520

p< .0001
F(8,34)54.375

p5 .001

F(10,34)54.144

p5 .001

Angry

Effect size gp
25 0.36 gp

25 0.62 gp
2¼ 0.24 gp

25 0.53 gp
25 0.54

Significance F(9,35)5 2.182

p5 .048

F(15,35)53.779

p5 .001

F(11,35)¼ 0.988

p¼ .475

F(8,35)54.994

p< .0001

F(10,35)54.102

p5 .001

Attractive

Effect size gp
25 0.52 gp

25 0.62 gp
250.53 gp

25 0.48 gp
25 0.49

Significance F(9,34)5 4.140

p5 .001

F(14,34)53.918

p5 .001

F(11,34)5 3.484

p5 .002

F(1834)5 3.842

p5 .003

F(10,34)53.288

p5 .005

Baby-faced

Effect size gp
2¼ 0.29 gp

25 0.54 gp
2¼ 0.37 gp

25 0.34 gp
25 0.37

Significance F(9,36)¼ 1.631

p¼ .143

F(15,36)52.816

p5 .006

F(11,36)¼ 1.892

p¼ .074

F(8,36)52.358

p5 .038

F(10,36)52.132

p5 .047

Disgusted

Effect size gp
2¼ 0.19 gp

2¼ 0.41 gp
2¼ 0.17 gp

2¼ 0.24 gp
2¼ 0.29

Significance F(9,39)¼ 1.028

p¼ .435

F(15,39)¼ 1.782

p¼ .074

F(11,39)¼ 0.689

p¼ .732

F(8,39)¼ 1.517

p¼ .183

F(1,39)¼ 1.576

p¼ .150

Dominant

Effect size gp
25 0.42 gp

2¼ 0.42 gp
250.43 gp

2¼ 0.33 gp
25 0.42

Significance F(9,34)5 2.704

p5 .017

F(14,34)¼ 1.784

p¼ .084

F(11,34)5 2.364

p5 .027

F(8,34)¼ 2.064

p¼ .068

F(01,34)52.409

p5 .027

Feminine

Effect size gp
2¼ 0.24 gp

2¼ 0.44 gp
250.43 gp

25 0.51 gp
25 0.43

Significance F(9,34)¼ 1.189

p¼ .333

F(15,34)¼ 1.788

p¼ .079

F(11,34)5 2.354

p5 .028

F(8,34)54.336

p5 .001

F(10,34)52.560

p5 .020

Happy

Effect size gp
2¼ 0.26 gp

2¼ 0.24 gp
2¼ 0.17 gp

25 0.47 gp
25 0.44

Significance F(9,35)¼ 1.381

p¼ .234

F(15,35)¼ 0.716

p¼ .752

F(11,35)¼ 0.644

p¼ .779

F(8,35)53.912

p5 .002

F(10,35)52.734

p5 .013

Masculine

Effect size gp
2¼ 0.33 gp

25 0.64 gp
2¼ 0.27 gp

25 0.35 gp
2¼ 0.38

Significance F(9, 34)¼ 1.840

p¼ .097

F(15,34)53.997

p< .0001
F(11, 34) ¼1.162

p¼ .348

F(8,34)52.307

p5 .043

F(10,34) ¼2.087

p¼ .054

Prototypic

Effect size gp
25 0.62 gp

25 0.70 gp
2¼ 0.39 gp

25 0.39 gp
25 0.43

Significance F(9,35)5 6.297

p< .0001
F(15,35)55.313

p< .0001
F(11,35)¼ 2.043

p¼ .054

F(8,35)52.848

p5 .015

F(10,35)52.621

p5 .017

Sad

Effect size gp
25 0.39 gp

25 0.49 gp
250.46 gp

25 0.39 gp
25 0.44

Significance F(9,36)5 2.576

p5 .021

F(15,36)52.289

p5 .021

F(11,36)5 2.827

p5 .009

F(8,36)52.828

p5 .015

F(10,36)52.787

p5 .012

Surprised

Effect size gp
25 0.37 gp

25 0.45 gp
250.41 gp

2¼ 0.31 gp
25 0.45

Significance F(9,38)5 2.476

p5 .025

F(15,38)52.060

p5 .036

F(11,38)5 2.350

p5 .025

F(8,38)¼ 2.141

p¼ .055

F(10,38)53.062

p5 .006

Threatening

Effect size gp
25 0.52 gp

25 0.57 gp
2¼ 0.38 gp

25 0.39 gp
25 0.52

Significance F(9,36)5 4.263

p5 .001

F(14,36)53.393

p5 .002

F(11,36)¼ 2.010

p¼ .057

F(8,36)52.821

p5 .015

F(10,36)53.822

p5 .001

(continued)
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can be used for effect size measurements (Levine & Hullett, 2002). g2 was calculated for each

facial feature as the sums of squares for the feature divided by the total sums of squares for

all effects and errors in the corresponding ANOVA study. Figure 3 shows the effect size of

each facial feature on each facial trait as a percentage of all the effects, including the effect of

the model error. Figure S2 in Supplementary Materials shows the effects on each facial trait

by facial feature.
To check if the assumptions for ANOVA were met, the residuals of each adjusted model

were tested for normality and heteroscedasticity. We assumed that each observation was

independent from all other observations. Each face in the sample belongs to a different

person randomly selected. In Figure S1 in Supplementary Materials, the scatterplots of

residuals on predicted values of each model suggest that errors have constant variance,

with the residuals scattered randomly around zero. The plots of normal probability of the

residuals (Figure S1) suggest evidence of normality. Supplementary Kolmogorov–Smirnov

tests were performed and skewness and kurtosis checked (a¼ .05). The results in the Table S2

show that null hypothesis cannot be rejected and conclude normality is a reasonable assump-

tion for the residuals of all the facial traits.

Table 1. Continued

Eyebrow Eye Nose Mouth Jaw

Trustworthy

Effect size gp
25 0.54 gp

25 0.60 gp
250.51 gp

25 0.49 gp
25 0.45

Significance F(9,34)5 4.436

p5 .001

F(15,34)53.358

p5 .002

F(11,34)5 3.270

p5 .004

F(8,34)54.033

p5 .002

F(10,34)52.742

p5 .014

Unusual

Effect size gp
25 0.39 gp

25 0.57 gp
250.41 gp

2¼ 0.33 gp
25 0.40

Significance F(9,36)5 2.553

p5 .022

F(15,36)53.142

p5 .002

F(11,36)5 2.270

p5 .032

F(8,36)¼ 2.162

p¼ .055

F(10,36)52.406

p5 .026

Note. Significant effects are in boldface.

Figure 3. Effect Size of Each Facial Feature on Observed Facial Traits as a Percentage of All the Effects.
Grayed area of bars and grayed cells represent variance unaccounted by the model (U.V.). Significant effects in
green cells.
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Discussion

The main objective of this work was to measure how much the appearance of the facial

features affects the opinion of the observers about some facial traits. We have proposed a

new approach to relate 5 facial features of White males with 15 perceived facial traits. First,

we selected 93 faces of White males with 15 facial traits assessed by human observers. Then,

the facial features of the faces were categorized by appearance. To achieve this, we used an

automatic procedure to extract the facial features from the whole face images, and PCA and

K-means clustering algorithm were applied to characterize and group the facial features by

their global appearance. Features belonging to the same category or cluster have a similar

appearance, and it is supposed to have the same effect size on the face traits. In this way, our

sample of 93 whole faces were classified by the clusters to which their features belong.

Finally, general linear models relating the facial features of the faces to the observed facial

traits were fitted for each trait. The effect size of each facial feature on the perceived facial

traits was measured using the partial eta squared.
Classic behavioral work has shown that the human brain integrates facial features into a

gestalt whole when it processes facial information (Tanaka & Farah, 1993; Young et al.,

1987), diminishing our capacity for processing facial information of faces with missing

features or parts (Taubert et al., 2011). Therefore, information from all the facial features

is used and plays a significant role in judging facial traits. Globally, our results are compat-

ible with this, showing that most of the facial features have a statistically significant effect on

how an observer perceives facial traits. In accordance with Cohen (1988), all of them can be

considered large effects (gp
2> 0.1379).

However, the size of the effect varies for each facial feature. Our results show that eyes is

the facial feature whose appearance has the biggest effect on perceived facial traits. The

average percentage of effect on all the facial traits is 23.83%. Particularly, the effect of the

eyes is over 30% on Masculine, Prototypic, and Afraid, being under 15% only on Happy

(8.67%). The appearance of the jaw has the second mean effect size (15.73%), being the most

homogenous among the different traits analyzed. This result is consistent with previous

studies that found that face shape contributes significantly to face processing (Logan

et al., 2017; Yamaguchi et al., 2013). The mouth has a big effect on Happy, Feminine,

and Angry (over 19%). This feature is related with dynamic facial expressions (Blais

et al., 2012) and expresses emotions of happiness (e.g., smiling or laughing) and anger

(e.g., screaming or shouting out) changing its shape. Therefore, the obtained results seems

to be consistent with preceding works that found that people make trait inferences driven by

structural resemblance to emotional expressions, even in neutral faces (Petrican et al., 2014;

Said et al., 2009). On the other hand, our results show that jaw also has great effects on

Happy and Angry. In the same way as in the case of the mouth, this could be related to the

changes in the shape of the jaw when the face expresses happiness or anger, but this must be

studied further.
The appearance of the eyebrows mean effect size is 13.11% being its most significant effect

on Prototypic (23.34%). Therefore, eyebrows are an important clue to decide to which

degree a face is the typical face of a White man. Lundqvist et al. (1999) found that the

eyebrows are the most important feature for conveying facial threat. In the same way, our

results show that eyebrows plays an important role in Threatening (18.74%). However, we

found that eyes has more effect on Threatening (23.19%) than eyebrows. The difference in

the results for the eyes may be due to the fact that they used schematic faces in their study

and we have employed real faces. Nose has the smallest average effect (12.87%) on perceived
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facial traits. Its major effects are on Afraid, Sad, Dominant, Attractive, Feminine, and
Trustworthy and are almost negligible on Happy and Angry.

In this study, g2 and gp
2 have been used to measure the effect size of each facial feature on

each social trait. We have used both because g2 is more intuitive to measure the effect sizes of
the variables than gp

2, but the former makes it hard to compare the effect of a single variable
in different studies, and the proportion explained by any one variable depends on the number
of variables on the model.

The obtained models were statistically significant (except Disgusted model) with R2 vary-
ing in the range of .738 to .898. Therefore, most of the variation in each facial trait can be
explained by the different class of the analyzed facial features. However, unexplained vari-
ation remains. Our results show higher unexplained variance in the models for Happy, Baby-
faced, Surprised, or Dominant than those models for Attractive, Prototypic, or Afraid. It can
be argued that the amount of unexplained variation in each model depends on the differences
between the processes to assess each facial trait and the capacity of the models to capture the
inherent variance of each kind of assessment. Ours models only consider the main effect of
each independent variable, which may affect the capacity of the models to capture the var-
iance to a different extent for each facial trait. On the other hand, faces with neutral expres-
sions were assessed to create the models. This can lead to more unexplained variance in the
models of the facial traits more related to facial expressions. For example, the differences
between neutral and happy faces are larger than that between neutral and fearful faces
(Lepp€anen & Hietanen, 2007), making it more difficult to assess the happy versus fearful
trait of a neutral face. Finally, our procedure does not consider the whole face space. Each
facial trait may be linked to facial features not included in this study (such as hair or skin
tone) to a different degree, leading to differences in the amount of unexplained variance
between models.

As far as we know, this is the most comprehensive work, in terms of number of traits
considered, measuring the effect size of the appearance of the facial features on the percep-
tion of facial traits. Other techniques, such us bubbles (Gosselin & Schyns, 2001) or reverse
correlation methods (Dotsch & Todorov, 2012; Todorov et al., 2011), can discriminate the
features used by observers in categorization tasks. Our technique differs from these in several
aspects. Our approach rests on the assumption that the global appearance of the facial
features can be a good predictor of how features are used to assess the traits of the face.
If the clustering procedure achieves enough intraclass homogeneity and interclass heteroge-
neity, facial features belonging to the same class (with similar overall appearance) will lead to
similar assessments, and these judgments will be dissimilar from those of faces with facial
features belonging to other clusters. Our models use five meaningful independent variables
each one describing a complete facial feature, rather than a collection of smaller features that
conform faces (lines, shadows, surfaces . . . ) or disconnected areas of the faces. Therefore, a
more direct link can be established between perceived facial traits and what people intuitively
consider an eye, an eyebrow, a nose, a mouth, and a jaw.

On the other hand, our technique allows judgments to be made on complete real faces.
Some other approaches involve using graphically manipulated photographs in the categori-
zation tasks, by superimposing noise or hiding parts of the faces. In these approaches,
judgments are made on synthetic, noisy, or partial faces that can influence the assessment.

However, some limitations of this study must be pointed out, mainly regarding the inter-
actions between the facial features. In this work, we are measuring the main effect sizes. The
main effect of each feature can explain part of the variation within the face appraisals
(Cabeza & Kato, 2000; Rakover, 2002). To consider the second-order effects (the effect of
one feature’s appearance considering the other features’ appearance), a larger sample of
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images of real faces is needed. However, it is very difficult to develop a big enough face

database and to collect ratings for all the faces. Moreover, it is not possible to find real faces

with all the possible combinations of facial features. A usual way to achieve this is to collect

ratings for faces in which specific areas of the face are parametrically manipulated in terms of

size or shape. However, changing some relevant dimension of the facial features is not

appropriate for this case because the classifications of facial features are based on their

overall appearance.
On the other hand, we have followed a mixed feature-based/image-based approach to

obtain the effect sizes of the appearance of the features. We have established a reduced set of

relevant specific attributes to describe a face (five basic facial features) and used an image-

based approach (PCA) to categorize these facial features by their global appearance.

Therefore, although the faces were described by five meaningful variables, the configural

information of the faces is not explicitly considered to obtain the effect size of the facial

features.
Regarding the generalization of the findings, 93 faces of the Chicago Face Database were

used to obtain the models relating facial features to facial trait assessments. The faces of the

database belong to White men between the ages of 18 and 40 living in the Chicago (U.S.A)

area. The subjective classifications of the faces were made by a specific group of women and

men probably from the same city (Ma et al., 2015). Therefore, both the faces and the

appraisals used to develop the models come from a specific community. The generalization

of the results to faces of people from other communities must be carefully addressed.

Especially, the findings cannot be generalized to faces of people of other races (Hayward

et al., 2008; Rhodes et al., 2009) or to faces of people outside the range of this study.
Our future works will try to develop similar studies for female faces and to extend the

results to other races. On the other hand, using a larger face database would allow us to

consider interactions, at least of the second order, among the facial features, or to include

more facial features in the models.
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Ritz-Timme, S., Gabriel, P., Obertovà, Z., Boguslawski, M., Mayer, F., Drabik, A., Poppa, P., De

Angelis, D., Ciaffi, R., Zanotti, B., Gibelli, D., & Cattaneo, C. (2011). A new atlas for the evaluation

of facial features: Advantages, limits, and applicability. International Journal of Legal Medicine,

125(2), 301–306. https://doi.org/10.1007/s00414-010-0446-4

16 i-Perception 11(5)

https://doi.org/10.1037/0033-2909.126.3.390
http://www.toposbooks.gr/behavioralstats/Levine_Hullett_2002.pdf
http://www.toposbooks.gr/behavioralstats/Levine_Hullett_2002.pdf
https://doi.org/10.1016/j.evolhumbehav.2006.09.002
https://doi.org/10.1016/j.evolhumbehav.2006.09.002
https://doi.org/10.1016/j.visres.2017.05.011
https://doi.org/10.1016/j.visres.2017.05.011
https://doi.org/10.1080/026999399379041
https://doi.org/10.3758/s13428-014-0532-5
https://doi.org/10.3758/s13428-014-0532-5
https://doi.org/citeulike-article-id:6083430
https://doi.org/10.1167/6.10.4
https://doi.org/10.3758/PBR.16.5.778
https://doi.org/10.1007/s11263-007-0058-8
https://doi.org/10.1037/h0043158
https://doi.org/10.1016/j.visres.2009.11.003
https://doi.org/10.1111/1467-6494.00065
https://doi.org/10.1007/s10919-014-0175-3
https://doi.org/10.3389/fpsyg.2012.00559
https://doi.org/10.1348/000712602162427
https://doi.org/10.1348/000712608X396503
https://doi.org/10.1016/j.edurev.2010.12.001
https://doi.org/10.1016/j.edurev.2010.12.001
https://doi.org/10.1007/s00414-010-0446-4


Rojas, M. M., Masip, D., Todorov, A., & Vitria, J. (2011). Automatic prediction of facial trait judg-

ments: Appearance vs. structural models. PLoS One, 6(8), 1–12. https://doi.org/10.1371/journal.

pone.0023323
Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta

Psychologica, 128(2), 274–289. https://doi.org/10.1016/j.actpsy.2008.02.003
Russell, R. (2003). Sex, beauty, and the relative luminance of facial features. Perception, 32(9),

1093–1107. https://doi.org/10.1068/p5101
Saavedra, C., Smith, P., & Peissig, J. (2013). The relative role of eyes, eyebrows, and eye region in face

recognition. Journal of Vision, 13(9), 410. https://doi.org/10.1167/13.9.410
Sadr, J., Jarudi, I., & Sinha, P. (2003). The role of eyebrows in face recognition. Perception, 32(3),

285–293. https://doi.org/10.1068/p5027
Said, C., Sebe, N., & Todorov, A. (2009). “Structural resemblance to emotional expressions predicts

evaluation of emotionally neutral faces”: Correction to Said, Sebe, and Todorov (2009). Emotion,

9(4), 509–509. https://doi.org/10.1037/a0016784
Scharff, A., Palmer, J., & Moore, C. M. (2011). Evidence of fixed capacity in visual object categori-

zation. Psychonomic Bulletin & Review, 18(4), 713–721. https://doi.org/10.3758/s13423-011-0101-1
Schobert, A.-K., Corradi-Dell’Acqua, C., Frühholz, S., van der Zwaag, W., & Vuilleumier, P. (2018).

Functional organization of face processing in the human superior temporal sulcus: A 7T high-

resolution fMRI study. Social Cognitive and Affective Neuroscience, 13(1), 102–113. https://doi.

org/10.1093/scan/nsx119
Searle, SR. (1983) General linear model. In: Kotz, S, Norman, LJ, Campbell, BR, eds. Encyclopedia of

Statistical Sciences. New York: John Wiley & Sons Ltd, pp. 357–72.
Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces.

Journal of the Optical Society of America. A, Optics and Image Science, 4(3), 519–524. https://doi.

org/10.1364/JOSAA.4.000519
Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. The Quarterly Journal of

Experimental Psychology, 46(2), 225–245. https://doi.org/10.1080/14640749308401045
Taubert, J., Apthorp, D., Aagten-Murphy, D., & Alais, D. (2011). The role of holistic processing in

face perception: Evidence from the face inversion effect. Vision Research, 51(11), 1273–1278. https://

doi.org/10.1016/j.visres.2011.04.002
Terry, R. R. L. (1977). Further evidence on components of facial attractiveness. Perceptual and Motor

Skills, 45(1), 130. https://doi.org/10.2466/pms.1977.45.1.130
Todorov, A. (2011). Evaluating faces on social dimensions. In A. Todorov, S. T. Fiske, & D. A.

Prentice (Eds.), Oxford series in social cognition and social neuroscience. Social neuroscience:

Toward understanding the underpinnings of the social mind (p. 54–76). Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780195316872.003.0004
Todorov, A., Dotsch, R., Wigboldus, D. H. J., & Said, C. P. (2011). Data-driven methods for modeling

social perception. Social and Personality Psychology Compass, 5(10), 775–791. https://doi.org/10.

1111/j.1751-9004.2011.00389.x
Todorov, A., Mandisodza, A. N., Goren, A., & Hall, C. C. (2005). Psychology: Inferences of compe-

tence from faces predict election outcomes. Science, 308(5728), 1623–1626. https://doi.org/10.1126/

science.1110589
Todorov, A., Said, C. P., Engell, A. D., & Oosterhof, N. N. (2008). Understanding evaluation of faces

on social dimensions. Trends in Cognitive Sciences, 12, 455–460. https://doi.org/10.1016/j.tics.2008.

10.001
Tsankova, E., & Kappas, A. (2015). Facial skin smoothness as an indicator of perceived trustworthi-

ness and related traits. Perception, 45(4), 400–408. https://doi.org/10.1177/0301006615616748
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1),

71–86. https://doi.org/10.1162/jocn.1991.3.1.71
Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual differences in holistic processing

predict face recognition ability. Psychological Science, 23(2), 169–177. https://doi.org/10.1177/

0956797611420575

Diego-Mas et al. 17

https://doi.org/10.1371/journal.pone.0023323
https://doi.org/10.1371/journal.pone.0023323
https://doi.org/10.1016/j.actpsy.2008.02.003
https://doi.org/10.1068/p5101
https://doi.org/10.1167/13.9.410
https://doi.org/10.1068/p5027
https://doi.org/10.1037/a0016784
https://doi.org/10.3758/s13423-011-0101-1
https://doi.org/10.1093/scan/nsx119
https://doi.org/10.1093/scan/nsx119
https://doi.org/10.1364/JOSAA.4.000519
https://doi.org/10.1364/JOSAA.4.000519
https://doi.org/10.1080/14640749308401045
https://doi.org/10.1016/j.visres.2011.04.002
https://doi.org/10.1016/j.visres.2011.04.002
https://doi.org/10.2466/pms.1977.45.1.130
https://doi.org/10.1111/j.1751-9004.2011.00389.x
https://doi.org/10.1111/j.1751-9004.2011.00389.x
https://doi.org/10.1126/science.1110589
https://doi.org/10.1126/science.1110589
https://doi.org/10.1016/j.tics.2008.10.001
https://doi.org/10.1016/j.tics.2008.10.001
https://doi.org/10.1177/0301006615616748
https://doi.org/10.1162/jocn.1991.3.1.71
https://doi.org/10.1177/0956797611420575
https://doi.org/10.1177/0956797611420575


Wilson, J. P., & Rule, N. O. (2015). Facial trustworthiness predicts extreme criminal-sentencing out-
comes. Psychological Science, 26(8), 1325–1331. https://doi.org/10.1177/0956797615590992

Xie, J., Girshick, R., & Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. In
(Balcan, M. F. & Weinberger, K.Q. eds) Proceedings of the 33rd international conference on inter-

national conference on machine learning—Volume 48 (pp. 478–487). JMLR. https://dl.acm.org/cita
tion.cfm?id=3045442

Yamaguchi, M. K., Hirukawa, T., & Kanazawa, S. (2013). Judgment of gender through facial parts.
Perception, 42(11), 1253–1265. https://doi.org/10.1068/p240563n

Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception.
Perception, 16(6), 747–759. https://doi.org/10.1068/p160747

Zebrowitz, L. A., & Montepare, J. M. (2008). Social psychological face perception: Why appearance
matters. Social and Personality Psychology Compass, 2(3), 1497–1517. https://doi.org/10.1111/
j.1751-9004.2008.00109.x

Zebrowitz-McArthur, L., & Baron, R. M. (1983). Toward an ecological theory of social perception.
Psychological Review, 90(3), 215–238. https://doi.org/10.1037//0033-295X.90.3.215

How to cite this article

Diego-Mas, J. A., Fuentes-Hurtado, F., Naranjo, V., & Alca~niz, M. (2020). The influence of each
facial feature on how we perceive and interpret human faces. i-Perception, 11(5), 1–18. https://
doi.org/10.1177/2041669520961123

18 i-Perception 11(5)

https://doi.org/10.1177/0956797615590992
https://dl.acm.org/citation.cfm?id=3045442
https://dl.acm.org/citation.cfm?id=3045442
https://doi.org/10.1068/p240563n
https://doi.org/10.1068/p160747
https://doi.org/10.1037//0033-295X.90.3.215
https://doi.org/10.1177/2041669520961123
https://doi.org/10.1177/2041669520961123

	table-fn1-2041669520961123


<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo true
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 150
	/GrayImageResolution 600
	/DoThumbnails false
	/ColorConversionStrategy /LeaveColorUnchanged
	/GrayImageFilter /FlateEncode
	/EmbedAllFonts true
	/CalRGBProfile (sRGB IEC61966-2.1)
	/MonoImageMinResolutionPolicy /OK
	/ImageMemory 1048576
	/LockDistillerParams true
	/AllowPSXObjects true
	/DownsampleMonoImages true
	/PassThroughJPEGImages false
	/ColorSettingsFile (None)
	/AutoRotatePages /None
	/Optimize true
	/MonoImageDepth -1
	/ParseDSCComments true
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 1200
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth 8
	/PreserveFlatness true
	/CompressPages true
	/GrayImageMinResolution 150
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.3
	/MonoImageResolution 1200
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/AutoPositionEPSFiles true
	/PreserveOPIComments false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile ()
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/EmbedJobOptions true
	/MonoImageDownsampleType /Average
	/DetectBlends true
	/EncodeGrayImages true
	/ColorImageDownsampleType /Average
	/EmitDSCWarnings false
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/QFactor 0.76
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/QFactor 0.76
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 600
	/PDFXRegistryName ()
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Gray Gamma 2.2)
	/ColorImageMinDownsampleDepth 1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ColorImageDepth 8
	/DetectCurves 0.1
	/PDFXTrapped /False
	/ColorImageFilter /FlateEncode
	/TransferFunctionInfo /Preserve
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/ColorACSImageDict <<
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/QFactor 0.76
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/DSCReportingLevel 0
	/PDFXOutputConditionIdentifier ()
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/PreserveCopyPage true
	/UsePrologue false
	/StartPage 1
	/MonoImageDownsampleThreshold 1.3325
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Remove
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Average
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
		/PTB <>
		/FRA <>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
		/NOR <>
		/DEU <>
		/SVE <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
		/DAN <>
		/JPN <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/SUO <>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ESP <>
	>>
	/CropMonoImages true
	/DefaultRenderingIntent /RelativeColorimeteric
	/PreserveHalftoneInfo false
	/ColorImageDict <<
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/QFactor 0.76
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages true
	/PDFXOutputCondition ()
	/SubsetFonts true
	/EncodeMonoImages true
	/CropColorImages true
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		595.26
		841.88
	]
	/HWResolution [
		1800
		1800
	]
>>
setpagedevice


