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Music and voice bear many similarities and share neural resources to some extent. Experience
dependent plasticity provides a window into the neural overlap between these two domains. Here,
we suggest that research on auditory deprived individuals whose hearing has been bionically
restored offers a unique insight into the functional and structural overlap between music and
voice. Studying how basic emotions (happiness, sadness, and fear) are perceived in auditory
stimuli constitutes a favorable terrain for such an endeavor. We outline a possible neuro-behavioral
approach to study the effect of plasticity on cross-domain processing ofmusical and vocal emotions,
using cochlear implant users as a model of reversible sensory deprivation and comparing them
to normal-hearing individuals. We discuss the implications of such developments on the current
understanding of cross-domain neural overlap.

Cross-domain Neural Overlap and Plasticity

Our musical and vocal perception abilities have such a close relationship that some authors
suggested that the former originated from the latter or vice-versa (Honing et al., 2015; Peretz
et al., 2015). To what extent do music and voice share functional and structural networks and at
which stage of auditory processing they are differentiated are open questions. Functional magnetic
resonance imaging (fMRI) studies show the co-activation of brain regions with possibly distinct
underlying neural populations (Peretz et al., 2015). Research on expert populations has suggested
reciprocal interactions between neural circuits associated with the domains of music and voice
(Patel, 2011; White-Schwoch et al., 2013; summarized by Paquette and Mignault Goulet, 2014).
Indeed studies have shown that musicians have enhanced speech processing capacity, which is
reflected in both cortical and subcortical neural measures (Bidelman et al., 2011, 2014; Parbery-
Clark et al., 2012). Musicians can be used as a model of learning-induced plasticity to investigate
how such cross-domain transfer effects unfold over time (Strait and Kraus, 2014; Strait et al., 2014).
Here we argue that, sensory deprivation offers a complementary model to shed light on the plastic
reorganization of brain networks involved in particular functions.

Temporary Deafened Individuals offer a Unique Insight into

Auditory Neural Plasticity

Cochlear implants (CI) are bionic devices that can restore the sense of hearing in
profoundly deaf individuals. We argue that cochlear implant users offer a promising model
to study the mechanisms of cross-domain plasticity because they undergo different trajectories
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of auditory development: deafness of various origins results in
a variable period of auditory deprivation followed by surgical
restoration of auditory input and an intense rehabilitation period,
yielding variable individual auditory outcomes.

Signal transmitted from the implant to the auditory nerve
is impoverished compared to natural hearing. Critically, the
access to pitch cues is impaired, reduced to a small number
of frequency bands. As a result, cochlear implant users can
potentially perceive speech relatively well in a quiet setting, but
understanding it in noise, or accurately perceiving music is very
challenging since both tasks rely on pitch information (Gfeller
et al., 2007). Perception is not only affected by the impoverished
auditory input, but also by neural re-organization following
auditory deprivation, from the periphery to the cortex. In absence
of auditory input, auditory nerve fibers start to degenerate and
the auditory cortex can be recruited by visual and somatosensory
systems (Collignon et al., 2011; Lazzouni and Lepore, 2014).
Such plastic changes can prevent the auditory cortex from fully
recovering its initial function after the auditory input is restored
via an implant (Lee et al., 2001; Bavelier and Hirshorn, 2010;
Sandmann et al., 2012; Sharma et al., 2015).

To date, little is known of the neural correlates of music
and voice processing in cochlear implants and the extent to
which those processes overlap. Only one study has performed a
direct comparison of the neural correlates of speech and music
perception in CI users. Using positron emission tomography
(PET), Limb et al. (2009), reported increased activation and
greater cortical recruitment in implant recipients compared to
normal hearing controls, during both speech andmusic listening.
This effect was stronger for speech—for which CI users are
more proficient thanmusic—and suggest a link between auditory
performance and degree of auditory cortical activation.

Emotion as a Cross-domain Terrain of

Choice to Study Neural Overlap

An important part of our social interaction relies on accurate
emotion perception. In normal-hearing individuals, evidence
from neuropsychology suggest the existence of an auditory
emotional neural pathway, distinct from auditory perception,
that might be shared across musical and vocal domains and
have both cortical and subcortical components (Peretz, 2011).
A systematic comparison of the vocal and musical domains
suggests a close acoustical relationship for emotional expression,
with similar emotion-specific acoustic cues patterns (Juslin and
Laukka, 2003). Several of those patterns relate to the pitch
dimension, such as prosody for voice (variations in the pitch
contour) and melody for music. The perception of pitch is
severely degraded in cochlear implant users, thus limiting their
access to those important cues, but other non-pitch based
cues can also convey emotions (Gabrielsson and Lindström,
2010). It was recently demonstrated in amusics (individuals
with a lifelong pitch perception deficit; Peretz, 2013) that non-
pitch based cues (e.g., tempo, pulse clarity) can be used to
identify musical emotions (Gosselin et al., 2015). These cues
are available to some extent to CI users (Kong et al., 2004;

Looi et al., 2012), and should allow them a certain degree
of emotional perception. CI users have a documented deficit
in both vocal and musical emotion recognition; emotional
categories and dimensions are not uniformly impaired. They
can recognize some categories of emotion in voice or music
above chance, but not as well as normal hearing controls
(Hopyan et al., 2012; Nakata et al., 2012; Volkova et al., 2013;
Wang et al., 2013). They have difficulty perceiving arousal of
musical excerpts but not valence (Ambert-Dahan et al., 2015).
These differences could be due to the relatively spared abilities
of CI users to perceive temporal variations, while having an
impaired pitch perception. They could also reflect differences in
the complexity of stimuli employed and how they are handled
by speech-optimized processors, suggesting that ad-hoc stimuli
are required to accurately compare the two domains. This
could explain why no study has yet directly compared emotion
processing in CI users across the domains of music and voice.
To date, there is very little neuro-imaging evidence building
up on the aforementioned behavioral findings. Only one study
evaluated the impact of two implant processing strategies on the
perception of prosody (Agrawal et al., 2013) and demonstrated
that electroencephalography (EEG) is a useful tool to reveal
differences between strategies coding specific features.

Toward a Study of Cross-domain

Processing of Musical and Vocal Emotions

in Cochlear Implant Users

A large part of the research on auditory affective processing
has been conducted on prosody utilizing words or sentences
spoken with various emotional expressions and complex musical
pieces expressing varying degrees of emotion. It is not possible to
directly compare those results between music and voice because
of many confounding variables; factors such as speech semantics,
length, harmony, and context are likely to recruit different neural
networks. We argue that a necessary first step to study cross-
domain processing of musical and vocal emotions is to use an
experimental paradigm that moves away from the fairly complex
sounds used in the existing literature, using stimuli that enable
a controlled comparison between the domains of music and
voice. A possible approach would be to use the most primitive
affect expressions (primal interjections close to those of babies
and animals) in each domain: non-speech vocalizations and brief
mono-instrumental musical excerpts.

In the vocal domain, non-speech vocalizations (e.g.,
screams, laughter) depicting basic emotions that are minimally
conventionalized, relatively universal and fundamental to
spontaneous human communication (Scherer, 1986), could be
used. Stimuli like the Montreal Affective Voices (Belin et al.,
2008), consisting of short vocal interjections on the vowel /a/
expressing basic emotions, represent the most primitive form
of emotion in their domain. They have minimal semantic
information and minimal interaction with linguistic processes
(Bestelmeyer et al., 2010). Compared to speech prosody,
vocalizations are treated preferentially in the brain (Pell et al.,
2015). When it comes to music, finding the most basic emotions

Frontiers in Neuroscience | www.frontiersin.org 2 September 2015 | Volume 9 | Article 343

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lehmann and Paquette Auditory emotions in cochlear implant users

and avoiding interaction with other processes require stepping
away from conventional structure (limited by mode or tempo),
reducing the length of the stimuli and reducing its emotional
complexity. Stimuli like the Musical Emotional Bursts (Paquette
et al., 2013) could be used for comparison, they consist of a
few spontaneous notes on a clarinet or violin expressing basic
musical emotions, they are minimally conventionalized and
represent the most primitive form of emotion in their domain.
They are all the more similar to vocal stimuli because they
use continuous pitch instrument (e.g., the violin which offers
a seamless progression between notes, giving the stimuli a
quasi-vocal quality), whereas most studies have used discrete
pitch instruments (e.g., the piano where one key corresponds
to one pitch), which further hinders the direct comparison with
vocal stimuli.

These highly similar vocal and musical stimuli seem well-
suited to study cross-domain overlap in any population and their
primitive quality could be extremely useful to study plasticity in
CI users.

A second step would be to pair a well-controlled behavioral
paradigm using those stimuli (allowing a direct comparison of
musical and vocal domains) with a neuro-imaging modality
that is acceptable for use with cochlear implants. Except for
a few recent exceptions, implants are not MR-compatible. Hi-
density EEG (Gilley et al., 2010; Zhang et al., 2011; Timm
et al., 2014) and PET-scan (Okazawa et al., 1996; Limb et al.,
2009; Lazard et al., 2010) have both been used successfully in
cochlear implant users. Both methods have drawbacks; EEG
recordings are contaminated by massive electrical artifacts from
the implant and PET requires the injection of a radioactive
isotope. Emerging as a promising brain-imaging modality for CI
research is functional near-infrared spectroscopy (fNIRS). fNIRS
has been successfully used to study the response to auditory
stimuli in cochlear implant users (Sevy et al., 2010) and emotion-
related activation in the general population (Herrmann et al.,
2003; Plichta et al., 2011). This non-invasive technique measures
blood oxygenation level differences using infrared light and is
therefore unaffected by electrical artifacts. It is portable and has
a better temporal resolution than functional MRI (Villringer
and Chance, 1997). Conversely it has a worse spatial resolution
and cannot access subcortical sources such as the limbic system
(Köchel et al., 2011).

The proposed neuro-behavioral approach would be well-
suited to study the effect of plasticity on cross-domain processing
of musical and vocal emotions, using cochlear implant users as
a model of reversible sensory deprivation and comparing them
to normal-hearing individuals. The effect of multiple regressors

could be assessed by recruiting an heterogeneous cohort of
individuals spanning the continuum of factors known to affect
plasticity such as the duration of auditory deprivation or the age
at implantation (Lazard et al., 2012).

This would represent a stepping-stone to ask further questions
of interest regarding the effect of plasticity on cross-domain
neural overlap. From a basic science perspective, the rationale
is to understand a complex system by reverse-engineering its
dysfunctions. What are the structural and functional overlaps
between music and voice processing after implantation? Would
the reduction of auditory cortical resources, together with the
fact that music and vocal signals are more similar after being
processed by the device, favor an increased neural overlap
between domains? Conversely, would any remaining overlap
break-down in favor of a more segregated re-organization guided
by the non-pitch based, domain relevant cues?

Characterizing those mechanisms can inform novel clinical
approaches, possibly through individualized rehabilitation and
brain stimulation. For instance, if good performers (CI users
with good speech scores) make use of overlapping structures
in an optimal fashion compared to poor performers, can we
boost residual neural processes in the latter group? It has been
suggested that musical training can improve speech outcomes
in this population (Patel, 2014), but what stages of the auditory
pathway are best candidates for a cross-domain shaping of
function and/or structure? Auditory features found to maximize
activity of brain networks processing musical and vocal emotions
in CI users could be made more salient in device processors.

Cross-domain research on cochlear implant users not only
offers a unique insight into auditory neural plasticity, but also
has practical implications for patients’ rehabilitation, implant
design, and programming. We believe that highly comparable
stimuli are needed to carry out such studies, together with an
optimal imaging technique within a paradigm fine enough to
reveal subtle behavioral and neural differences. Such scientific
undertaking can further our understanding of how our brain
processes vocal and musical emotions and how such cross-
domain processing is affected by plasticity. Furthermore, such
studies could provide objective measures to support the use of
music in the rehabilitation of various disorders.
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