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Abstract: Coaxial core/shell electrospun nanofibers consisting of ferroelectric P(VDF-TrFE) and
relaxor ferroelectric P(VDF-TrFE-CTFE) are tailor-made with hierarchical structures to modulate
their mechanical properties with respect to their constituents. Compared with two single and the
other coaxial membranes prepared in the research, the core/shell-TrFE/CTFE membrane shows
a more prominent mechanical anisotropy between revolving direction (RD) and cross direction
(CD) associated with improved resistance to tensile stress for the crystallite phase stability and
good strength-ductility balance. This is due to the better degree of core/shell-TrFE-CTFE nanofiber
alignment and the crystalline/amorphous ratio. The coupling between terpolymer P(VDF-TrFE-
CTFE) and copolymer P(VDF-TrFE) is responsible for phase stabilization, comparing the core/shell-
TrFE/CTFE with the pristine terpolymer. Moreover, an impressive collective deformation mechanism
of a two-length scale in the core/shell composite structure is found. We apply in-situ synchrotron
X-ray to resolve the two-length scale simultaneously by using the small-angle X-ray scattering to
characterize the nanofibers and the wide-angle X-ray diffraction to identify the phase transformations.
Our findings may serve as guidelines for the fabrication of the electrospun nanofibers used as
membranes-based electroactive polymers.

Keywords: hierarchical structure; collective mechanisms; coaxial electrospun core/shell nanofibers;
tensile modulus; wide-angle X-ray diffraction

1. Introduction

Electroactive polymers (EAPs) alter their size or form when stimulated by an elec-
tric field. They have been applied in the design of advanced electronic systems, namely
electromechanical sensors, actuators, artificial muscles, and soft robots [1–7]. In response
to applied electrical stimuli, EAPs usually experience polymer collapse, electrochemical
reactions, ionic-polymer-metal interactions, or changes in electrophoretic mobility [8]. Such
response is closely dependent on various variables, including the nature of the polymeric
network, the shape and thickness of EAPs, the intensity of the applied electrical stimulus,
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and temperature [9]. Moreover, the type of processing of EAPs plays a crucial role in
determining the properties and performance of the final material [10]. Most contemporary
EAPs are fabricated by traditional processing techniques, namely solvent casting and
free radical polymerization [9]. The utilization of electrospinning techniques, especially
coaxial electrospinning, has not been sufficiently investigated in the design of EAPs. Al-
though it is a less-explored method, the coaxial electrospinning technique provides a way
to manufacture complex electroactive systems with defined architecture and improved
performance. Therefore, the understanding of the relationship between hierarchical struc-
tures, microstructure, and mechanical properties of electrospun EAPs has gained research
attention [11–18].

One of the broadly utilized EAPs is polyvinylidene fluoride (PVDF), a semicrystalline
polymer with extended zigzag chains [19–21]. The research of PVDF is not limited to PVDF
alone but also involves its copolymers and terpolymers [22–26]. Owing to its superior
properties such as tunability, stability, biocompatibility, high strength, high modulus, high
electrostrictive strain and high dielectric constant, the PVDF family has been employed
in piezoelectric and electrostrictive applications [11,27–30]. One of the most commonly
used PVDF-based copolymers is poly(vinylidene fluoride-trifluoroethylene), denoted as
P(VDF-TrFE). The copolymer P(VDF-TrFE) is a ferroelectric copolymer that manifests good
mechanical properties, high dielectric constant, low dielectric loss, and high electromechani-
cal response [27]. The superior piezoelectric properties are owing to the copolymer’s highly
electroactive polar β-phase crystalline structure along with a large crystalline domain
size [31,32]. Despite the excellent dielectric properties, the ferroelectric polymers generally
exhibit lower dielectric constants, lower energy density, broader hysteresis loop, and higher
remnant polarization than those of the relaxor-based ferroelectric polymers [2,27]. Cou-
pling the ferroelectric polymer and the relaxor-based ferroelectric polymer provides a way
to obtain a material with desirable mechanical and enhanced dielectric properties, which
stand for a higher dielectric constant and a higher energy density. The relaxor-based ferro-
electric polymers can be obtained by producing the terpolymers of PVDF [33]. The most
commonly used PVDF-based terpolymer is poly(vinylidene fluoride-trifluoroethylene-
chlorotrifluoroethylene), denoted as P(VDF-TrFE-CTFE). When producing a relaxor-based
ferroelectric polymer, the third monomer, chlorotrifluoroethylene (CTFE), is inserted in
the P(VDF-TrFE) copolymer chain to compose the terpolymer, P(VDF-TrFE-CTFE) [34].
P(VDF-TrFE-CTFE) owns a narrow hysteresis loop, higher polarization, higher dielectric
constant, higher electrostriction, and higher electromechanical response [35,36].

Chen et al. showed that blending the ferroelectric copolymer P(VDF-TrFE) and the
relaxor-based ferroelectric terpolymer P(VDF-TrFE-CTFE) can enhance the polarization
and dielectric responses of the material [37]. An alternative method to combine P(VDF-
TrFE) and P(VDF-TrFE-CTFE) is through the coaxial electrospinning technique [14]. In
that study, the mechanical properties, dielectric properties, and structure of core-shell
structured nanocomposite membranes, core/shell-copolymer/terpolymer, and core/shell-
terpolymer/copolymer were studied. The core/shell structured nanocomposite mem-
branes demonstrated superior enhancements of the mechanical and dielectric properties
over the individual composing polymers. In the research of nanocomposite materials, elec-
trospinning technology has been applied for a long time and is a versatile technique for the
mass fabrication of continuous ultrafine fibers with specific nanostructures [12,15,38–41].
Based on the concept of electrospinning, coaxial electrospinning, as an efficient and cost-
effective method to produce the core−shell structured substance, is a practical technique
that combines the advantages of different materials and is applied in wearable electronic
devices, conductive polymers, dielectric materials, and tissue engineering [11,15–17]. Over-
all, coaxial electrospinning could serve as a feasible method to fabricate nanocomposites
materials [16,18].

Small- and wide-angle X-ray scattering (SAXS and WAXS) measurements have been
proven to be a suitable nondestructive technique to capture the subtle and complex changes
in polymers, including the degree of crystallization, crystalline morphology, layer thickness,
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and preferred crystal orientation [42–44]. SAXS and WAXS are unique in their ability to
explore materials in real time, allowing researchers to learn morphology at nanometer and
angstrom scales by employing complementary SAXS and WAXS, respectively. Through
SAXS and WAXS experiments, Castagnet et al. explicitly explained the deformation
and damage mechanism of the PVDF homopolymer at room temperature [45]. They
found that the whitening phenomenon of the PVDF homopolymer can be attributed to
the growth of microvoids and the induction in the amorphous phase. Softening of the
PVDF homopolymer is linked to the growth of microvoids and the nucleation of cavities.
Wu et al., conducted in-situ synchrotron WAXD and SAXS measurements to study the
pristine PVDF fiber in the process of stretch-hold deformation [35]. The outcome suggests
that defects caused by yielding and plastic deformation facilitate the α to β crystal phase
transformation of PVDF, and the crystallites are sheared apart under high strain.

The relationship between the phase transformation and mechanical properties of
core/shell structured composites composed of core/shell-P(VDF-TrFE)/P(VDF-TrFE-CTFE)
and core/shell- P(VDF-TrFE-CTFE)/P(VDF-TrFE), denoted as core/shell-TrFE/CTFE and
core/shell-CTFE/TrFE, respectively, have been introduced in our previous study [14].
However, the coupling relationship between the crystalline structure and morphology
during the tensile deformation of the same nanocomposites has not been examined yet.
This work investigated the deformation mechanisms within and between nanofibers in
the electrospun membranes at the multi-length scale under uniaxial straining. The intro-
duced electrospun membranes include the pristine P(VDF-TrFE) copolymer membrane,
the pristine P(VDF-TrFE-CTFE) terpolymer membrane, the coaxial core/shell-CTFE/TrFE
composite membrane, and the coaxial core/shell-TrFE/CTFE composite membrane. By
examining the structural and morphological characterizations of the single and coaxial elec-
trospun membranes by applying in-situ SAXS and WAXS and scanning electron microscopy
(SEM) under the stretch-hold deformation, the dependence between the morphology and
the crystalline structure of membranes under the tensile deformation was studied.

2. Results

The structural evolution of electrospun membranes in correlation with mechanical
behavior was studied to identify the dominant deformation mechanisms subjected to
tensile straining. Considering that the electrospun membranes exhibit an anisotropic
orientation of nanofibers, the membranes underwent the tensile tests along the revolving
direction (RD) and the cross direction (CD) of the electrospinning direction. Further, both
in-situ WAXS and SAXS were applied to examine the sub-nanostructure of the crystalline
lattice and the nanostructure of the lamellar region in the electrospun membranes during
the deformation.

2.1. Deformation Mechanism of Single and Coaxial Electrospun Membranes in RD

First, the tensile test on the single and coaxial electrospun membranes in RD was
examined, and the dominant deformation mechanism of each stage under tensile strain
was clarified. Figure 1b demonstrates the force-strain curve of membranes during uniaxial
tensile deformation; in addition, the SEM images at the designated strains are shown
in Figure 1c–r. Notably, the stretching direction was parallel to the preferred nanofiber
orientation in RD, as illustrated in Figure 1a. The SEM images, two-dimensional (2D)
SAXS patterns, and 2D WAXS patterns were collected at designated strains of 0%, 10%,
60%, and 100%. The microstructure of the four types of membranes, P(VDF-TrFE), P(VDF-
TrFE-CTFE), core/shell-CTFE/TrFE, and core/shell-TrFE/CTFE, are investigated from
their SEM images. Curvy nanofibers with a preferred orientation were observed before
stretching (0% strain) as shown in Figure 1c,g,k,o. Under 10% strain, nanofibers gradually
straightened and reoriented toward the tensile direction, as shown in Figure 1d,h,l,p. With
further stretching to 60% strain, as shown in Figure 1e,i,m,q the nanofibers straightened,
reoriented toward the tensile direction, and slid during deformation. The sliding between
nanofibers facilitated further nanofiber orderings, which led to a larger strain to failure, as
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shown in Figure 1f,j,n,r. P(VDF-TrFE) had an obvious yield point after 10% strain, while
P(VDF-TrFE-CTFE), core/shell-CTFE/TrFE, and core/shell-TrFE/CTFE demonstrated in-
conspicuous yield points after 60% strain. After yielding, the tensile force of all four
membranes continuously increased with increasing strain, suggesting that nanofibers
were continuously stretching and orientating along the strain direction. The deforma-
tion mechanism presented here is consistent with that reported by Lam et al. [13]. The
specimens reported by Lam et al. were randomly disordered nanofibers. After yielding,
these nanofibers were observed to stretch, slide, and align simultaneously. The researchers
also reported that such deformation behavior facilitated further fiber alignment, which
led to large strain failures [46,47]. Although the deformation mechanism was similar in
the randomly disordered nanofibers reported by Lam et al. and the preferred orientation
nanofibers studied in this study, the yield strains of the randomly and preferred orientated
P(VDF-TrFE) membranes demonstrated considerable differences, which were 45% strain
and 10% strain, respectively. Before the failure, stretch, reorientation, and slide were the
dominant deformation mechanisms in the tensile testing.
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Figure 1. (a) Schematic illustration of the tensile test in the RD. The black arrow represents the tensile direction. (b) 
Force-strain curves of the four types of electrospun membranes in the RD. (c–f) are SEM images of single P(VDF-TrFE) at 
Figure 1. (a) Schematic illustration of the tensile test in the RD. The black arrow represents the tensile direction. (b) Force-
strain curves of the four types of electrospun membranes in the RD. (c–f) are SEM images of single P(VDF-TrFE) at the
designated strains of 0%, 10%, 60%, and 100%, respectively. (g–j) are SEM images of core/shell-TrFE/CTFE at the same
designated strains, respectively. (k–n) are SEM images of core/shell-CTFE/TrFE at the same designated strains, respectively.
(o–r) are SEM images of single P(VDF-TrFE-CTFE) at the same designated strains, respectively.

For studying the evolution of the nanostructure of the four membranes, the 2D
SAXS patterns were collected at the four designated strain levels and are presented in
Figure 2. Before stretching, all four membranes demonstrated anisotropic characteristics,
as displayed in Figure 2a,e,i,m. The 2D SAXS patterns revealed an oriented arc or an
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elliptical shape. The long radius of the ellipse was perpendicular to the stretching direction,
while the small radius was parallel to the RD. Notably; lobs observed along the meridian
direction demonstrated the ordered morphology of the long period before stretching. The
lobs indicated a periodic system of alternating crystallites and amorphous regions [48]. As
the 2D SAXS patterns in Figure 2b,f,j,n show, the samples measured at 10% strain were
still within the elastic-deformation levels, and the elliptical shape was similar to the non-
stretching specimens. With further stretching to 60% strain, as shown in Figure 2c,g,k,o,
the elliptical shape became narrower and the lobs became blurred, which attributed to
the change in the distance between lamella. Due to stretching, the amorphous region
within the long period elongated at this stage. When the strain reached 100%, the 2D SAXS
patterns became streak along the meridian, and the lobs disappeared in the core/shell-
CRFE/TrFE and the P(VDF-TrFE-CTFE) membranes. The reduction in the radius of the
ellipse parallel to the deformation direction and the disappearance of the lobs were caused
by the deformation of the lamella within the long period and the cavities or microvoids
formed during deformation. The changes in the elliptical shape and the lobs occurred
after the yield points of all four membranes; this phenomenon was consistent with that
reported by Guo et al. [48]. Guo et al. applied in-situ synchrotron SAXS and WAXS to
investigate the PVDF sheet prepared by melting and tableting PVDF powder during tensile
deformation. After the yield point, the SAXS patterns presented a streak shape. Guo et al.
further illustrated that the streak in the center of the SAXS patterns was associated with
the cavities or microvoids formed by stretching. The deformation of the crystallite within
the lamella could be observed via the study of the WAXS.

The 2D WAXS results shown in Figure 3 exhibited anisotropic diffraction patterns in
the single and coaxial electrospun membranes. Previous studies implied that the electro-
spun membranes demonstrated a preferred (001)β and (201, 111)β crystallographic planes
along the RD and a preferred (110, 200)β crystalline phase along the CD [49,50]. For all four
types of electrospun membranes, no significant structural changes were detected between
0% and 10% strain from the corresponding 2D WAXS. With further increase in the strain to
60% and 100%, the crystalline phase rings demonstrated visible changes. For P(VDF-TrFE),
core/shell-CTFE/TrFE, and core/shell-TrFE/CTFE, the WAXS patterns displayed three
main peaks, and the shape of rings became vague, indicating a highly anisotropic structure.
However, for P(VDF-TrFE-CTFE) under 100% strain, the 2D WAXS ring was not visible,
and the WAXS pattern was blurred, indicating the absence of the ordered crystal structure.
Further research was needed to convert 2D WAXS to one-dimensional (1D) WAXS data.

In Figure 4, the 1D intensity distributions of the electrospun membranes were studied
to further analyze the evolution of the crystallographic plane. The 1D intensity distri-
butions were obtained from the vertical sector integral of the corresponding 2D WAXS
patterns. The Fityk software and Voigt function were used to deconvolve the diffraction
profile, and the Bragg reflections were indexed according to previous reports [37,49]. In
particular, the (110, 200)β crystalline phase was located at the different 2θ regarding the
relaxor ferroelectric crystalline in P(VDF-TrFE-CTFE) and the highly polar ferroelectric
crystalline in P(VDF-TrFE). The (110, 200)β-co reflection in P(VDF-TrFE) was displayed in
Figure 4a while (110, 200)β-ter reflection in P(VDF-TrFE-CTFE) was presented in Figure 4b.
In Figure 4c, the core/shell-CTFE/TrFE demonstrated only the (110, 200)β-co reflection
of the ferroelectric crystalline, which implied the complete infiltration of copolymer with
terpolymer chains and their cocrystallization phenomenon. In Figure 4d, the core/shell-
TrFE/CTFE manifested (110, 200)β reflections of relaxor ferroelectric and ferroelectric
crystallites, implying that the copolymer and terpolymer chains partly penetrated each
other. The results were consistent with the previous report by Lam et al. [14].
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The 1D intensity distribution of the electrospun membranes under tensile strain pre-
sented different behaviors for the P(VDF-TrFE), P(VDF-TrFE-CTFE), core/shell-CTFE/TrFE,
and core/shell-TrFE/CTFE membranes. For the P(VDF-TrFE) electrospun membrane, the
diffraction intensity of (110, 200)β-co at 0% and 10% strain was similar, and the intensity in-
creased from 60% strain to 100% strain, as indicated in Figure 4a. The intensity of the (001)β
and (201, 111)β crystallographic planes also remained unchanged until the strain reached
60% and slightly increased beyond 60% strain. The 60% strain is the key to the change,
indicating the distortion and transformation of the crystallite. For the single electrospun
membrane P(VDF-TrFE-CTFE), the diffraction intensities of (110, 200)β-ter, (001)β, and (201,
111)β remained comparable to those from 0% to 10% strain, as shown in Figure 4b. After
60% strain, the intensities of crystalline planes decreased dramatically, which was caused
by the dissolving of crystallites. The result was comparable to its force-strain behavior
demonstrated in Figure 1b. For the coaxial electrospun membrane core/shell-CTFE/TrFE,
as shown in Figure 4c, the diffraction intensities of (110, 200)β-co, (001)β, and (201, 111)β
remained comparable or increased from 0% to 60% strain. The increase in the intensity was
caused by the further alignment of the crystalline/amorphous region under tensile strain.
While the strain reached 100%, the diffraction intensities of (110, 200)β-co, (001)β, and (201,



Int. J. Mol. Sci. 2021, 22, 12669 7 of 20

111)β decreased. The drop in the intensity indicated the resolution of the crystallites. Re-
garding the coaxial electrospun membrane core/shell-TrFE/CTFE, as shown in Figure 4d,
the diffraction intensities of (110, 200)β-co and (110, 200)β-ter increased from 0% to 100%
strain. The diffraction intensities of (001)β and (201, 111)β remained comparable from 0%
to 100% strain. Compared with the intensity of crystalline planes of the pristine terpolymer
membrane, even after 60% strain, the presence of the copolymer lamella stabilized the (110,
200)β-ter crystalline plane.
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2.2. Deformation Mechanism of Single and Coaxial Electrospun Membranes in CD

Next, the single and coaxial electrospun membranes were stretched and observed
in CD. Figure 5b represents the force-strain curve of membranes during uniaxial tensile
deformation, and Figure 5c–r show the SEM images at the designated strains. It is worth
noting that the stretching direction was normal to the preferred nanofiber orientation in
CD, as illustrated in Figure 5a. The SEM images, 2D SAXS patterns, and 2D WAXS patterns
were collected at assigned strains of 0%, 10%, 60%, and 100%. The microstructure of all
four types of membranes, P(VDF-TrFE), P(VDF-TrFE-CTFE), core/shell-CTFE/TrFE, and
core/shell-TrFE/CTFE, are examined from their SEM images. Curvy nanofibers having a
preferred orientation normal to the tensile axis were observed before stretching, as shown
in Figure 5c,g,k,o. At 10% strain, nanofibers did not show the morphological change in
the SEM, as presented in Figure 5d,h,l,p. At 60% strain, the nanofibers reoriented toward
the tensile direction, as shown in Figure 5e,i,m,q. With further stretching to 100% strain,
the nanofibers exhibited straightening, a reorientation towards the tensile direction, and
sliding during deformation, as shown in Figure 5f,j,n,r. The reorientation of the nanofibers
was the dominant deformation mechanism in CD membranes.

Figure 6 demonstrates the results of 2D SAXS. Before stretching, due to the relation-
ship between the CD and RD specimens, the 2D SAXS profiles of all four membranes,
P(VDF-TrFE), P(VDF-TrFE-CTFE), core/shell-CTFE/TrFE, and core/shell-TrFE/CTFE,
demonstrated images similar to each RD sample image rotated 90 degrees, as seen in
Figure 6a,e,i,m. Similarly, the 2D SAXS pattern revealed an elliptical shape and showed
lobes along the equatorial direction. The small radius of the ellipse was perpendicular to
the tensile axis, while the long radius of the ellipse was parallel to the stretching direction.
With the increase in strain to 10%, the 2D SAXS patterns remained unchanged compared
to the non-stretching samples, as demonstrated in Figure 6b,f,j,n. With further increase
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of strain to 60%, the 2D SAXS profiles became disk-like, and the lobes became blurred in
Figure 6c,g,k,o. The disk-like shape was attributed to the decrease in the radius of the 2D
SAXS pattern in the elongation direction and the increase in the radius in the diagonal
direction. The reorientation of nanofibers towards the elongation direction precipitated
the changes in the radius of the 2D SAXS patterns. The growth of the cavities and the
deformation of the long period blurred the lobes. With further stretching to 100% strain,
the disk-like shape of the 2D SAXS profiles became more pronounced, and the lobes disap-
peared, as seen in Figure 6d,h,l,p. In this scenario, the nanofibers were further stretched
in the deformation direction, and more nanofibers were aligned in the direction between
RD and CD compared to the 60% strained membrane. The increase in the number of these
nanofibers in the direction between RD and CD helps to increase the radius of the 2D SAXS
pattern in the diagonal direction. The aggravation of both the growth of the cavities and
the deformation of the long period led to the disappearance of the lobes.
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Figure 5. (a) Schematic illustration of the tensile test in the CD. The black arrow represents the tensile direction. (b) Force-
strain curves of the four types of electrospun membranes in the CD. (c–f) are SEM images of single P(VDF-TrFE) at the
designated strains of 0%, 10%, 60%, and 100%, respectively. (g–j) are SEM images of core/shell-TrFE/CTFE at the same
designated strains, respectively. (k–n) are SEM images of core/shell-CTFE/TrFE at the same designated strains, respectively.
(o–r) are SEM images of single P(VDF-TrFE-CTFE) at the same designated strains, respectively.

Figures 7 and 8 show the results of 2D and 1D WAXS for the electrospun membranes
examined in CD, respectively. For the four types of electrospun membranes, the 2D WAXS
manifested anisotropic diffraction patterns, and the diffraction rings became blurred with
the increase of the strain, as shown in Figure 7. The 1D intensity distributions were obtained
from the vertical sector integral of the 2D patterns. For the two single electrospun mem-
branes P(VDF-TrFE) and P(VDF-TrFE-CTFE), the intensities of (001)β, (201, 111)β, and (110,
200)β reflections reduced when increasing the strain, as shown in Figure 8a,b, respectively.
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In Figure 8d, the intensities of the (110, 200)β-co and (110, 200)β-ter of core/shell-TrFE/CTFE
membrane presented a similar trend as those for the two single electrospun membranes.
However, the intensities of the (001)β and (201, 111)β diffractions of core/shell-CTFE/TrFE
first reduced from 0% to 60% strain and then increased from 60% to 100% strain, as shown
in Figure 8c. The drop in the maximum intensity indicated that the crystallites were de-
formed in the direction of the tensile axis while the increase in the intensity implied the α-
to β-phase transformation induced by stretching, as reported by Wu et al. [35]. Wu et al.
performed in-situ synchrotron WAXS and SAXS measurements to study the PVDF fiber
melt-spun from pellets. The results of the SAXS and WAXD analysis showed that the for-
mation of defects or microvoids during the process of yielding and plastic flow promoted
the transformation of α-phase to β-phase, which is more compact compared to α-phase.
Therefore, the 1D WAXS intensity of core/shell-CTFE/TrFE increased at high strain.
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Figure 6. 2D SAXS patterns in the single and coaxial electrospun membranes at the designated strains in CD. (a,e,i,m)
Nanofibers are oriented in a preferred orientation normal to the tensile axis, indicated by an elliptical shape of the diffraction
pattern. (b,f,j,n). Nanofibers are slightly deformed along the tensile axis, indicated by an elliptical shape of the unchanged
diffraction pattern. (c,g,k,o) Nanofibers are reoriented towards the tensile axis, indicated by a square-like shape of the
diffraction pattern. (d,h,l,p) Nanofibers are further reoriented to the tensile axis, indicated by a disk-like shape of the
diffraction pattern.
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3. Discussion

To understand the nanofiber deformation under stretching at different multi-length
scales, we investigated the long period and the normalized crystallinity versus strain
during uniaxial stretching. The variation of the long period versus strain in RD and CD
is presented in Figure 9. In RD, no significant long period changes were obtained before
10% strain. At this stage, nanofibers were mainly straightening and reorienting besides
extending the packed molecular chains. From 10% to 100% strain, as the strain of all four
types of electrospun membranes increased, there was a significant increase in the long
period. This increase indicated that the amorphous chains between the crystalline lamellae
were extended, which resulted in a larger interlamellar spacing. At this stage, nanofibers
were mainly under stretching and extending the packed molecular chains. The results
were consistent with the analysis of 2D SAXS patterns in Figure 2 and the force-strain
behavior in Figure 1b. By contrast, the changes in the long period in CD were less than
those in RD. In CD, no significant long period changes were obtained before 60% strain. At
this stage, nanofibers were mainly under reorientation. The results were also consistent
with the analysis of 2D SAXS patterns shown in Figure 6 and the force-strain behavior
shown in Figure 5b. From the trend of the long period in RD and CD, it could be found
that the trends of two core/shell membranes had the characteristics of complementing
the binary and ternary materials. In addition, the length variation in the RD was greater
than that in the CD because CD samples must first undergo reorientation before stretching
the nanofibers.
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To elucidate the effect of uniaxial stretching on the crystalline features of electrospun
nanofibers, the degree of crystallinity was examined. The degree of crystallinity (Xc) was
determined according to the following equation:

Xc = Ac/(Ac + Aa)

where Ac and Aa are the integrated areas of the crystalline peaks and amorphous re-
gions, respectively.

To better understand the trend, the strain dependence of the normalized crystallinity
of the single and coaxial electrospun membranes in RD is shown in Figure 10a. The nor-
malized crystallinity of the single electrospun membrane of P(VDF-TrFE-CTFE) reached
the highest value at 10% strain. Then, the normalized crystallinity dropped dramatically
after 10% strain because of the dissolving of crystallites. For the single electrospun mem-
brane P(VDF-TrFE) and the coaxial electrospun membrane core/shell-CTFE/TrFE, the
normalized crystallinity dropped after 60% strain because of the distortion and transfor-
mation of the crystallites. For the coaxial electrospun membrane core/shell-TrFE/CTFE,
the normalized crystallinity increased with the increase of strain from 0% to 100%. Again,
the presence of the copolymer lamella stabilized the crystalline phase of (110, 200)β-ter
even beyond 60% strain. The analysis of the crystallinity supported the observations of
the 1D WAXS intensity profiles. The strain dependence of the normalized crystallinity
of the single and coaxial electrospun membranes in CD is shown in Figure 10b. For all
four electrospun membranes, the normalized crystallinity decreased with increasing strain.
In CD, the reorientation of the nanofibers dominated the deformation mechanism and
distorted the crystallites, resulting in a decrease in the normalized crystallinity. In short,
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due to the difference in the evolutions of the crystalline structure between the two core-shell
structured membranes in RD, their resistance to tensile stress also varied.
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According to the mechanical and structural characterizations, we propose the concept
of the deformation in a two-length scale, as demonstrated in Figure 11. Our proposal is
based on the research by Yang et al. who examined tear propagation in rabbit skin under
tensile loading via SAXS and SEM [51]. They concluded the deformation in terms of four
mechanisms of collagen fibril activity: fibril straightening, fibril reorientation toward the
tensile direction, elastic stretching, and interfibrillar sliding. Although the nature of the
materials discussed is different, their study shed light on the deformation mechanism of the
nanofiber scale. Guo et al., investigated the PVDF sheet prepared by melting and tableting
PVDF powder, and they proposed a deformation model of the evolution of the crystalline
and amorphous components during tensile loading [48]. They accentuated the lamellar
along the horizontal and vertical directions and the sample was stretched in the horizontal
direction. The initial structure was isotropic, and the deformation mechanisms were also
described in four stages. In the first stage, the crystalline lamellae vertical to the stretching
direction moved and the spacing between adjacent lamellae increased after elongation. By
contrast, the lamellae that are along the tensile force were compacted. In the second stage,
the lamellar stacks were broken and the lamellar structure was destroyed. In the third stage,
the spherulitic form of PVDF crystalline morphology changed into a fibrillar microstructure.
In the fourth stage, the α-β phase transformation occurred. Other than the difference in
the technique to prepare PVDF specimens, the main difference between our specimen and
Guo et al.’s, specimen is that our specimen has a preferred nanofiber orientation, leading
to a preferred lamellar orientation. The preferred lamellar orientation was proved by
the incomplete rings of WAXS in Figures 3 and 7. Although the initial orientation of the
lamellae is different in our study and Guo et al.’s, study, their explanation regarding the
evolution of the crystalline and amorphous components during tensile loading has laid
out the big picture of our research.

On the nanofibers scale, we divide the deformation mechanism under tensile load into
four mechanisms: nanofiber straightening, nanofiber reorientation to the tensile direction,
stretching of nanofibers, and sliding between nanofibers. In Figure 11A–C, we apply a
single nanofiber to describe the deformation process under tensile loading. The nanofiber
straightens, stretches, and reorients itself, increasing its projected length in the tensile axis
from L0 to L1 and L2. The increase in the nanofiber length is achieved by three factors,
which may happen simultaneously. The first factor is the straightening of the nanofiber,
that is, the radius of curvature of the curved nanofiber increases from R0 to R1, and R2. The
second factor is stretching the length of the nanofiber itself. The third factor is reorientation
of the nanofiber toward the tensile axis, which is, decreasing the angle (θ) between the
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preferred nanofiber orientation and the tensile axis. The last mechanism is that the sliding
between nanofibers may occur after the yield point. Since the nanofibers are straightened
and aligned on the stretching axis, owing to kinematic requirements, shear strains are
generated between the nanofibers. Under critical shear deformation, the shear stress at
the interface surpasses the cohesive strength of the interface between nanofibers, and the
nanofibers slide away from each other.
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On the sub-nanometer scale, we propose a deformation model for the evolution of
crystalline and amorphous components of anisotropic materials during tensile loading.
The model is modified from the first stage of Guo et al.’s, work [48]. We emphasize the
lamellar along the electrospun revolving direction and vertical to the revolving direction,
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with the numbers of lamellae being different in the two directions, as shown in Figure 11D.
There are more lamellae in the electrospun revolving direction than in the vertical to the
revolving direction. Because of the dominant numbers of lamellae in the electrospun
revolving direction, the long period is defined by the distance consisting of one amorphous
region and one lamella along the electrospun revolving direction, as shown in Figure 11D.
In the RD tensile test, the relationship between the tensile axis and the lamellae layout is
demonstrated in Figure 11E. Under tensile strain, the distance between adjacent lamellae
in the electrospun revolving direction increases along the tensile axis, as presented in
Figure 11F. Therefore, the long period in the RD is elongated with strain. In the CD
tensile test, the relationship between the tensile axis and the lamellae layout is shown in
Figure 11G. Under tensile strain, the distance between adjacent lamellae on the stretching
axis increases and causes the adjacent lamella perpendicular to the stretching axis to shrink,
as shown in Figure 11H. Under tensile strain, the distance between adjacent lamellae on the
stretching axis increases and the deformation causes the adjacent lamella perpendicular to
the stretching axis to shrink, as shown in Figure 11H. Therefore, the long period contracts
in the CD. The rest of the deformation mechanisms in the sub-nanometer scale followed
well from stage two to stage four proposed by Gou et al.

4. Materials and Methods
4.1. Sample Preparation

A cosolvent was prepared by dimethylacetamide (DMC) and methyl ethyl ketone
(MEK) in a weight ratio of 2:3. The copolymer P(VDF-TrFE) (75/25 mol%) and terpoly-
mer P(VDF-TrFE-CTFE) (61.7/30.4/7.9 mol%) powder was obtained from Arkema Group
(PiezoTech, Pierre-Bénite, France). The copolymer and terpolymer were separately dis-
solved in the cosolvent and heated at 60 ◦C for 3–4 h. The electrospinning method used
13 wt% P (VDF-TrFE) and 13 wt% P (VDF-TrFE-CTFE) solutions, and four types of electro-
spun nanofiber samples were prepared. The pristine P(VDF-TrFE) and P(VDF-TrFE-CTFE)
nanofiber samples were fabricated by the single electrospinning method. The other two
samples, the core/shell structured nanocomposites, core/shell-TrFE/CTFE and core/shell-
CTFE/TrFE, were prepared by the coaxial electrospinning method. More details can be
referred to in the following reports [14,52].

4.2. Electrospinning

In the single electrospinning process, a 10 mL syringe pump and a 20 G stainless steel
needle (with an inner diameter of 0.6 mm) filled with the solution were driven at a feed
rate of 1 mL/h. The coaxial electrospinning process needed two concentric detachable
stainless-steel needles, 20 G on the outside and 26 G (with an inner diameter of 0.26 mm)
on the inside. P(VDF-TrFE) and P (VDF-TrFE-CTFE) solutions were injected into two 10 mL
syringe pumps, and the core and the shell were driven at feed rates of 0.6 mL/h and
1 mL/h, respectively. The volume fraction of the core/shell structured polymer calculated
by the feed rate was 0.375:0.625.

The collector was a custom-made rotating cylindrical drum with a diameter of 18 cm,
which rotated at a speed of 800 rpm. A high DC voltage of 18 kV was applied at a working
distance of 18 cm between the positive electrode (connected to the needle) and the negative
electrode (connected to the collector).

4.3. Structural Characterization

The morphology of the electrospun nanofibers was analyzed utilizing a scanning
electron microscope (SEM, JSM-6700F, JEOL, Tokyo, Japan) operating at 15 keV.

4.4. Synchrotron Small and Wide-Angle X-ray Diffraction

The non-destructive small-angle and wide-angle X-ray diffraction (SAXS and WAXS)
were performed with the wavelength of 1.24 Å (10 keV) at the beam line (BL) 23, National
Synchrotron Radiation Research Center (NSRRC, Hsinchu, Taiwan). The experimental
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geometry for SAXS and WAXS setup is shown in Figure 12. Synchronized SAXS and WAXS
measurements were achieved through a data acquisition protocol, which can integrate two
linear gas detectors for WAXS and an area detector for SAXS [53]. As shown in Figure 12g,
the sample was dumbbell-shaped, with a total length of 50 mm, gauge length and width of
10 mm and 3 mm, respectively, and distance between the shoulders of 24 mm. The uniaxial
tensile strength test was recorded with a strain rate of 0.05 mm/s and a holding time of
10 s between consecutive strains to record the in-situ concurrent SAXS and WAXS patterns.
The diffraction pattern was recorded from 2D detectors to obtain the preferred orientation
of the crystallographic plane.
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Figure 12. Experimental geometry for SAXS and WAXS. (a) Gas detector for SAXS; (b) Interchange-
able CCD for SAXS; (c) Automatic bellow system for continuous changes in the sample-to-detector
distance under vacuum; (d) Two linear detectors for WAXS; (e) Sample stage; (f) Tensile stress
tester (Linkam TST350); (g) Schematic illustration of dumbbell-shaped tensile specimen; (h) The
arrangement of a Small-/Wide-angle X-ray scattering instrument.

5. Conclusions

The collective deformation mechanism of the core/shell composite membranes consist-
ing of the relaxor ferroelectric terpolymer P(VDF-TrFE-CTFE) and ferroelectric copolymer
P(VDF-TrFE) was studied. The curvy nanofibers in the core/shell composite membranes
experienced multiple deformation mechanisms of straightening, stretching, sliding, and
reorienting toward the tensile direction. Within nanofibers, the elongation of the amor-
phous region and the deformation of lamella also occurred due to the stretching. Moreover,
the coupling effect between the terpolymer P(VDF-TrFE-CTFE) and the copolymer P(VDF-
TrFE) in the core/shell-TrFE/CTFE membranes provided greater phase stability than in the
core/shell-CTFE/TrFE. This difference in the evolution of the crystalline structure between
the two core/shell structured membranes also contributed to their different mechanical
responses to tensile stress. Our findings may provide important information regarding the
deformation mechanism for various potential applications of electrospun P(VDF-TrFE) and
P(VDF-TrFE-CTFE) nanofibers used as the membranes-based electroactive polymers.
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