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Abstract

Increased epithelial cell expression of the cyclooxgenase-2 (COX-2) enzyme is a characteristic event of both inflammatory
bowel disease and colon cancer. We here report the novel findings that collagen I-induced de novo synthesis of COX-2 in
intestinal epithelial cells is inhibited by pertussis toxin (PTX) and by an inhibitory peptide selective for the heterotrimeric
Gai3-protein. These findings could be explained by a regulatory involvement of the G-protein-dependent integrin-
associated protein CD47. In support of this notion, we observed a collagen I-induced association between CD47 and a2
integrins. This association was reduced by a blocking anti-CD47 antibody but not by PTX or a control anti-b2 antibody.
Furthermore, a blocking antibody against CD47, dominant negative CD47 or specific siRNA knock down of CD47,
significantly reduced collagen I-induced COX-2 expression. COX-2 has previously been shown to regulate intestinal
epithelial cell adhesion and migration. Morphological analysis of intestinal cells adhering to collagen I revealed a co-
localisation of CD47 and a2 integrins to non-apoptotic membrane blebs enriched in Rho A and F-actin. The blocking CD47
antibody, PTX and a selective COX-2 inhibitor, dramatically inhibited the formation of these blebs. In accordance, migration
of these cells on a collagen I-coated surface or through a collagen I gel were significantly reduced by the CD47 blocking
antibody, siRNA knock down of CD47 and the COX-2 inhibitor NS-398. In conclusion, we present novel data that identifies
the G-protein-dependent CD47 protein as a key regulator of collagen I-induced COX-2 expression and a promoter of
intestinal epithelial cell migration.
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Introduction
The induction of the cyclooxygenase-2 (COX-2) enzyme and

the formation of its metabolites, the prostaglandins, are significant

and characteristic features of inflammatory responses in general

[1,2]. These include inflammatory intestinal conditions where

COX-2 induced formation of prostaglandin E2 has been shown to

be a regulator not only of inflammatory cells but also of intestinal

epithelial cells [2]. COX-2 induction has also been intimately

linked to the development and progression of colon cancer and has

been shown to be over expressed in colon tumour samples [3]. It

has also been suggested that COX-2 plays a crucial role in the

well-documented progression from chronic inflammatory bowel

disease to colon cancer [4–6]. In support of this, selective

inhibitors of COX-2 have been shown to significantly reduce the

development and progression of colon cancer by reducing tumour

cell proliferation and migration [7,8].

Integrins have been extensively studied because of their essential

role in cell attachment to the extracellular matrix, and also for

their signalling role in numerous cellular processes, for example

cell survival, proliferation, and migration [9]. Integrins have also

been implicated in many pathological settings, for example in

cancer development [10–13]. The signalling capability of integrins

can directly or indirectly be regulated by different cellular proteins,

such as receptor tyrosine kinases [14] and G-protein coupled

receptors [15] including the Integrin Associated Protein also

known as CD47 [16]. This protein exhibits varying expression

levels in different tissues and has been shown to be up-regulated in

ovarian carcinoma cells [17]. The CD47 protein is composed of an

extracellular IgV-like domain, five transmembrane spanning

domains and a differentially spliced cytoplasmic domain [18,19].

The signals generated by this protein are known to be coupled to

various intracellular signalling pathways through the activation of

a Bordetella pertussis toxin (PTX) sensitive G-protein [20]. CD47-

induced activation of a PTX sensitive G-protein can occur

through a cis interaction that involves CD47 binding to an

integrin. So far the a2b1, a4b1, avb3 and aIIbb3 integrins have

been shown to associate with CD47 [21,22]. Alternatively, CD47-

induced activation of a PTX sensitive G-protein can arise through

a trans interaction i.e. by binding of a specific ligand, for example

thrombospondin, directly to CD47 [23].

We have previously shown that collagen engagement of the

a2b1integrin on intestinal epithelial cells resulted in increased

COX-2 promoter activity and expression of COX-2 [10]. These

effects were mediated via a2b1integrin downstream signalling and

involved protein kinase Ca, Ras and the transcription factor NFk
B [10]. Increased activity of COX-2 leads to elevated formation of

prostaglandins and, in intestinal cells, primarily to an increased

generation of prostaglandin E2, a lipid mediator that has
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previously been shown to promote intestinal epithelial cell

migration [24,25]. However, to date, no role has been described

for a direct or indirect regulator in the a2b1integrin-induced

expression of COX-2 and intestinal epithelial cell migration.

Here we have specifically investigated whether the collagen-

induced integrin signal leading to COX-2 expression and intestinal

epithelial cell migration requires the transactivation of additional

membrane proteins. We present novel data identifying the

transmembrane protein CD47 as a key regulator of collagen-

induced COX-2 expression and downstream promoter of

intestinal epithelial cell migration.

Methods

Reagents
The anti-human COX-2 Ab was purchased from AbCam

(Cambridge, UK), and the anti-a2 integrin Ab was from

Chemicon International (Temecula, CA, USA). The anti-GAPDH

and anti-Rho A Abs were from Santa Cruz (Santa Cruz, CA,

USA), whereas the anti-actin Ab was obtained from ICN

Biomedicals (Temecula, CA, USA). The mouse and rabbit IgG

and the anti-b2 integrin Abs as well as the HRP conjugated goat

anti-rabbit, and the goat anti-mouse secondary Abs were obtained

from Dako (Copenhagen, Denmark). The inhibitory anti-CD47

Ab (B6H12) was purified from hybridoma supernatents by

ammonium sulphate precipitation and affinity chromatography,

using protein G High Trap columns (Amersham Bioscience,

Piscatway, NJ, USA) whereas the anti-CD47 Ab (MEM122) was

from EXBIO (Prague, Czech Republic). The dominant negative

construct of CD47 [26] was a kind gift from Professor T. Matozaki

(Gunma University, Gunma, Japan). The bordetella pertussis toxin

(PTX) was purchased from Speywood Pharma, Ltd. (Maidenhead,

UK). The enhanced chemiluminescence (ECL) reagents and the

hyperfilm were from Amersham International (Buckinghamshire,

UK). The collagen I and the anti-F-actin Ab for immunostaining

were purchased from BD Biosciences (Erembodegem, Belgium)

and the thrombospondin-1 (TSP-1) was from Calbiochem (San

Diego, CA, USA). The COX-2 specific inhibitor N-(2-cyclohexyl-

4-nitrophenyl)methane sulphonamide (NS-398) was purchased

from Biomol (Plymouth Meeting, PA, USA).The small inhibitory

G-protein peptide minivectors were purchased from Cue Biotech

Inc. (Chicago, IL, USA), whilst the lipofectamine 2000, fibronectin

and fluorescent secondary Abs Alexa 488, Alexa 568 were from

Invitrogen Corp. (Carlsbad, CA, USA). The CD47 siRNAs (ID

numbers: 2811, 145978 and 145979) were purchased from

Ambion, (Cambridgeshire, UK). All other chemicals were of

analytical grade and purchased from Sigma Chemical Co (St

Louis, MO, USA).

Cell culture
Human embryonic intestinal epithelial cells, Int 407 cells [27],

exhibiting typical epithelial growth and morphology were cultured

as a monolayer to 75–80% confluence for 5 days in Eagle’s Basal

medium, supplemented with 10% newborn calf serum, 55 mg/ml

streptomycin and 55 U/ml penicillin. Cell cultures were regularly

tested to ensure the absence of mycoplasma contamination.

Coating of plates
Dishes (60 mm) were coated with 10 mg/ml collagen I for

1 hour at 37uC, before being washed with PBS, blocked for 30

minutes with 1% BSA at 37uC and then finally washed again with

PBS. Control dishes were pre-treated with (3-aminopropyl)

triethoxysilane, washed and coated with 6% BSA for 30 minutes

at 37uC and washed with PBS.

Incubation of cells
Serum starved cells (2 hours) were detached and re-suspended

in serum free medium. In the indicated experiments these cells

were then pre-treated with or without PTX (500 ng/ml) for

2 hours at 37uC. Alternatively, these cells were pre-treated or not

with 20 mg/ml of the mouse anti-CD47 functional blocking

antibody B6H12, or mouse IgG control or an anti-b2 integrin

antibody for 20 minutes at 4uC. These cells were then allowed to

adhere to BSA (control) or collagen I coated dishes or slides for

1 hour at 37uC. In some experiments (indicated in figure legend 3)

10 mg/ml of thrombospondin-1 (TSP-1) was added during the

1 hour period of cell adherence to BSA or collagen I coated

surfaces.

Transient transfections
Cells were cultured for 3 days to 50–60% confluence. The cells

were then transfected using lipofectamine 2000 with the different

Ga-subunit cDNA minigene vectors (coding for specific blocking

peptides (cue BIOtech) against the Gai1-2 -, Gai3 –proteins) or with

an empty vector. Alternatively, the IgV like domain of CD47

coupled to a GPI anchor constituting a dominant negative CD47

was transfected into the cells using lipofectamine 2000. After

4 hours, the transfection medium was replaced with normal

growth medium and the cells were allowed to grow for a further

48 hours before being plated onto collagen I dishes and analysed

for COX-2 and CD47 expression as described previously.

Transfection with CD47 siRNA oligomers
Cells were cultured for 3 days to 50–60% confluence. The cell

media was aspirated and the cells detached and scraped into 3 ml

of serum and antibiotic free medium containing 50 nM siRNA

against CD47 or a scrambled control siRNA with lipofectamine

2000. After 4 hours, the transfection medium was diluted with

normal growth medium without antibiotics and the cells were

allowed to grow for an additional 48 hours period.

Immunoprecipitation
The cells were pre-treated as previously described and were

allowed to adhere onto collagen I or BSA (control) coated dishes

for 1 hour at 37uC. After this period of incubation non-adherent

cells were gently washed off with PBS and the remaining cells were

lysed (in the lysis buffer described above but with Triton X-100

replaced with 1% octyl-b-D-1-thioglucopyranoside). The lysates

were then incubated for 20 minutes on a rotator at 4uC, after

which cell debris was removed by centrifugation at 9,000 x g for

10 minutes. Protein G agarose was used to pre-clear the lysates

after which the different cell lysates were adjusted to the same

protein content. These lysates were then incubated with 20 mg/ml

of the anti-CD47 (MEM122) or control IgG antibodies overnight

on a rotator at 4uC. Protein G was then added and the lysates

incubated at 4uC for 1 hour. After three washes with lysis buffer

the final pellets were re-suspended in sample buffer, boiled and

analysed by Western blotting as described previously.

Western blotting
The medium was aspirated and non-adhered cells were

removed by washing with ice cold PBS. The cells were then lysed

with and scraped loose into an ice-cold lysis buffer (50 mM Tris,

pH 7.5, 1 mM EDTA, 1 mM EGTA, 1 mM Na3VO4, 1% Triton

X-100, 50 mM NaF, 5 mM sodium pyrophosphate, 10 mM

sodium glycerophosphate, 4 mg/ml leupeptin, and 30 mg/ml

phenylmethanesulfonyl fluoride). The resultant lysate was boiled

with sample buffer (62 mM Tris pH 6.8, 1.0% SDS, 10% glycerol,

CD47 Mediates COX-2 Expression

PLoS ONE | www.plosone.org 2 July 2009 | Volume 4 | Issue 7 | e6371



15 mg/ml dithiothreitol, and 0.05% bromphenol blue). Equal

amounts of lysed and boiled protein (30–50 mg protein/well) were

loaded and subjected to electrophoresis on 8% homogeneous

polyacrylamide gels. The separated proteins were electrophoret-

ically transferred to PVDF membranes, which were then blocked

for 1 hour at room temperature with either 3% BSA/PBS or 5%

non-fat dried milk for Western blotting with the anti-a2 integrin

antibody. The membranes were then incubated overnight at 4uC
with the primary antibody: anti-COX-2 (1:500); anti-CD47

(MEM122, 1:1,000); GAPDH (1:2,000); a2 integrin (1:500) or

anti-actin (1:2,000). The membranes were then thoroughly washed

and incubated for 1 hour at room temperature with HRP-

conjugated secondary antibodies, diluted 1:3,000 for COX-2,

actin and GAPDH; 1:2,000 for CD47 in 3% BSA/PBS/0.1%

Tween-20 and 1:20,000 for a2 integrin in 5% non-fat dried milk/

PBS/0.1% Tween-20. The membranes were then incubated with

ECL Western blot detection reagents, and exposed to Hyperfilm-

ECL to visualise immunoreactive proteins. Densitometric analysis

was performed using a Bio-Rad GS-800 calibrated densitometer,

where the value obtained from the control BSA was set as 100.

Immunofluorescent staining
Cover slips were acid treated with 20% HCl for 1 hour at 60uC,

washed with distilled water, treated with 1 M NaOH for 10

minutes, washed and silanised with (3-aminopropyl) triethoxysi-

lane. After extensive washing, 10 mg/ml of collagen I or

fibronectin was added (unless otherwise stated) and the cover slips

incubated for 1 hour at 37uC. Serum staved cells pre-incubated as

described above were plated out on to the coated cover slips for

1 hour. After being washed twice with ice cold PBS, cover slips

were fixed for 15 minutes on ice with either 4% ice-cold

paraformaldehyde in PBS or with 10% trichloroacetic acid for

15 minutes. The trichloroacetic acid fixed cells were then further

fixed for 10 minutes at room temperature in a fixation buffer

(137 mM NaCl, 5 mM KCl, 1.1 mM NaH2PO4, 0.4 mM

KH2PO4, 2 mM MgCl2, 2 mM K-EGTA, 5 mM PIPES,

pH 6.8, and 5.5 mM Glucose) with 0.5% glutaraldehyde. All cells

were then permeabilised with 0.5% Triton X-100 for 5 minutes.

The cover slips were then blocked with 3% BSA/PBS solution for

30 min. Thereafter, the cells were incubated at room temperature

with primary antibodies against a2 integrin (1:500), CD47 (1:300,

B6H12), Rho A (1:100) or F-actin (1:300) in a 3% BSA/PBS

solution for 1 hour. Cells were then washed five times in PBS and

incubated with conjugated secondary antibodies (IgG Alexa 488 or

IgG Alexa 568) in a 3% BSA/PBS solution for 1 hour. Following

five washes with PBS, the cover slips were mounted on glass slides

with a fluorescence-mounting medium (Dacon). The mounted

slides were examined using a Bio-Rad Radiance 2000 confocal

laser scanning system with a Nikon microscope (TE300) or a

deconvolution system with a Nikon microscope (TE300).

Adhesion assay
Samples of 250,000 cells were pre-incubated as previously

described and then allowed to adhere onto collagen I coated dishes

for 1 hour at 37uC. Following this incubation non-adherent cells

were gently washed off with PBS. The remaining cells were then

incubated in a physiologically balanced calcium medium contain-

ing (4.7 mM KCl, 136 mM NaCl, 1.2 mM MgSO4, 1.1 mM

EDTA, 1.2 mM KH2PO4, 5.5 mM glucose, 5 mM NaHCO3,

20 mM HEPES; pH 7.4) supplemented with 0.2% nitroblue

tetrazolium (NBT) for 2 hour at 37uC after which the cells were

placed on ice. Thereafter the NBT solution was aspirated and the

cells were fixed in ice cold 70% ethanol for 5 minutes. The cells

were then detached and centrifuged at 2,000 xg for 5 minutes.

The ethanol containing supernatant was aspirated and 1 ml of N-

N-dimethylforamide was added. The suspended pellet was heated

for 1 hour at 56uC, then an additional 1 ml of N-N-dimethylfor-

amide was added and left overnight again at 56uC. The solution

was once more centrifuged at 2,000 xg for 5 minutes and the

optical density of the supernatant was measured at 544 nm.

Wound healing assay
The cells were pre-incubated as previously described with anti-

CD47 and as controls with either an anti-IgG or an anti-b2

integrin antibody for 20 minutes. Where indicated the cells were

also pre-incubated with 100 mM of the COX-2 specific inhibitor,

NS-398 for 30 minutes on a rotator at 4uC in serum free medium.

Cells were then plated onto collagen I coated dishes for 2 hours,

thereafter, a sterile pipette tip was used to make a scratch in the

cell monolayer and non-adherent cells were removed by gentle

washing. The cells were allowed to migrate for 18 hours in serum

free medium at 37uC. Measurements of the widths of the wounds

were taken at time 0 and 18 hours using the Image J software.

Cell invasion assay- 3D cell migration
Suspended cells were pre-incubated as described for the wound

healing assay or transfected with siRNA oligomers as previously

described. Cells (250,000) were added on top of a collagen I

containing (3 mg/ml) gel placed in the upper well of a Boyden

chamber. The lower well contained serum free medium and was

separated from the upper well by a polycarbonate PVPF

membrane with 8.0 mm diameter pores. After 18 hours of

incubation at 37uC, the cells that were attached to the upper

side of the membrane or present in the collagen I gel were

removed with a cotton swab, and the remaining cells were fixed

with 4% paraformaldehyde, for 15 minutes. The cells in the

membrane were subsequently stained with a 1% crystal violet/

10% methanol solution at room temperature for 15 minutes. The

membranes were washed in PBS after which the remaining dye

was solubilised using a 10% SDS solution and the absorbance was

measured at 590 nm.

Results

Collagen I induced COX-2 expression is regulated by the
Gai3 protein

In order to address the question of whether the a2b1 integrin-

induced COX-2 expression previously reported [10], is also

dependent on the transactivation of an additional cell surface G-

protein coupled receptor, we first pre-incubated intestinal

epithelial cells with PTX. PTX was used as an initial tool to

discriminate between integrin and G-protein coupled receptor

signalling. The intestinal epithelial cells (Int 407), were allowed to

adhere onto a collagen I coated surface for 1 hour, a time period

previously shown to result in maximum adhesion [10]. The

adhesion to a collagen I coated surface induced a large and

statistically significant increase in COX-2 expression, as compared

to plating the cells onto a BSA coated surface (Fig. 1A).

Interestingly, this collagen I-induced COX-2 expression was

abolished by PTX pre-treatment of the cells (Fig. 1A). To further

substantiate this finding and in order to identify the specific PTX

sensitive G-protein involved, we transfected the cells with plasmids

coding for different small peptides that specifically inhibit various

Gai subunits [28]. For the interpretation of the data it is important

to note that a transfection efficiency rate of approximately 60%

was observed. We observed a 50% reduction in collagen I-induced

COX-2 expression in cells transfected with an inhibitory peptide

against the Gai3 protein in comparison to cells transfected with an

CD47 Mediates COX-2 Expression

PLoS ONE | www.plosone.org 3 July 2009 | Volume 4 | Issue 7 | e6371



inhibitory peptide against the Gai1-2 protein or empty vector

transfected cells (Fig. 1B). Our data thus indicate the presence of a

co-regulatory molecule interacting with the Gai3 protein in a2b1

integrin-induced COX-2 expression in these cells.

The G-protein coupled receptor, CD47, associates with
a2 integrins in collagen I adhering intestinal epithelial
cells

Many proteins are known to modulate integrin signalling and

function, however only a few have been documented to do this

through a PTX sensitive G-protein, one of which is CD47 [16,23].

We therefore decided to investigate whether CD47 could be

responsible for the observed Gai3 protein regulation of collagen I-

induced COX-2 expression. Using platelet lysate as a positive

control we first confirmed the expression of CD47 in the intestinal

epithelial cell line, Int 407 by Western blot (Fig. 2A). Subsequently

we detected a significant increase (4-fold) in the amount of a2

integrin recovered in an anti-CD47 immunoprecipitate from cells

plated on a collagen I coated surface relative to the immunopre-

cipitate from cells plated onto the control BSA coated surface

(Fig. 2B). An association between CD47 and a2b1 integrins can be

taken as an indication that CD47 participates in the regulation of

a2b1 integrin signalling and function, as previously demonstrated

in vascular smooth muscle cells [21]. Control IgG immunopre-

cipitates of lysates from cells plated onto collagen I contained a

small amount of non-specifically co-immunoprecipitated a2

integrins (Fig. 2B). To further confirm the occurrence of this a2

integrin/CD47 protein-protein interaction we pre-incubated the

cells with a functional blocking antibody against CD47 [21], prior

to their adherence to collagen I. As expected, the functional

inhibition of CD47 resulted in a reduced amount of a2 integrins

co-immunoprecipitating with CD47 (Fig. 2B). The observation

that pre-incubation with PTX did not affect the collagen I-induced

association between CD47 and a2 integrins (Fig. 2B), suggests that

the protein-protein interaction occurs prior to CD47-induced G-

protein activation. Finally, to confirm the specificity of the anti-

CD47 functional blocking antibody we preformed control

experiments in which the cells were pre-incubated with either a

control IgG or an anti-b2 integrin antibody (a suitable control

since endogenous b2 integrin expression is absent in epithelial

cells) before plating onto collagen I. The results revealed no effect

on the amount of a2 integrins recovered in the anti-CD47

immunoprecipitate (Fig. 2B). We conclude therefore that cell

adhesion onto collagen I induces a significant increase in the

association between CD47 and a2 integrins that is independent of

the activation of a PTX sensitive G-protein.

CD47 participates in the collagen I-induced expression of
COX-2

To investigate whether an increased association between a2b1

integrins and CD47 is required for collagen I-induced COX-2

expression, we first pre-incubated the intestinal cells with the

functional blocking antibody against CD47 that inhibits this

protein-protein interaction (Fig. 2) prior to plating them onto a

collagen I coated surface. The blocking antibody significantly

reduced collagen I-induced COX-2 expression whereas a control

IgG antibody failed to do so (Fig. 3A). Supporting this observation,

transfection with a vector containing the extracellular IgV domain

of CD47 linked to a GPI membrane anchor and therefore acting

as a dominant negative form of CD47 (DN-CD47), resulted in

significant inhibition of collagen I-induced COX-2 expression

(Fig. 3B). Further to this we also used siRNA, to knock down

expression of CD47. One of three specific oligomers (denoted as 1,

   
   

  
   

Figure 1. Collagen I induces COX-2 expression through a PTX
dependent G-protein. (A) Int 407 cells were incubated with or
without 500 ng/ml PTX for 2 hours, after which they were plated out
onto 10 mg/ml collagen I or 6% BSA (control) coated dishes for 1 hour.
Adherent cells were then lysed and analysed for COX-2 expression by
Western blotting as previously described. (B) Cells were transiently
transfected with empty vector or vectors expressing small inhibitor
peptides against either Gai1-2 or Gai3 before plated onto 10 mg/ml
collagen I coated dishes for 1 hour. Adherent cells were the lysed and
analysed for COX-2 expression by Western blotting. All membranes
were re-probed for actin to ensure equal loading. The accumulated data
of the densitometric analyses are given as percent of control and
represent means 6 SE of four separate experiments. The statistical
analyses were performed with unpaired Students t-test; *P,0.05,
**P,0.01 relative to the control and compared to collagen I treatment.
doi:10.1371/journal.pone.0006371.g001
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2 or 3) or a scrambled control oligomer was transfected into the

cells prior to plating them onto a collagen I coated surface.

Transfection with the scrambled oligomer, siRNA 1 or siRNA 2,

was unable to significantly effect the endogenous level of CD47

(Fig. 3C). However using either siRNA 3 alone or a combination

of siRNA oligomers 2 and 3 effectively reduced CD47 expression

by approximately 50% (Fig. 3C). Reciprocally, collagen I-induced

COX-2 expression was reduced by approximately 60% in cells

transfected with siRNA 3 or a combination of siRNAs 2 and 3

(Fig. 3C). As a control experiment we wanted to discern whether

CD47 activation alone is capable of inducing COX-2 expression,

since this would indirectly support the notion that collagen I-

induced expression of COX-2 requires the activation of CD47.

For this reason intestinal cells were stimulated with 10 mg/ml

thrombospondin-1 (TSP-1), a known activator of CD47 [29]. We

found that in cells adhering to a BSA coated surface, TSP-1

stimulation resulted in a statistically significant induction of COX-

2 expression (Fig. 3D). On the other hand, cells plated onto

collagen I and simultaneously stimulated with TSP-1 only

exhibited a slight but statistically non-significant increase in

COX-2 expression in comparison with un-stimulated cells plated

onto a collagen I coated surface (Fig. 3D). Previously, CD47 and

COX-2 signalling have been shown to affect cellular adhesion to

extracellular matrix [20,25]. In order to ensure that our findings

Figure 2. Expression and association of CD47 with a2 integrin upon collagen I stimulation. (A) Whole cell lysates from the intestinal
epithelial cell line, Int 407 and platelets, were analysed by Western blotting for their expression of CD47, and re-probed for GAPDH to ensure equal
loading. (B) Int 407 cells were pre-incubation with either 500 ng/ml PTX for 2 hours or with either anti-CD47 (B6H12), anti-b2 integrin control
antibody or pre-immune control IgG for 20 minutes before being plated onto 10 mg/ml collagen I or 6% BSA coated dishes. The indicated
immunoprecipitations, with either an anti-CD47 antibody or control IgG, were performed as outlined in the Methods. Samples were analysed by
Western blotting for the presence of CD47 and the a2 integrin. The accumulated data of the densitometric analyses are given as percent of control
and represent means 6 SE of three separate experiments. The statistical analyses were performed with unpaired Students t-test; *P,0.05, **P,0.01
relative to the control.
doi:10.1371/journal.pone.0006371.g002
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obtained with the anti-CD47 inhibitory antibody were not due

simply to decreased cell adhesion onto the collagen I coated

surface, we tested whether this antibody influenced the adhesion of

intestinal epithelial cells. Cells pre-incubated with the anti-CD47

antibody did not have reduced adhesion to collagen I, on the

contrary, a significant increase in adhesion was observed. In

contrast, pre-incubation with a control IgG antibody did not affect

cell adhesion as compared to untreated cells (Fig. 3E). Thus, the

effect of the anti-CD47 antibody on collagen I-induced COX-2

expression cannot be explained by decreased adhesion. Instead,

the ability of the anti-CD47 antibody to increase adhesion to

collagen I suggests that CD47 could be involved in a2b1 integrin

mediated intestinal cell migration.

Localisation of a2 integrin and CD47 to membrane blebs
in cells adhering to a collagen I coated surface

Due to the intriguing finding that CD47 inhibition can increase

cellular adhesion to collagen I, a morphological analysis of the cells

was performed. We noted that cells, when plated onto glass slides

coated with collagen I, exhibited distinct membrane blebs.

Furthermore, immunofluoresence analysis revealed co-localisation

of CD47 and a2 integrins in these blebs (Fig. 4A). This

morphology was distinct from the continuous rounded morphol-

ogy of the cells plated onto BSA that had a homogenous dispersion

of CD47 and a2 integrin around their membranes (Fig. 4A). Pre-

incubation with PTX, the functional blocking anti-CD47 antibody

or the COX-2 specific inhibitor NS-398, before the cells were

plated onto collagen I, produced a similar rounded cell

morphology and a homogenously dispersed CD47/a2 integrin

staining pattern (Fig. 4A). As a control, we also investigated the

adhesion of the cells onto a plates coated with fibronectin, which

activates a5b1 and avb3 integrins [30]. In stark contrast to the

membrane blebbing that characterised adhesion to collagen I, the

cells plated onto fibronectin, displayed a well spread morphology

with CD47 mainly localised to the areas of cell-cell contacts

(Fig. 4A). Immunofluoresence staining analysis of cells plated onto

collagen I for CD47, a2 integrins and F-actin showed F-actin co-

localisation with CD47 and a2 integrins in these membrane blebs

(Fig. 4B). The accumulation of F-actin in the membrane blebs

strongly suggests that they are non-apoptotic membrane blebs.

Such membrane structures have been previously shown to contain

the small GTPase Rho A and are functionally linked to cell

migration [31]. In accordance, we also show Rho A localisation in

these membrane blebs (Fig. 4C). Quantification of the membrane

blebs (Fig. 4D) present in cells confirmed the dependence of these

structures on collagen I induced, CD47 mediated COX-2

expression. These experiments convincingly demonstrate that cell

adhesion to collagen I induces the formation of non-apoptotic

membrane blebs enriched in CD47, a2 integrins, F-actin and Rho

A. The formation of these blebs, which are dependent on CD47

mediated collagen induced COX-2 activity, suggested to us the

possibility of a functional role for CD47 in intestinal epithelial cell

migration.

CD47 participates in the regulation of collagen I-induced
intestinal cell migration

Our current finding that CD47 participates in the regulation of

intestinal cell adhesion onto collagen I in addition to our previous

observation that a2b1 integrin signalling leads to COX-2

expression and increased migration of intestinal epithelial cells

[10], prompted us to investigate the role of CD47 in the regulation

of cell migration. To do this a wound-healing assay was used to

assess intestinal epithelial cell migration. This assay has the

advantage of requiring neither disturbance of cell-cell adhesions

nor cell detachment from the culture surface. We could show that

pre-incubation with either the CD47 functional blocking antibody

or the COX-2 specific inhibitor NS-398, reduced the invasive

capacity of the cells by approximately 50% relative to the control,

over the same time period (18 hours). Cells that were pre-

incubated with a control IgG antibody or an antibody against b2

integrins (not present in these cells) were unaffected (Fig. 5A). To

simulate more closely the three dimensional in vivo environment,

cells were also allowed to migrate through a collagen I containing

gel. The same pre-treatments were applied as in the wound-

healing assay (Fig. 5) with similar results; the CD47 blocking

antibody and NS-398 were able to significantly block cell

migration, as compared to untreated cells, or cells pre-treated

with the control antibodies (Fig. 5B). The siRNA against CD47

was also used to further strengthen the evidence for a role of CD47

in the regulation of migration. By knocking down CD47 using

siRNA 3 and a combination of siRNAs 2 and 3 (as seen previously;

Fig. 3C), we could effectively inhibit cell migration through the

collagen I gel. We therefore conclude that CD47 participates in

the regulation of collagen I-induced COX-2 expression and

promotion of intestinal epithelial cell migration.

Discussion

In this study we identify the pentameric transmembrane

integrin associated protein, CD47, as a key regulator of collagen

I-induced COX-2 expression in intestinal epithelial cells. We have

previously demonstrated that the effect of collagen I on COX-2

expression in intestinal epithelial cells is mediated via collagen I

engagement of cell surface a2b1 integrins [10]. Here we report

several pieces of evidence for a regulatory role of CD47 in a2b1

integrin-induced COX-2 expression in intestinal epithelial cells.

Firstly, we observed that CD47 co-immunoprecipitated with a2b1

integrins, a protein-protein interaction previously demonstrated in

smooth muscle cells [21]. However, in addition to this previous

observation in smooth muscle cells we observed that the

association of CD47 with a2b1 integrins was significantly

increased upon collagen I-induced engagement of a2b1 integrins

on intestinal epithelial cells. Secondly, we also demonstrated the

involvement of CD47 in collagen I-induced COX-2 expression by

studying the effect of Ga-protein inhibition. The rational behind

this approach was the well-known fact that integrins do not trigger

G-protein activation, whereas CD47 has been shown to require a

PTX sensitive G-protein to transduce its downstream effects [32].

In accordance with our hypothesis of a role for CD47 in collagen

I-induced COX-2 expression we found a requirement for a PTX

sensitive G-protein that we have identified as Gai3. Indeed, this is

the first time that the specific G-protein employed by CD47 has

been identified. Thirdly, the role of CD47 in a2b1 integrin-

induced COX-2 expression in intestinal epithelial cells was also

demonstrated by three distinct approaches: use of a functional

blocking anti-CD47 antibody (B6H12); a dominant negative

CD47 construct and finally siRNA knock down of CD47. The

above experiments convincingly demonstrate the regulatory role of

CD47 in a2b1 integrin-induced COX-2 expression and provide

an additional piece of important information: namely, that the

association between a2b1 integrin and CD47 most certainly

occurs prior to the initiation of downstream Gai3-protein

activation as evident from the lack of effect of PTX.

Considering our present finding that CD47 participates in the

regulation of a2b1 integrin-induced COX-2 expression and

previous data implicating COX-2 as a key regulator of intestinal

epithelial cell migration [10], it is reasonable to suggest that CD47
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Figure 3. Collagen I mediated COX-2 expression and cell adhesion requires CD47. (A) Int 407 cells were pre-treated with 20 mg/ml of the
anti-CD47 functional blocking antibody (B6H12) or control IgG for 20 minutes at 4uC. Whereupon they were plated onto 10 mg/ml collagen I or 6%
BSA coated dishes for 1 hour. Adherent cells were lysed and analysed for COX-2 expression by Western blotting as previously described. All
membranes were re-probed for actin to ensure equal loading. (B) Cells were transfected with a dominant negative form of CD47 and plated onto
10 mg/ml collagen I or 6% BSA coated dishes for 1 hour. Adherent cells were the lysed and analysed for COX-2 expression by Western blotting. All
membranes were re-probed for actin to ensure equal loading. (C) Int 407 cells were transfected with 50 nM siRNA against CD47 or with scrambled
control siRNA, for 48 hours. Thereafter cells were plated onto 10 mg/ml collagen I coated dishes for 1 hour. Adherent cells were then lysed and
analysed for CD47 and COX-2 expression by Western blotting as previously described. All membranes were re-probed for actin to ensure equal
loading. (D) Cells were plated onto 10 mg/ml collagen I, or 6% BSA coated dishes with or without 10 mg/ml TSP-1 for 1 hour. All cells were lysed and
the COX-2 expression was analysed by Western blotting. All membranes were re-probed for actin to ensure equal loading. (E) Cell adhesion assay; Int
407 cells were pre-treated with 20 mg/ml of the CD47 functional blocking antibody (B6H12) or control IgG for 20 minutes. Whereupon 250,000 cells
were plated onto 10 mg/ml collagen I coated dishes for 1 hour. Adherent cells were measured by their conversion of nitroblue tetrazolium to the
insoluble formazan product and the absorbance was measured at 544 nm. The accumulated data are given as percent of control and represent
means 6 SE of at least five separate experiments. The statistical analyses were performed with unpaired Students t-test; *P,0.05, **P,0.01 relative to
the control.
doi:10.1371/journal.pone.0006371.g003
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Figure 4. ECM dependent morphological differences modulated through CD47 signalling. (A) Fluorescent microscope images were taken
of cells plated onto cover slips coated either with 6% BSA, 10 mg/ml collagen I or fibronectin for 2 hours. Where indicated cells were pre-treated with
500 ng/ml PTX for 2 hours, 20 mg/ml of the CD47 functional blocking antibody for 20 minutes or 100 mM of the COX-2 specific inhibitor NS-398 for
30 minutes. Cells were fixed, permeabilised and stained with primary antibodies against either CD47 or a2 integrin using either Alexa-488 or -546
conjugated secondary antibodies. (B) as in A but stained with primary antibodies against CD47, a2 integrin and F-actin. (C) as in A but stained with
primary antibodies against Rho A and F-actin. Shown are representative pictures of three separate experiments taken at 606magnification. (D) A
graphical representation of the number of cells with membrane blebs from 100 cell samples. The statistical analyses were performed with unpaired
Students t-test; **P,0.01 relative to the control.
doi:10.1371/journal.pone.0006371.g004
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participates in the regulation of intestinal epithelial cell migration

[33]. Indeed, a role for CD47 in the regulation of cell motility has

been documented in macrophage phagocytosis [26] and smooth

muscle cells [20]. In the present study we show that an anti-CD47

blocking antibody, known to inhibit COX-2 expression, decreased

migration of intestinal epithelial cells to a similar extent as the

selective COX-2 inhibitor NS-398. In contrast to the previously

documented role of CD47 in the regulation of phagocytosis and

smooth muscle cell migration our results stress the role of COX-2

expression and activity in CD47 regulated intestinal epithelial cell

migration. We observed similar results regarding the contribution

of CD47 and COX-2 in intestinal cell migration in both a 2-

dimensional assay on a collagen I coated surface and in a 3-

dimensional assay that required migration through a collagen I

containing gel. These results also led us to investigate the

morphology of the migrating intestinal epithelial cells on a

collagen I coated surface and how any specific morphological

features may relate to CD47 and COX-2 activity.

Interestingly, we found that intestinal epithelial cells migrating

on a collagen I coated surface exhibited distinct membrane blebs.

Formation of non-apoptotic membrane blebs (NAMB) has been

shown to be involved in an amoeboid type of neutrophil migration

and migration of certain cancer cells as a means for them to invade

through extracellular matrixes [34,35]. We hypothesise that the

structures we observed are indeed NAMB and that they are

driving CD47 and a2b1 integrin dependent intestinal epithelial

cell migration. These assumptions are supported by the findings

that Rho A and F-actin were enriched in these membrane bleb

structures, which is in agreement with the previous demonstration

that Rho A participates in the control of NAMB-dependent cell

migration [36]. In addition, cells using NAMB to migrate have

been shown to have a reduced adhesive capacity for the matrix

[37] and accordingly we observed an increase in intestinal

epithelial cell adhesion in the presence of the anti-CD47 inhibitory

antibody. The assumption that NAMB are driving CD47 and

a2b1 integrin dependent intestinal epithelial cell migration is

supported by the observation that CD47 and a2b1 integrins co-

localized in the membrane blebs and inhibition of CD47 or COX-

2 abolished not only intestinal epithelial cell migration but also the

appearance of these membrane bleb structures.

The formation of NAMB in intestinal epithelial cells appears to

be related to collagen I engagement of a2b1 integrins since NAMB

were not present on cells adhering to and spreading on a

fibronectin coated surface. The latter extracellular matrix protein

is known to engage a5b1 and avb3 integrins, both of which have

the capacity to associate with CD47 [21,22]. Therefore we

 

 

Figure 5. Collagen I dependent 2D and 3D cell migration is
regulated by CD47. (A) Wound healing assay; Int cells were pre-
incubated or not with 20 mg/ml of the CD47 functional blocking
antibody B6H12 for 2 hours, IgG or b2 integrin antibody for 20 minutes,
or 100 mM of the COX-2 specific inhibitor NS-398 for 30 minutes,
thereafter cells were plated onto 10 mg/ml collagen I coated dishes for
2 hours, after which a wound was made in the monolayer, and the cells

were allowed to migrate for 18 hours. Pictures of the wound were taken
after 0 and 18 hours. The wound closure was measured and is
presented as the percentage of wound closure as compared to time
zero. (B, C) 3D cell migration assay; (B) Cells were pre-incubated or not
with 20 mg/ml of the CD47 functional blocking antibody B6H12 for
2 hours, IgG or the b2 integrin antibody for 20 minutes, or 100 mM of
the COX-2 specific inhibitor NS-398 for 30 minutes after which 250,000
cells from each group were allowed to migrate through a 3 mg/ml
collagen I gel and across an 8.0 mm micropore membrane for 18 hours.
(C) Int 407 cells were transfected with 50 nM siRNA against CD47 (as
indicated) or with scrambled control siRNA, for 48 hours. Thereafter
250,000 cells from each group were allowed to migrate through a
3 mg/ml collagen I gel and across an 8.0 mm micropore membrane for
18 hours. Cell migration was examined by staining with crystal violet
blue and measuring the absorbance at 590 nm. The data are given as
percent of control and represent means 6 SE of five separate
experiments. The statistical analyses were performed with unpaired
Students t-test; *P,0.05, **P,0.01 relative to the control.
doi:10.1371/journal.pone.0006371.g004
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conclude that the formation of these NAMB and its migratory

phenotype requires both the engagement of a particular integrin(s)

and its association with CD47.

In summary, we have identified CD47 as a regulator of collagen

I-induced COX-2 expression and intestinal epithelial cell

migration. This represents a novel role for CD47 and reveals a

potential role of this plasma membrane protein as a therapeutic

target in the treatment of inflammatory bowel disease and colon

cancer progression.
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