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Background. Malnourished infants are small for age and weight. Objectives. Determine profiles in 24-hour energy metabolism
in recovering malnourished infants and compare to similarly aged healthy controls. Methods. 10 malnourished infants (58.1 ±
5.9 cm, 7.7 ± 5.6 months) were healthy prior to spending 22 hours in the Enhanced Metabolic Testing Activity Chamber for
measurement of EE (kcal/min), sleeping metabolic rate (SMR; kcal/min), respiratory quotient (RQ; VCO2/VO2), and physical
activity (PA; oscillations in wt/min/kg body weight). Metabolic data were extrapolated to 24 hours (kcal/kg/d). Energy intake
(kcal/kg/d) and the proportions (%) of carbohydrate, protein, and fat were calculated. Anthropometrics for malnourished infants
were obtained. Statistical differences (P < .05) between groups were determined (SPSS, version 13). Results. In comparison to
controls, malnourished infants were lighter (4.1±1.2 versus 7.3±0.8 kg; P < .05), had less body fat % (10.3±7.6 versus 25.7±2.5),
and lower BMI (12.0± 1.7 versus 15.5± 1.5; P < .05). In contrast, they had greater energy intake (142.7± 14.6 versus 85.1± 25.8;
P < .05) with a greater percentage of carbohydrates (55.1 ± 3.9 versus 47.2 ± 5.2; P < .05). However, malnourished infants had
greater 24-hour EE (101.3 ± 20.1 versus 78.6 ± 8.4; P < .05), SMR (92.6 ± 17.1 versus 65.0 ± 3.9; P < .05), and RQ (1.00 ± 0.13
versus 0.86 ± 0.08; P < .05) along with a lower amount of PA (2.3 ± 0.94 versus 4.0 ± 1.5; P < .05). Conclusions. Malnourished
infants require more energy, possibly for growth.

1. Introduction

Malnutrition is a consequence of inadequate diet and fre-
quent infections, leading to deficiencies in calories, protein,
vitamins, and minerals. Malnutrition remains a pervasive
problem in developing countries, where poverty is a strong
underlying determinant. All ages are at risk, but malnutrition
is most prevalent among children under five years of age,
especially in the weaning and postweaning period of six
to twenty-four months. The World Health Organization
(WHO) has estimated that approximately 27% (168 million)
of children under the age of five years are underweight [1].
Underweight children are at increased risk of mortality from
infectious illnesses such as diarrhea and pneumonia [2].

In malnourished children, stunted growth and a lower
amount of spontaneous physical activity are adaptations

to reduced energy intake in an attempt to preserve vital
functions [3]. Furthermore, other effects of malnutrition
include poor brain development [4] possibly leading to poor
cognition [5]. Another physiological adaptation includes
a reduced acute-phase protein response to infection [6].
Finally, children with untreated malnutrition suffer from
repeated episodes of acute diarrhea resulting in dehydration
[7].

Only in our previous study [8] has there ever been a
long-duration study (22 hours) where energy expenditure
was measured continuously in healthy infants utilizing
indirect calorimetry. Due to the length of the metabolic
measurements, we determined that healthy infants display
a metabolic circadian rhythm by four months of age [8].
At the time of this study we were the only research group
in the world conducting these types of long-term energy
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expenditure measurements utilizing this technology. Now,
we have taken our perfected methodology and applied it
to infants suffering from malnutrition. This might reveal
differences in the energy expenditure profile not detectable
with short-duration indirect calorimetric measurements.
These longer duration metabolic measurements might lead
to new and improved nutrition rehabilitation regimes fine-
tuned for malnourished or infants suffering from various
metabolic disorders.

2. Materials and Methods

2.1. Subjects. Ten chronically malnourished full term infants
(7.7± 5.0 months, 4.1 ± 1.2 kg, 58.1± 5.9 cm, 7 males and 3
females), with a birth weight of 2.7 ± 0.6 kg were recruited
from the inpatient metabolic ward of the Department of
Pediatrics, Federal University of Bahia School of Medicine,
Hospital Universitario Professor Edgar Stantos, Salvador,
Brazil. Six were classified as primary and four as suffering
from secondary malnutrition as determined by a pediatrician
familiar with our study. The data from these infants were
compared to 10 healthy formula-fed (Carnation Good Start
with iron) counterparts (7.3± 0.8 kg, 68.8± 2.8 cm, 5.0± 0.7
months) from a prior similar metabolic study in Miami,
Florida, USA [8]. Only infants that were admitted for severe
malnutrition with a diagnosis of Marasmus or Kwashiorkor
were studied. No healthy infants were recruited for this
study since we already had data from such a group from a
prior metabolic study [8]. In our group of 10 infants, six
were being treated for Marasmus and four for Kwashiorkor.
Marasmus was the main reason for primary malnutrition
in those infants so classified. The four infants classified
as having secondary malnutrition were also being treated
for Kwashiorkor. The mean admission weight for the 10
infants was 3.7 ± 1.20 kg. Moreover, there was no presence
of concurrent secondary infection in those infants that
were classified as having secondary malnutrition when they
underwent metabolic testing. Furthermore, all infants who
participated in the study were less than the 5th percentile
for weight-for-length, length-for-age and weight-for-age
according to the NCHS growth charts [9]. Moreover, all
infants were classified as being malnourished according to
weight-for-age and length-for-age z-scores being less than
or equal to −2 upon admission [10]. Once identified, they
were studied after they showed appropriate recovery from
infectious illness as determined by the attending pediatrician.
Moreover, there was no indication or presence of edema at
the time of the metabolic test as verified by the pediatrician
familiar with the study. This was usually three days after
admission. This was also verified by the 0.36 ± 0.22 kg
of weight gained between admission and the time of the
metabolic test. Moreover, infants had to have a normal body
temperature, as determined by the measurement of the rectal
temperature, just prior to metabolic testing. Finally, infants
had to be consuming the prescribed amount of formula with
no presence of acute diarrhea or vomiting for at least 24
hours prior to metabolic testing. Infants were excluded if they
were exclusively breastfed or presented with renal, hepatic,

respiratory, and/or cardiac chronic diseases. Moreover, those
with serious infections (pneumonia, meningitis, septicemia,
etc.) requiring intensive care were also excluded. All infants
studied were of African descent and from improvised families
[11] where there were 4.5 ± 0.5 persons living within the
household. The average monthly household income was
230.00 ± 133.00 US dollars.

Biological parents were provided with a complete expla-
nation regarding the purpose, procedure, risks, and benefits
of the study and informed consent was obtained from at
least one parent of each infant. The study was approved by
the Institutional Review Board of the Hospital Universitario
Professor Edgar Stantos, Federal University of Bahia School
of Medicine, and by the Institute Review Board of Lehman
College, Bronx, NY.

2.2. Anthropometry. Length was measured in duplicate with
a horizontal stadiometer (Perspective Enterprises, Kalama-
zoo, MI) and body weight was the average of two mea-
surements obtained with an infant scale (Cardinal Detecto,
Webb City, MO). Body composition was determined through
the mean of triplicate measurements of triceps skin-fold
thickness on the right side of the body using a Lange
skin-fold caliper (Lange, Beta Technology, Cambridge MD)
according to a standard procedure [12]. Calculation of
the body fat was based on Siri’s equation [body fat % of
weight = (4.95/body density − 4.5) × 100], where body
density is calculated from age and sex adjusted regression
equations designed for malnourished infants according to
Laditan and Ayeni [13]. Infant BMI (kg/m2) was calculated
and all anthropometric measurements were made by a
trained registered dietitian. Length-for-age, weight-for-age,
and weight-for-length z-scores were calculated with Epi
Info software (Version 3.5.1) utilizing the 1978 WHO/CDC
growth reference [10].

2.3. Energy Intake. Total energy intake, and the percentage of
carbohydrate, fat, and protein consumed, were determined
by utilizing the formula manufacturer’s proximate analysis
(Nestle Good Start with DHA & ARA) and by the amount
consumed by the infant though out the 22-hour metabolic
test using calibrated infant feeding bottles [8]. The recording
of energy intake started one-hour prior to and ended one-
hour before the conclusion of the 22-hour metabolic testing
period. The one-hour off-set was necessary to include or
exclude energy consumed before and after the metabolic
testing period due to the gut transient time for formula
in this age infant [14]. Furthermore, none of these infants
consumed energy from other sources such as solid foods or
other liquid supplements during the study. All infants were
formula fed for at least three months prior to metabolic
measurements.

2.4. Twenty-Two Hour Energy Expenditure. Prior to each
metabolic measurement, the Enhanced Metabolic Testing
Activity Chamber (EMTAC) instrumentation was calibrated
with standard gases with a known concentration of oxy-
gen and carbon dioxide. Furthermore, parents were given
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instruction on how to interact with their infants and were
given time to practice using the hand access ports prior
to metabolic testing [8, 15–17]. Once all of the instruction
and calibrations were complete each infant was placed in
the EMTAC for 22 hours from 11:30 AM till 9:30 AM
the following day for continuous measurements of energy
expenditure (EE; kcal/min), physical activity (PA; oscillations
in weight/min/kg body weight), and the respiratory quotient
(RQ; VCO2/VO2). Two hours were allowed for instrument
calibrations, parental instruction and practice using the
hand-access ports. Any supplies such as diapers, formula,
or toys were placed in the EMTAC in hanging bags before
the start of the test. Parents continued to formula feed their
infants during metabolic testing. Breast fed infants were not
studied due to the difficulty of having pumped breast milk
available for the infant during the long duration metabolic
testing period. Moreover, we did not have the ability to keep
breast milk cool within the EMTAC enclosure for the 22-
hour metabolic test. The family of the infant was provided
lodging within the laboratory during the entire testing
period [8]. The investigator, pediatric research fellows, and
attending pediatricians that were familiar with the study
acted as observers on rotating eight-hour shifts and recorded
all infant activities such as infant feedings, crying, periods of
observed sleep, and amount of parental interaction during
the entire 22-hour testing period.

Energy expenditure, sleeping metabolic rate, physical
activity, and the respiratory quotient were continuously cal-
culated as described in a previous infant 24-hour metabolic
study [8]. The EMTAC, methodology for measurement and
calculation of each component of 24-hour extrapolated EE,
and correction for parental interaction have been described
in previous studies [8, 15–17].

2.5. Calculations. To correct the continuous metabolic data
for differences in body weight, each five-minute data sum-
mary period (kcal/min) was divided by kg body weight and
expressed as kcal/min/kg. Next, the corrected continuous
metabolic data for each infant were than divided into three
separate periods consisting of 12, eight, and two hours each,
respectively. The daytime period ranged from 11:30 AM till
11:29 PM, the night time period ranged from 11:30 PM till
7:29 AM the next day and the morning period ranged from
7:30 AM till the completion of the metabolic test at 9:30 AM.
The criteria used for the division of the metabolic data into
the specific time periods are similar to that used in previous
metabolic studies in infants [8, 15–17] and in adults [18, 19].

2.6. Statistical Analysis. The sample size in this study was
determined in advance, based on data obtained from short
and long-term metabolic measurements in the EMTAC in
previous studies [8, 15–17]. Moreover, the number of infants
needed to detect a 5% difference in metabolic and anthro-
pometric parameters, were then calculated according to the
formula of Kuzma [20]. All data were analyzed utilizing SPSS
(Version 13, Chicago, IL) and expressed as Mean ± Standard
Deviation. Significance (P < .05) was determined at the five
percent level of probability. Finally, the Shapiro-Wilk test of

Table 1: Physical characteristics of malnourished and healthy
infants.

10 Malnourished 10 Healthy [8]

Males/Females 7/3 7/3

Age (months) 7.7± 5.6 5.0± 0.7

Length (cm) 58.1± 5.9∗ 68.8± 2.8

Body weight (kg) 4.1± 1.2∗ 7.3± 0.8

Body fat (%) 10.3± 7.6∗ 25.7± 2.5

Fat-free mass (kg) 3.6± 0.8∗ 5.4± 0.5

BMI (kg/m2) 12.0± 1.7∗ 15.4± 1.5

Maternal BMI (kg/m2) 24.7± 4.7 27.1± 6.4

Length-for-age z-score −3.64± 1.72∗ 1.28± 1.17

Weight-for-age z-score −3.78± 1.11∗ 0.26± 0.96

Weight-for-length z-score −1.80± 1.01 −1.06± 1.00
∗
= P < .05 between malnourished and healthy infants by Independent

t-test.

Normality was utilized to determine whether the distribution
was normal for both the malnourished and healthy infants.
The test suggests that both the malnourished (P < .68)
and healthy infants (P < .15) were found to be normally
distributed. Therefore, parametric statistical analysis was
utilized for our data analysis.

Comparisons for 24-hour extrapolated metabolic rate
and anthropometric data between malnourished and healthy
infants were determined by Independent t-test (P < .05).
Furthermore, within each group (malnourished and healthy)
one-way ANOVA with Least Significant Difference was
utilized to determine differences between each of the three
time periods (day time, night time, and morning) for
continuous energy expenditure (kcal/kg/min), respiratory
quotients (VCO2/VO2), and physical activity (Oscillations
in weight/min/kg body weight). All metabolic results are
expressed as per kg/body weight unless otherwise noted.

3. Results

3.1. Anthropometry. In comparison to similarly aged healthy
controls, the malnourished infants in this study were shorter,
lighter, and had less body fat and fat-free mass, along with a
lower BMI. Moreover, the malnourished infants had lower
z-scores for length-for-age (P < .05) and weight-for-age
(P < .05), in comparison to their healthy counterparts
while no differences were found between the two groups
for weight-for-length (Table 1). However, no differences were
found between the two groups in terms of maternal BMI
(Table 1) which was within the normal weight range of
20–25 kg/m2. Finally, the malnourished infants were living
below the poverty line as shown by the monthly income of
$230.00 ± $133.00 and number of persons residing in the
household (4.5± 0.5).

3.2. Twenty-Four-Hour Energy Metabolism. According to
Table 2, the malnourished infants consumed more energy
(P < .05) during the metabolic test than their healthy coun-
terparts, with a greater proportion of energy as carbohydrate
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Table 2: Comparison of 24-hour energy intake, metabolism, and
parental interaction between malnourished and healthy infants.

Malnourished Healthy [8]

24-hour energy intake
(kcal/kg/day)

142.7± 14.6∗ 85.1± 25.8

Proportion of energy as
carbohydrate (%)

55.1± 3.9∗ 47.2± 5.2

Proportion of energy as
protein (%)

11.1± 1.5 11.0± 3.0

Proportion of energy as fat
(%)

31.8± 9.2 28.3± 7.4

24-hour energy
expenditure (EE;
kcal/kg/day)

101.3± 20.0∗ 78.7± 8.4

Sleeping metabolic rate
(SMR; kcal/kg/day)

92.6± 17.1∗ 65.0± 3.9

24-hour Respiratory
Quotient (RQ; VCO2/VO2)

1.00± 0.13∗ 0.86± 0.08

24-hour PA1 (Oscillations
in weight/minute/kg/body
weight)

2.3± 0.9∗ 4.0± 1.5

Parental interaction (%) 30.9± 8.1 30.6± 7.5

Crying time (minutes/day) 133.5± 52.5∗ 88.0± 41.8

Sleep (%) 57.2± 6.8∗ 49.7± 6.0
∗
=P < .05 between malnourished and healthy infants by Independent t-test

1PA = Physical activity index.

(P < .05). Twenty-four-hour extrapolated energy expendi-
ture (24-hour EE) and sleeping metabolic rates (SMR), along
with the respiratory quotient (RQ), were greater (P < .05)
in the malnourished infants in comparison to their healthy
counterparts (Table 2). However, the malnourished infants
were less physically active (P < .05, Table 2). Moreover, the
malnourished infants cried (P < .05) and slept (P < .05)
longer during metabolic testing (P < .05) than their healthy
counterparts. Finally, there were no differences between the
two groups in the amount of time parents spent interacting
with their infants (Table 2).

3.3. Continuous 22-Hour Energy Expenditure. The metabolic
pattern for both groups of infants throughout the 22-hour
measurement period is shown in Figure 1. The malnourished
infants appeared to have greater energy expenditure during
the day and morning periods in comparison to their healthy
counterparts. However, during the night time period (11:30
PM till 7:30 AM) the healthy infants showed a significant
(P < .05) decrease in energy expenditure as opposed to
the lack of a similar decrease in the malnourished infants.
Similar results were obtained for physical activity where the
malnourished infants showed no significant changes in this
parameter throughout the 22-hour metabolic test (Figure 2).
However, even though not significant, the healthy infants
showed greater amounts of physical activity during the day
and morning periods in comparison to the night time period
(Figure 2). The respiratory quotient ranged from 0.83 to 1.13
across all the malnourished infants over the course of the
metabolic test. This is in comparison to the range of 0.70
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Figure 1: Continuous energy expenditure (kcal/min/kg) for 22
hours in 10 malnourished (solid line) compared to 10 healthy infant
controls (dotted line). Each data point represents mean energy
expenditure over a 5-minute period.
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Figure 2: Continuous physical activity (oscillations in weight/
min/kg body weight) for 22 hours in 10 malnourished (solid line)
compared to 10 healthy infant controls (dotted line). Each data
point represents mean physical activity over a 5-minute period.

to 0.99 in the healthy infants undergoing a similar study
(Figure 3). During metabolic testing the respiratory quotient
remained higher in the malnourished infants in comparison
to their healthy counterparts.

4. Discussion

This is the first study of its kind where a direct comparison
was made between similarly aged chronically malnourished
and healthy full term infants in regards to their continuous
22-hour metabolic profiles utilizing an established accurate
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Figure 3: Continuous respiratory quotient (VCO2/VO2) for 22
hours in malnourished (solid line) compared to 10 healthy infant
controls (dotted line). Each data point represents mean respiratory
quotient over a 5-minute period.

technology [8, 16, 17]. Moreover, at the time of the
metabolic test, none of the infants had edema or were febrile
which might have affected their 22-hour energy expenditure
profile.

In regards to anthropometrics, we found that malnour-
ished infants had lower body weight and length, less body
fat and fat-free mass, along with a lower BMI. However, the
biological parents of both groups of infants had BMI’s within
the normal weight range (19.1 to 27.3 kg/m2). Moreover,
the malnourished infants were from improvised families
[11, 12].

In regards to energy metabolism, malnourished infants
consumed and expended more energy, had higher respira-
tory quotients, greater sleeping metabolic rates, and were
less physically active. Moreover, they slept and cried more.
Finally, they consumed a greater portion of their energy as
carbohydrate.

The higher proportion of energy intake as carbohydrate
in the malnourished infants might explain the higher
respiratory quotients found during the 22-hour metabolic
test. Respiratory quotients greater than one might reflect
increased lipid synthesis. This is similar to the findings in
one study where low birth-weight infants on total parenteral
nutrition had greater lipid synthesis on a high carbohydrate
intake of 12 g/kg/day [21]. It is possible that increased
carbohydrate intake in the malnourished infants could lead
to altered energy metabolism later in life. This might be
due to altered insulin sensitivity created during the time
of malnutrition. In one study children who were born
prematurely had decreased insulin sensitivity as compared to
children born at term. Moreover, an excess childhood weight
gain was associated with greater insulin resistance after birth
[22]. It is possible that the additional carbohydrate intake
in our malnourished infants might lead to the possibility
of insulin resistance and a greater possibility of excess body

weight gain after their recovery from malnutrition during
later childhood.

During the 22-hour metabolic test, the malnourished
infants did not display any kind of a metabolic circadian
rhythm. In a previous study, infants of Hispanic decent as
young as 4 months displayed a metabolic Circadian rhythm
[8]. It is possible that the lack of a metabolic circadian
rhythm in the malnourished infants is the result of a lack of
sympathetic nervous system stimulation [23]. Reducing or
eliminating circadian hormonal stimulation of the sympa-
thetic nervous system may allow more energy to be diverted
to rapid growth. This might partly explain the greater energy
expenditure in the malnourished infants. The development
of a circadian rhythm in infants begins in utero. The
suprachiasmatic nuclei, the site of the circadian clock, are
present by mid gestation. After birth there are pronounced
rhythms in the sleep-wake cycle and hormone secretion by
two months of age [24]. Furthermore, fetal heart rate has
been found to be synchronized with maternal activity, heart
rate, cortisol, maelatonin, and body temperature [25, 26].
Furthermore, the nocturnal trough of body temperature is
already present in 6- to 12-week-old full term infants and is a
good indicator of the presence of circadian rhythms [27]. All
of these studies [25–27] suggest that a metabolic circadian
rhythm is present in healthy infants almost from the time of
birth.

Another possible explanation for the greater energy
intake and expenditure in the malnourished infants during
this study may be due to their rapid growth rate. It is
estimated that it costs 3.9–6.0 kcal/gram of body weight
gain during the first year of life in malnourished infants,
representing a 70% energetic efficiency for energy dis-
position [28]. Considering they have less than half the
body fat content and are half the weight of their sim-
ilarly aged healthy counter parts, this suggests that they
are displaying rapid catch-up growth in order to replace
their fat-free and fat mass stores back to their genetically
predetermined levels. The lack of a metabolic circadian
rhythm may also reflect that they are laying down new
tissue throughout the day and night. It is possible that
their metabolic circadian rhythm might reappear once they
reach their normal body weight and composition for their
ages.

The EMTAC is the first instrument of its kind to
conduct continuous metabolic measurements in infants
suffering from primary/secondary malnutrition. Previously,
metabolic evaluations in malnourished infants were made
utilizing a 20-minute measurement of resting metabolic
rate with a Deltatrac metabolic monitor [29]. However,
short-term measurements do not encompass the true
metabolic needs in these infants due to their unique
metabolic profile. In this study where energy expenditure
was measured continuously for 22 hours, we found the
apparent lack of a metabolic circadian rhythm in the
malnourished infants. This might have an effect on the true
metabolic needs of these infants. Moreover, the measurement
could be repeated and the reappearance of the metabolic
circadian rhythm could be possibly used as a sign of
recovery.
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5. Conclusions

This is the first study of its kind in malnourished infants.
We found differences in the metabolic profiles between
malnourished and healthy infants of similar age. These
results will possibly affect determination of future energy
requirements and application of nutritional rehabilitation
regimes in infants suffering from malnutrition. We also
found that they appear to conserve energy, possibly for
catch-up growth, though a reduction in physical activity,
increased sleep, and the lack of a metabolic circadian rhythm.
Moreover, the greater respiratory quotient possibly reflects
greater lipid synthesis in order to replace depleted body fat.
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