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ABSTRACT
Background. Grading of gliomas is critical information related to prognosis and
survival. We aimed to apply a radiomics approach using various machine learning
classifiers to determine the glioma grading.
Methods. We considered 285 (high grade n= 210, low grade n= 75) cases obtained
from the Brain Tumor Segmentation 2017Challenge.Manual annotations of enhancing
tumors, non-enhancing tumors, necrosis, and edema were provided by the database.
Each case wasmulti-modal with T1-weighted, T1-contrast enhanced, T2-weighted, and
FLAIR images. A five-fold cross validation was adopted to separate the training and
test data. A total of 468 radiomics features were calculated for three types of regions of
interest. The minimum redundancy maximum relevance algorithm was used to select
features useful for classifying glioma grades in the training cohort. The selected features
were used to build three classifier models of logistics, support vector machines, and
random forest classifiers. The classification performance of the models was measured
in the training cohort using accuracy, sensitivity, specificity, and area under the curve
(AUC) of the receiver operating characteristic curve. The trained classifier models were
applied to the test cohort.
Results. Five significant features were selected for the machine learning classifiers and
the three classifiers showed an average AUC of 0.9400 for training cohorts and 0.9030
(logistic regression 0.9010, support vector machine 0.8866, and random forest 0.9213)
for test cohorts.
Discussion. Glioma grading could be accurately determined using machine learning
and feature selection techniques in conjunction with a radiomics approach. The results
of our study might contribute to high-throughput computer aided diagnosis system for
gliomas.

Subjects Radiology and Medical Imaging
Keywords Machine learning, Multi-modal imaging, Radiomics, Glioma grading

INTRODUCTION
Gliomas are primary brain tumors arising from glial cells. The grades of gliomas have been
determined based on histology according to theWorldHealthOrganization standard (Louis
et al., 2007). Recently, revised criteria have been introduced that consider genetic factors
such as isocitrate dehydrogenase mutation and 1p/19q codeletion (Louis et al., 2016). The
grading of gliomas is critical information related to prognosis and survival (Wu et al.,
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2010; Louis et al., 2016). A scheme that dichotomizes the graded gliomas into high-grade
gliomas (HGG) and low-grade gliomas (LGG) has been widely adopted. It is important to
differentiate HGG from LGG for assessing tumor progression and therapy planning (Louis
et al., 2007). An experienced observer can differentiate between the two grades well based
on tumor enhancement, but a computer algorithm might match the performance of the
human expert with increased speed. More importantly, the computer algorithm might
contribute to developing high-throughput computer aided diagnosis system.

An algorithm known as radiomics has recently emerged as a powerful methodology to
quantify the characteristics of tumors in a non-invasive manner (Yip & Aerts, 2016).
Many studies have demonstrated that distinct tumor types in many organs can be
quantified by radiomics analysis and the results of the radiomics can be used as imaging
biomarkers for supporting clinical decision making (Zacharaki et al., 2009; Aerts et al.,
2014; Kickingereder et al., 2016; Li et al., 2016; Bowen et al., 2017). Radiomics can also
reveal novel characteristics of brain tumors, as demonstrated by a recent study (Zhou
et al., 2017b). Many studies predicted the chemotherapeutic response and survival of
patients with glioblastoma using a large number of imaging features based on MR imaging
(Itakura et al., 2015; Cui et al., 2016; Kickingereder et al., 2016; Prasanna et al., 2016; Lao
et al., 2017; Zhou et al., 2017a). Other studies have predicted prognosis using features
obtained from functional imaging (Ryu et al., 2014; Lee et al., 2016). Recently, radiomics
has been combined with genomics to leverage two distinct types of information to better
study various tumor types (Gutman et al., 2015; Li et al., 2016; Beig et al., 2018; Zinn et al.,
2018). The new approach is referred to as radiogenomics and has to potential to reveal
novel findings combining two distinct high dimensional information of gene and imaging
information. Many existing brain tumor studies related to radiomics mainly focused on
glioblastoma which is the most aggressive glioma and considered a limited number of
imaging modalities (Ryu et al., 2014; Itakura et al., 2015; Cui et al., 2016; Lee et al., 2016).
Multi-modal data are high-dimensional by nature and thus handling themproperly requires
carefully chosen machine learning approaches. However, existing literature of radiomics
using multi-modal data and various machine learning approaches is relatively scarce.

In this paper, we applied a radiomics approach combined with various machine learning
approaches to multi-modal imaging of glioma patients to study whether the grade of
glioma can be determined noninvasively. The aim of this study was to quantify glioma
with a radiomics approach and to use the results to classify the gliomas as HGG or LGG.
We used annotated multi-modal MRI imaging data from a research database (Menze et al.,
2015; Bakas et al., 2017a; Bakas et al., 2017b; Bakas et al., 2017c). A total of 468 quantitative
radiomics were computed for four MRI modalities and three regions of interest (ROIs).
Significant features were selected using relevance and redundancy criteria. We aimed
to demonstrate the effectiveness of these features on the classification of each glioma’s
histopathological grade using three machine learning classifiers. The overall workflow of
this paper is shown in Fig. 1.
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Figure 1 Overall workflow of the study.
Full-size DOI: 10.7717/peerj.5982/fig-1

MATERIALS AND METHODS
Patients and imaging
The institutional review broad (IRB) of Sungkyunkwan University approved our study
(IRB# 2015-09-007). Consent was waived for this retrospective study. Our study was
performed in full accordance with local IRB guidelines. We considered data from the
MICCAI Brain Tumor Segmentation 2017 Challenge (BraTS 2017) (Menze et al., 2015;
Bakas et al., 2017a; Bakas et al., 2017b; Bakas et al., 2017c). This dataset was derived from
pre-operative baseline scans from two variants of the Cancer Imaging Archive (TCIA)
(Clark et al., 2013), the TCIA-glioblastoma (GBM) and TCIA-LGG collections (Pedano et
al., 2016; Scarpace et al., 2016). Each is a multi-institutional data mix from eight and five
institutions, respectively. Detailed patient and scanner information can be found in the
data citation (Bakas et al., 2017a; Bakas et al., 2017c; Bakas et al., 2017b). We considered
210 HGG and 75 LGG patients. HGG included glioblastoma multi-forme (GBM) and LGG
included astrocytomas, oligodendroglioma, and oligoastrocytomas (Pedano et al., 2016;
Scarpace et al., 2016; Bakas et al., 2017a).

Each patient had pre-operative images in four modalities (T1, T1-contrast enhanced,
T2, FLAIR). All images were preprocessed using the FMRIB Software Library (FSL). Each
image was registered onto the common space (Rohlfing et al., 2010) and interpolated to
a 1× 1× 1 mm isotropic voxel grid. In addition, manual segmentations of enhancing
tumors, non-enhancing tumors, necrosis, and edema in each image were also provided
by the challenge organizers (Bakas et al., 2017a; Bakas et al., 2017c; Bakas et al., 2017b).
Manual segmentation was performed using a semi-automatic method with expert
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Table 1 Institutional information of patients (Bakas et al., 2017a).

Collection Institutions TCGA ID

Henry Ford Hospital, Detroit, MI TCGA-06
CWRU School of Medicine, Cleveland, OH TCGA-19
University of California, San Francisco, CA TCGA-08
Emory University, Atlanta, GA TCGA-14
MD Anderson Cancer Center, Houston, TX TCGA-02
Duke University School of Medicine, Durham, NC TCGA-12
Thomas Jefferson University, Philadelphia, PA TCGA-76

TCGA-GBM

Fondazione IRCCSInstituto Neuroligico C. Besta, Milan,
Italy

TCGA-27

St Joseph Hospital/Medical Center, Phoenix, AZ TCGA-HT
Henry Ford Hospital, Detroit, MI TCGA-DU
Case Western Reserve University, Cleveland, OH TCGA-FG
Thomas Jefferson University, Philadelphia, PA TCGA-CS

TCGA-LGG

University of North Carolina, Chapel Hill, NC TCGA-EZ

Notes.
TCGA, The Tumor Genome Atlas.

confirmation (Bakas et al., 2017a). These specific preprocessing choices were made by
the BraTS organizational committee (Menze et al., 2015; Bakas et al., 2017a). Our study
was a single source study (just from the BraTS database) and thus we adopted a five-fold
cross validation to separate the training and test cohorts to reduce overfitting. Each fold
had a similar ratio of HGG and LGG. The ratio of HGG and LGG was maintained between
the training and test sets. Table 1 contains institutional information for all patients.

Tumor regions of interest
Wecombined the threemanual segmentation results provided byBraTS intoROIs to extract
multi-regional radiomics features. We intended to obtain information frommultiple tissue
types rather than single tissue type (Zacharaki et al., 2009). The first region (ROI type I)
was created by merging the non-enhancing tumor and necrotic region and the second
region (ROI type II) was created by adding the tumor region with enhancement to the first
region. The third region (ROI type III) combined the second region with the area of edema.
The first region is the smallest region and the third region is the largest region inclusive of
multiple compartments. Representative ROIs are shown in Fig. 2.

Radiomics features
To compute high-dimensional imaging information needed for the radiomics approach,
imaging features were calculated using all three ROIs in four modalities from 3D volume.
The features were computed using a combination of open source code (Van Griethuysen et
al., 2017) and in-house generated computer code implemented in MATLAB (Mathworks
Inc. Natick,MA,USA). Formost features, we used the open source software PyRadiomics so
that the results could be easily reproduced. For the features not available in PyRadiomics,
we used our in-house MATLAB code which is provided as a supplement material. We
computed a total of 468 radiomics features per patient. We computed 24 shape-based
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Figure 2 Examples of three types of ROIs used in our study. (A) T1 data. (B) ROI associated with T1.
(C) T1C data. (D) ROI associated with T1C. (E) T2 data. (F) ROI associated with T2. (G) FLAIR data. (H)
ROI associated with FLAIR. The left column (A) (C) (E) (G) shows different imaging modalities. The right
column (B) (D) (F) (H) shows associated ROIs. The ROIs were specified in 3D but 2D representative ex-
amples are given. ROIs are visualized in the right column. Red indicates non-enhancing tumor and necro-
sis (ROI type I), yellow indicates enhancing tumor (ROI type II) and blue indicates edema (ROI type III)
in the right column. T1; T1-weighted image, T2; T1C; T1-contrast enhanced; T2-weighted image, FLAIR;
Fluid-Attenuated Inversion Recovery.

Full-size DOI: 10.7717/peerj.5982/fig-2
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(eight for each ROI), 228 histogram-based, and 216 texture-based (192 gray-level co-
occurrence matrix [GLCM] based and 24 intensity size-zone [ISZ] matrix-based) features
quantifying different characteristics of the tumor (Haralick, Shanmugam & Dinstein, 1973;
Tixier et al., 2011; Davnall et al., 2012; Grove et al., 2015). The histogram-based features
were computed from 128 bin histogram computed over the whole intensity range. For the
GLCM features, we binned intensities with 128 bins. A total of 26 matrices corresponding
to 26 3D directions with offset one were computed and then averaged to yield one matrix.
The averaged matrix was used to compute GLCM features. For the ISZM features, we
constructed a 128×256 matrix where the first dimension was binned intensity and the
second dimension was size. The size was not quantized and if a blob was larger than 256
voxels, it was considered as a blob with size 256.We considered six neighbors (four in-plane
and two out-of-plane ones) for defining the size of the blob. More details can be found in
the supplement.

Feature selection
Feature values of the training cohort were normalized to z-scores for each feature across
subjects. Different radiomics features have different units and range. Some features were
designed to fall between 0 and 1, while others have a very large range. All the features
were subjected to the feature selection procedure. Without feature normalization, some
features might be assigned a larger weight, while others might be assigned a lower weight
depending on the distribution of feature values during the feature selection. Thus, we
applied z-score normalization to the feature values, making the range of each feature
relatively uniform. A similar approach can be found in another work (Kickingereder et al.,
2016). We selected image features which could distinguish between HGG and LGG using
the minimum redundancy maximum relevance (mRMR) algorithm (Peng, Long & Ding,
2005). The mRMR is described with three equations. The first Eq. (1) searches for a set of
features that maximizes the relevance (D), where S is the total feature set, c is the grade of
glioma, xi is the individual feature, and I is the information measure. The second Eq. (2)
searches for a set of features that minimizes redundancy (R) among the selected features,
where xi,xj are the individual features. Equation (2) suppresses overlapping information
among the selected features. The previous steps are combined into the third Eq. (3), where
the mRMR algorithm identifies the optimal set of features that encourage maximum
relevance and minimum redundancy. We performed mRMR with mutual information as
the information measure and selected the top five features. We chose to select five features
because we sought a compact model to distinguish between HGG and LGG images.

maxD(S,c),D=
1
|S|

∑
xi∈S

I (xi;c). (1)

minR(S),R=
1
|S|2

∑
xi,xj∈S

I (xi,xj). (2)

max8(D,R),8=D−R. (3)
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Training the classification model
A five-fold cross-validation was adopted as mentioned before and the classifiers were
trained using the training fold only. We adopted three classifiers to demonstrate the
effectiveness of the chosen features. Logistic regression (Ng & Jordan, 2002), support
vector machine (SVM) (Cortes & Vapnik, 1995), and random forest (RF) (Breiman, 2001),
classifiers were used to distinguish betweenHGG and LGG images. The logistic classifier fits
the distribution of data to the binomial distribution and provides a category related output
with values between 0 and 1. The SVM is trained to maximize the margins of the plane
separating the two categories in the feature space and is the most common classifier used
for binary classification. RF is an ensemble classifier composed of a number of decision
trees and it could lessen overfitting by training each decision tree using only a subset of
the entire data. To train the logistic regression classifier, selected radiomics features were
linearly regressed to binarized grades of glioma and then a radiomics score was constructed
using a linear combination of regression coefficients and feature values. The score was
fitted to the logistic model and a fixed threshold (=.5) was applied to distinguish between
HGG and LGG. The cost function of the SVM was Lagrangian of the sum of the distance
from each feature point to the marginal line. We chose a linear kernel for the SVM. The
selected features from the feature selection step were vectorized and referred to as the 5D
feature space. As a result, training of the SVM was performed using the 5D feature space.
The RF model was also trained using the same information as the SVM and 200 decision
trees were used for consensus result in the training step.

Applying the model to the test cohort and statistics
We applied the trained models to the test cohort. The selected features and the associated
coefficients from the training step were applied to the test cohort. The actual values of the
features were computed from the test cohort. Performance of both cohorts was measured
using the accuracy, sensitivity, specificity, and area under the curve (AUC) value of the
receiver operating characteristic (ROC) curve. The positive case for the confusion matrix
was set to HGG. The adjusted R-squared value and p-value were calculated to evaluate
the degree of fit of the model. As we adopted a five-fold cross-validation, we repeated
the procedures of feature selection, model training, and testing steps five times each time
leaving a different test fold out. Each left out fold led to one set of performance measures,
and thus we reported the average value of five measures. All analyses and evaluation
procedures were performed using MATLAB (Mathworks Inc. Natick, MA, USA)

RESULTS
Selected features from training
The top five features from themRMR feature selection algorithmwere chosen as significant
radiomics features from each fold. Table 2 shows the most stable four radiomics features
which were selected at least three times from the five-fold cross-validation. Regarding
the category of features, the morphological property of tumor was most effective at
discriminating HGG from LGG. Especially, spherical disproportion, which indicated how
much the tumor shape was distorted from an ideal sphere, was found to be most valuable.
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Table 2 Selected features via mRMR based on stability over five folds.

Feature name Modality Category ROI type

1 Spherical Disproportion Shape Shape 1
2 Contrast T1c GLCM 2
3 Compactness Shape Shape 2
4 Autocorrelation FLAIR GLCM 2

Table 3 Training performance measures using various classifiers.

Classifier Accuracy Sensitivity Specificity AUC Adjusted
R-squared

p-value

Logistic 0.8895 0.9643 0.6800 0.9066 0.4877 8.0686e−23
SVM 0.8983 0.9714 0.6933 0.9135 0.4461 6.5597e−13
RF 1 1 1 1 0.9537 7.4280e−148
Average 0.9292 0.9786 0.7911 0.9400

Notes.
Each performance value was calculated by averaging the results of the five-fold cross validation.
SVM, support vector machine; RF, random forest; AUC, area under the curve.

The next most efficacious features were the GLCM features, which represent texture
characteristic of the intra-tumoral area. Regarding the imaging modality, one was from T1
contrast enhanced image, and the other was from FLAIR. Regarding the type of ROIs, one
was from ROI type I (non-enhancing tumor and necrotic region) and the other three were
from ROI type II (enhancing, non-enhancing tumor and necrotic region).

Model performance in the training step
Training performance of the three classifiers is shown in Table 3. Each performance value
was calculated by averaging the five-fold cross validation results. The RF classifier showed
the best training performance and three classifiers had an AUC of 0.9400 on average,
which showed that the classifiers were very successful at modeling the training cohort.
The accuracy, sensitivity, and specificity were measured as 0.9292, 0.9786, and 0.7911 on
average. Figure 3 shows ROCs for the three classifiers for all five folds.

Model performance in test step
Table 4 shows the results of applying the model constructed at the training stage to the test
cohort. These results were obtained by fixing the image features selected by mRMR and
all the model parameters. The actual feature values were computed from the test cohort.
Same as the training phase, the RF classifier had the best performance with AUC 0.9213,
and the average AUC of the three classifiers was 0.9030. The other performance measures
were obtained in the same manner as the training phase. The average accuracy, sensitivity,
and specificity were 0.8854, 0.9508 and 0.7022, respectively. Figure 4 shows ROCs for the
three classifiers in the test cohort for all five folds.
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Figure 3 Performance curves of the five-fold cross validation in the training phase. (A) shows the ROC
for the logistic regression classifier. (B) shows the ROC for the SVM classifier. (C) shows the ROC for the
RF classifier.

Full-size DOI: 10.7717/peerj.5982/fig-3

Table 4 Test performance measures using various classifiers.

Classifier Accuracy Sensitivity Specificity AUC Adjusted
R-squared

p-value

Logistic 0.8877 0.9619 0.6800 0.9010 0.4882 5.6693e−23
SVM 0.8807 0.9476 0.6933 0.8866 0.3989 4.2893e−05
RF 0.8877 0.9429 0.7333 0.9213 0.5725 2.4653e−10
Average 0.8854 0.9508 0.7022 0.9030

Notes.
Each performance value was calculated by averaging the results of the five-fold cross validation.
SVM, support vector machine; RF, random forest; AUC, area under the curve.

Figure 4 Performance curves of the five-fold cross validation in the test phase. (A) shows the ROC for
the logistic regression classifier. (B) shows the ROC for the SVM classifier. (C) shows the ROC for the RF
classifier.

Full-size DOI: 10.7717/peerj.5982/fig-4

DISCUSSION
A radiomics approach can compute high-dimensional features from in vivo imaging
modalities, which in turn were used to differentiate between HGG and LGG in this study.
Our radiomics approach was tested with three classifiers and we obtained a high average
AUC value of 0.9030 in the test cohort. In particular, the RF classifier showed the best
performance with AUC 0.9213 for the test cohort. We also tested to see if the ensemble
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Table 5 Test performance measures using various classifiers.

Classifier Accuracy Sensitivity Specificity AUC Adjusted
R-squared

p-value

Logistic 0.8877 0.9619 0.6800 0.9010 0.4882 5.6693e–23
SVM 0.8807 0.9476 0.6933 0.8866 0.3989 4.2893e–05
RF 0.8877 0.9429 0.7333 0.9213 0.5725 2.4653e–10
Ensemble 0.8947 0.9571 0.7200 0.8765 0.5471 2.2992e–09

Notes.
Each performance value was calculated by averaging the results of the five-fold cross validation.
SVM, support vector machine; RF, random forest; Ensemble, ensembled classifier of three classifier; AUC, area under the
curve.

of the three classifiers using majority voting could be better than individual classifiers
(Table 5). The RF classifier was significantly better other classifiers and thus the ensemble
procedure did not improve the overall performance. Our main contribution was to fully
leverage available multi-modal imaging with various machine learning approaches to
distinguish between LGG and HGG.

Others also attempted to differentiate HGG from LGG. Law et al. used relative cerebral
blood volume measurements and metabolite ratios from proton MR spectroscopy, which
resulted in a sensitivity of 0.950 and a specificity of 0.575 in discrimination between
HGG and LGG (Law et al., 2003). A recent study applied conventional image processing
approaches to a small scale data of 42 patients’ processed perfusion MRI and achieved a
sensitivity of 0.966, specificity of 0.812 and AUC of 0.95 (Togao et al., 2016). Zacharaki
et al. adopted texture features similar as our approach to differentiate between LGG and
HGG (Zacharaki et al., 2009). They achieved an accuracy of 0.878 and AUC of 0.896 using
SVM based recursive feature elimination (SVM-RFE) with a leave-one-out cross validation.
The leave-one-out cross validation portion of that study might lead to overfitting, while
our study could reduce the overfitting issue with a five-fold cross validation. In addition,
SVM-RFE approach is tailored for the SVM classifier and thus applying the SVM-RFE in
conjunction with other classifiers could lead to performance degradation.

We found four significant features that were stable through the five-fold cross validation.
They were spherical disproportion of ROI type I (non-enhancing tumor and necrotic
region), contrast of GLCM of ROI type II (enhancing, non-enhancing tumor, and
necrotic region) from T1-contrast enhanced images, compactness of ROI type II, and
autocorrelation of GLCM of ROI type II from FLAIR images (Table 2). The spherical
disproportion and compactness measure how much an ROI shape differs from a sphere.
The former is a measure based on volume measurements, while the latter is based on
surface measurements. For spherical disproportion, an ideal sphere has value one and
the value increases as the shape differs from the sphere. For compactness, an ideal sphere
has value 0.0531 (i.e.,1/6 π) and the value decreases as the shape differs from the sphere.
Glioma shape is a well-known factor associated with malignancy, as irregular tumor shape
is often associated with higher malignancy and poor prognosis (Claes, Idema &Wesseling,
2007). We found that the shape of both non-enhancing and enhancing portion of the
tumor were important in determining the glioma grades. Another important predictor of
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tumor prognosis is intratumoral heterogeneity (McGranahan & Swanton, 2015). We found
two significant texture features: the contrast and autocorrelation of GLCM. The texture
features quantify textural information within the ROI and can reveal patterns of intensity
heterogeneity. The contrast of GLCM measures the local intensity variation of GLCM
and autocorrelation of GLCM measures the magnitude of the fineness and coarseness of
textural patterns. These texture features have often been identified as significant in other
radiomics studies (Tixier et al., 2011; Davnall et al., 2012; Ganeshan et al., 2013; Grove et
al., 2015; Bowen et al., 2017). One feature was from ROI type I (non-enhancing tumor and
necrotic region) and the other three were from ROI type II, which included ROI type I plus
the enhancing compartment. This confirmed that we need to consider both tumor core
and the enhanced portion to evaluate the tumor grading.

There are related studies of gliomas using machine learning approaches. Kickingereder
et al. estimated the progression-free and overall survival of GBM patients using T1, T1-
contrast enhanced and FLAIR images (Kickingereder et al., 2016). They used principal
component analysis (PCA) to develop radiomics signatures from high-dimensional
features. PCA is effective at reducing dimensionality, but its results are difficult to interpret.
Itakura et al. computed quantitative features from T1 images of GBM patients and
found phenotypic clusters associated with molecular pathway activity through consensus
clustering (Itakura et al., 2015). The adopted clustering was effective at demonstrating the
association between imaging features and degree of malignancy, but the results were still
difficult to interpret. One study developed machine learning-based prognostic imaging
biomarkers of GBM images using multi-modal imaging, similar to our study (Cui et
al., 2016). They adopted the L1-norm regularization method to select significant imaging
features and predict overall survival (Tibshirani, 1996). In summary, our studywas designed
to produce stable and interpretable results of radiomics analysis compared to existing ones.

Recently, a machine learning algorithm known as deep learning (DL) has become the
go-to methodology to drastically enhance the performance of existing machine learning
techniques (Lecun, Bengio & Hinton, 2015). DL approaches have shown promise in tumor
grading, diagnosis and prognosis prediction (Ertosun & Rubin, 2015; Litjens et al., 2016;
Lao et al., 2017; Li et al., 2017). DL approach does not require the researcher to specify a
set of features a priori, but can implicitly learn the features relevant to the problem, and
thus can be effective for radiomics research. DL requires many more training samples
compared to conventional machine learning approaches and additional issues arise when
fine-tuning many hyper-parameters. These issues are challenging and we plan to pursue
DL approaches in the future.

Our study has several limitations. We used open source data originally designated
for a segmentation challenge, so we could not control for all factors between LGG and
HGG groups. This might have included bias in patient selection. Independent validation
using data from another clinical site is missing. This might hinder the applicability of
our approach to new data. There was a class imbalance between two classes. We thought
that each class had enough samples for statistical modeling. Still, the class imbalance
issue might be alleviated by minority class oversampling techniques. The ROIs were
provided by the database and the reproducibility of the ROI was not verified. World Health
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Organization recently announced a new tumor classification system of the central nervous
system (Louis et al., 2016). It breaks up the glioma into five grades considering not only
histological information but also isocitrate dehydrogenasemutation and 1p/19q codeletion.
Updated grading of gliomas was unavailable to us and thus we used the information of the
traditional grading system. Future studies should consider grading information on the new
grading system.

CONCLUSIONS
In conclusion, we showed that glioma grades could be accurately determined by a
combination of high dimensional imaging features, an advanced feature selection method
and machine learning classifiers. We believe the algorithm presented in our study might
contribute to high-throughput computer aided diagnosis system for gliomas.

ACKNOWLEDGEMENTS
We would like to thank the organizers of the MICCAI Brain Tumor Segmentation 2017
Challenge.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by the Institute for Basic Science (Grant no. IBS-R015-D1), the
National Research Foundation of Korea (Grant no. NRF-2016R1A2B4008545) and the
Ministry of Science and ICT of Korea under the ITRC Program (Grant no. IITP-2018-0-
01798). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Institute for Basic Science: IBS-R015-D1.
National Research Foundation of Korea: NRF-2016R1A2B4008545.
Ministry of Science and ICT of Korea: IITP-2018-0-01798.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Hwan-ho Cho conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.
• Seung-hak Lee performed the experiments, authored or reviewed drafts of the paper.
• Jonghoon Kim analyzed the data, authored or reviewed drafts of the paper.
• Hyunjin Park conceived and designed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the
final draft.

Cho et al. (2018), PeerJ, DOI 10.7717/peerj.5982 12/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.5982


Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The institutional review broad (IRB) of Sungkyunkwan University approved our study
(IRB# 2015-09-007). Consent was waived for this retrospective study. Our study was
performed in full accordance with local IRB guidelines.

Data Availability
The following information was supplied regarding data availability:

We considered data from the MICCAI Brain Tumor Segmentation 2017 Challenge
(BraTS 2017): https://www.med.upenn.edu/sbia/brats2017.html.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.5982#supplemental-information.

REFERENCES
Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S,

Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, RietbergenMM,
Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P. 2014. Decoding
tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
Nature Communications 5:Article 4006 DOI 10.1038/ncomms5006.

Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K,
Davatzikos C. 2017a. Advancing the cancer genome atlas glioma MRI collections
with expert segmentation labels and radiomic features. Scientific Data 4:1–13
DOI 10.1038/sdata.2017.117.

Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani
K, Davatzikos C. 2017b. Segmentation labels and radiomic features for the
pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive
DOI 10.7937/K9/TCIA.2017.GJQ7R0EF.

Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani
K, Davatzikos C. 2017c. Segmentation labels and radiomic features for the pre-
operative scans of the TCGA-GBM collection. The Cancer Imaging Archive
DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q.

Beig N, Patel J, Prasanna P, Hill V, Gupta A, Correa R, Bera K, Singh S, Partovi S,
Varadan V, Ahluwalia M, Madabhushi A, Tiwari P. 2018. Radiogenomic analysis
of hypoxia pathway is predictive of overall survival in Glioblastoma. Scientific Reports
8(1):7 DOI 10.1038/s41598-017-18310-0.

Bowen SR, YuhWTC, Hippe DS,WuW, Partridge SC, Elias S, Jia G, Huang Z,
Sandison GA, Nelson D, KnoppMV, Lo SS, Kinahan PE, Mayr NA. 2017. Tumor
radiomic heterogeneity: multiparametric functional imaging to characterize
variability and predict response following cervical cancer radiation therapy. Journal
of Magnetic Resonance Imaging 47(5):1388–1396 DOI 10.1002/jmri.25874.

Cho et al. (2018), PeerJ, DOI 10.7717/peerj.5982 13/17

https://peerj.com
https://www.med.upenn.edu/sbia/brats2017.html
http://dx.doi.org/10.7717/peerj.5982#supplemental-information
http://dx.doi.org/10.7717/peerj.5982#supplemental-information
http://dx.doi.org/10.1038/ncomms5006
http://dx.doi.org/10.1038/sdata.2017.117
http://dx.doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
http://dx.doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
http://dx.doi.org/10.1038/s41598-017-18310-0
http://dx.doi.org/10.1002/jmri.25874
http://dx.doi.org/10.7717/peerj.5982


Breiman L. 2001. Random forests.Machine Learning 45(1):5–32
DOI 10.1023/A:1010933404324.

Claes A, Idema AJ, Wesseling P. 2007. Diffuse glioma growth: a guerilla war. Acta
Neuropathologica 114:443–458 DOI 10.1007/s00401-007-0293-7.

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt
D, Pringle M, Tarbox L, Prior F. 2013. The cancer imaging archive (TCIA): main-
taining and operating a public information repository. Journal of Digital Imaging
26:1045–1057 DOI 10.1007/s10278-013-9622-7.

Cortes C, Vapnik V. 1995. Support-vector networks.Machine Learning 20(3):273–297
DOI 10.1023/A:1022627411411.

Cui Y, Tha KK, Terasaka S, Yamaguchi S, Wang J, Kudo K, Xing L, Shirato H, Li R.
2016. Prognostic imaging biomarkers in glioblastoma: development and indepen-
dent validation on the basis of multiregion and quantitative analysis of MR images.
Radiology 278:546–553 DOI 10.1148/radiol.2015150358.

Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B,
Miles KA, Cook GJ, Goh V. 2012. Assessment of tumor heterogeneity: an
emerging imaging tool for clinical practice? Insights into Imaging 3:573–589
DOI 10.1007/s13244-012-0196-6.

ErtosunMG, Rubin DL. 2015. Automated grading of gliomas using deep learning in
digital pathology images: a modular approach with ensemble of convolutional
neural networks. In: AMIA. Annual symposium proceedings/AMIA symposium. AMIA
symposium, vol. 2015, 1899–1908.

Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. 2013. Non-small
cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology
266:326–336 DOI 10.1148/radiol.12112428.

Grove O, Berglund AE, SchabathMB, Aerts HJWL, Dekker A,Wang H, Rios Velazquez
E, Lambin P, Gu Y, Balagurunathan Y, Eikman E, Gatenby RA, Eschrich S, Gillies
RJ. 2015. Quantitative computed tomographic descriptors associate tumor shape
complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma.
PLOS ONE 10:1–14 DOI 10.1371/journal.pone.0118261.

Gutman DA, DunnWD, Grossmann P, Cooper LAD, Holder CA, Ligon KL,
Alexander BM, Aerts HJWL. 2015. Somatic mutations associated with MRI-
derived volumetric features in glioblastoma. Neuroradiology 57(12):1227–1237
DOI 10.1007/s00234-015-1576-7.

Haralick RM, ShanmugamK, Dinstein I. 1973. Textural features for image classi-
fication. IEEE Transactions on Systems, Man, and Cybernetics SMC-3:610–621
DOI 10.1109/TSMC.1973.4309314.

Itakura H, Achrol AS, Mitchell LA, Loya JJ, Liu T,Westbroek EM, Feroze AH, Ro-
driguez S, Echegaray S, Azad TD, YeomKW, Napel S, Rubin DL, Chang SD, Harsh
GR, Gevaert O. 2015.Magnetic resonance image features identify glioblastoma
phenotypic subtypes with distinct molecular pathway activities. Science Translational
Medicine 7(303):303ra138 DOI 10.1126/scitranslmed.aaa7582.

Cho et al. (2018), PeerJ, DOI 10.7717/peerj.5982 14/17

https://peerj.com
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s00401-007-0293-7
http://dx.doi.org/10.1007/s10278-013-9622-7
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1148/radiol.2015150358
http://dx.doi.org/10.1007/s13244-012-0196-6
http://dx.doi.org/10.1148/radiol.12112428
http://dx.doi.org/10.1371/journal.pone.0118261
http://dx.doi.org/10.1007/s00234-015-1576-7
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1126/scitranslmed.aaa7582
http://dx.doi.org/10.7717/peerj.5982


Kickingereder P, Götz M, Muschelli J, Wick A, Neuberger U, Shinohara RT, Sill M,
Nowosielski M, Schlemmer HP, Radbruch A,WickW, Bendszus M, Maier-Hein
KH, BonekampD. 2016. Large-scale radiomic profiling of recurrent glioblastoma
identifies an imaging predictor for stratifying anti-angiogenic treatment response.
Clinical Cancer Research 22:5765–5771 DOI 10.1158/1078-0432.CCR-16-0702.

Lao J, Chen Y, Li Z-C, Li Q, Zhang J, Liu J, Zhai G. 2017. A deep learning-based
radiomics model for prediction of survival in glioblastoma multiforme. Scientific
Reports 7:10353 DOI 10.1038/s41598-017-10649-8.

LawM, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D. 2003.
Glioma grading: sensitivity, specificity, and predictive values of perfusion MR
imaging and proton MR spectroscopic imaging compared with conventional MR
imaging. American Journal of Neuroradiology 24:1989–1998.

Lecun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–444
DOI 10.1038/nature14539.

Lee J, Jain R, Khalil K, Griffith B, Bosca R, Rao G, Rao A. 2016. Texture feature
ratios from relative CBV maps of perfusion MRI are associated with pa-
tient survival in glioblastoma. American Journal of Neuroradiology 37:37–43
DOI 10.3174/ajnr.A4534.

Li H, Zhu Y, Burnside ES, Drukker K, Hoadley KA, Fan C, Conzen SD,Whitman GJ,
Sutton EJ, Net JM, Ganott M, Huang E, Morris EA, Perou CM, Ji Y, Giger ML.
2016.MR imaging radiomics signatures for predicting the risk of breast cancer
recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50
gene assays. Radiology 281:382–391 DOI 10.1148/radiol.2016152110.

Li Z,Wang Y, Yu J, Guo Y, CaoW. 2017. Deep Learning based Radiomics (DLR) and
its usage in noninvasive IDH1 prediction for low grade glioma. Scientific Reports
7(1):5467 DOI 10.1038/s41598-017-05848-2.

Litjens G, Sánchez CI, Timofeeva N, HermsenM, Nagtegaal I, Kovacs I, Hulsbergen-
Van De Kaa C, Bult P, Van Ginneken B, Van Der Laak J. 2016. Deep learning as a
tool for increased accuracy and efficiency of histopathological diagnosis. Scientific
Reports 6:26286 DOI 10.1038/srep26286.

Louis DN, Ohgaki H,Wiestler OD, CaveneeWK, Burger PC, Jouvet A, Scheithauer
BW, Kleihues P. 2007. The 2007 WHO classification of tumours of the central
nervous system. Acta Neuropathologica 114:97–109 DOI 10.1007/s00401-007-0243-4.

Louis DN, Perry A, Reifenberger G, Von DeimlingA, Figarella D,Webster B, Hiroko
KC,Wiestler OD, Kleihues P, Ellison DW. 2016. The 2016 World Health Orga-
nization classification of tumors of the central nervous system: a summary. Acta
Neuropathologica 131:803–820 DOI 10.1007/s00401-016-1545-1.

McGranahan N, Swanton C. 2015. Biological and therapeutic impact of intratumor het-
erogeneity in cancer evolution. Cancer Cell 27:15–26 DOI 10.1016/j.ccell.2014.12.001.

Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y,
Porz N, Slotboom J,Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants
BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T,
Delingette H, Demiralp Ç, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia

Cho et al. (2018), PeerJ, DOI 10.7717/peerj.5982 15/17

https://peerj.com
http://dx.doi.org/10.1158/1078-0432.CCR-16-0702
http://dx.doi.org/10.1038/s41598-017-10649-8
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3174/ajnr.A4534
http://dx.doi.org/10.1148/radiol.2016152110
http://dx.doi.org/10.1038/s41598-017-05848-2
http://dx.doi.org/10.1038/srep26286
http://dx.doi.org/10.1007/s00401-007-0243-4
http://dx.doi.org/10.1007/s00401-016-1545-1
http://dx.doi.org/10.1016/j.ccell.2014.12.001
http://dx.doi.org/10.7717/peerj.5982


E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John
NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ,
Raviv TR, Reza SMS, RyanM, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva
CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ,
Unal G, Vasseur F, WintermarkM, Ye DH, Zhao L, Zhao B, Zikic D, PrastawaM,
Reyes M, Van Leemput K. 2015. The multimodal brain tumor image segmentation
benchmark (BRATS). IEEE Transactions on Medical Imaging 34:1993–2024
DOI 10.1109/TMI.2014.2377694.

Ng A, JordanMI. 2002. On generative vs. discriminative classifiers: a comparison of
logistic regression and naive bayes. Advances in Neural Information Processing Systems
28(3):169–187.

Pedano N, Flanders AE, Scarpace L, Mikkelsen T, Eschbacher JM, Hermes B, Ostrom
Q. 2016. Radiology data from the cancer genome atlas low grade glioma [TCGA-
LGG] collection. The Cancer Imaging Archive
DOI 10.7937/K9/TCIA.2016.L4LTD3TK.

Peng H, Long F, Ding C. 2005. Feature selection based on mutual information: criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 27:1226–1238 DOI 10.1109/TPAMI.2005.159.

Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P. 2016. Radiomic features from
the peritumoral brain parenchyma on treatment-naive multi-parametric MR imag-
ing predict long versus short-term survival in glioblastoma multiforme: preliminary
findings. European Radiology 27(10):4188–4197 DOI 10.1007/s00330-016-4637-3.

Rohlfing T, Zahr NM, Sullivan EV, Pfefferbaum A. 2010. The SRI24 multichannel
atlas of normal adult human brain structure. Human Brain Mapping 31:798–819
DOI 10.1002/hbm.20906.

Ryu YJ, Choi SH, Park SJ, Yun TJ, Kim JH, Sohn CH. 2014. Glioma: application of
whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of
tumor heterogeneity. PLOS ONE 9:e108335 DOI 10.1371/journal.pone.0108335.

Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S, Gutman D. 2016. Radiology data
from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection.
The Cancer Imaging Archive DOI 10.7937/K9/TCIA.2016.RNYFUYE9.

Tibshirani R. 1996. Regression selection and shrinkage via the Lasso. Journal of the Royal
Statistical Society B 58:267–288 DOI 10.2307/2346178.

Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges J-P, Corcos L,
Visvikis D. 2011. Intratumor heterogeneity characterized by textural fea-
tures on baseline 18F-FDG PET images predicts response to concomitant ra-
diochemotherapy in esophageal cancer. Journal of Nuclear Medicine 52:369–378
DOI 10.2967/jnumed.110.082404.

Togao O, Hiwatashi A, Yamashita K, Kikuchi K, Mizoguchi M, Yoshimoto K, Suzuki
SO, Iwaki T, ObaraM, Van CauterenM, Honda H. 2016. Differentiation of high-
grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging.
Neuro-Oncology 18:132–141 DOI 10.1093/neuonc/nov147.

Cho et al. (2018), PeerJ, DOI 10.7717/peerj.5982 16/17

https://peerj.com
http://dx.doi.org/10.1109/TMI.2014.2377694
http://dx.doi.org/10.7937/K9/TCIA.2016.L4LTD3TK
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1007/s00330-016-4637-3
http://dx.doi.org/10.1002/hbm.20906
http://dx.doi.org/10.1371/journal.pone.0108335
http://dx.doi.org/10.7937/K9/TCIA.2016.RNYFUYE9
http://dx.doi.org/10.2307/2346178
http://dx.doi.org/10.2967/jnumed.110.082404
http://dx.doi.org/10.1093/neuonc/nov147
http://dx.doi.org/10.7717/peerj.5982


Van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-
Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. 2017. Computational radiomics
system to decode the radiographic phenotype. Cancer Research 77:e104–e107
DOI 10.1158/0008-5472.CAN-17-0339.

WuW, Lamborn KR, Buckner JC, Novotny PJ, Chang SM, O’Fallon JR, Jaeckle KA,
Prados MD. 2010. Joint NCCTG and NABTC prognostic factors analysis for high-
grade recurrent glioma. Neuro-Oncology 12:164–172 DOI 10.1093/neuonc/nop019.

Yip SSF, Aerts HJWL. 2016. Applications and limitations of radiomics. Physics in
Medicine and Biology 61:R150–R166 DOI 10.1088/0031-9155/61/13/R150.

Zacharaki EI, Wang S, Chawla S, Soo D. 2009. Classification of brain tumor type
and grade using MRI texture and shape in a machine learning scheme.Magnetic
Resonance in Medicine 62:1609–1618 DOI 10.1002/mrm.22147.Classification.

ZhouM, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA. 2017a.
Identifying spatial imaging biomarkers of glioblastoma multiforme for sur-
vival group prediction. Journal of Magnetic Resonance Imaging 46(1):115–123
DOI 10.1002/jmri.25497.

ZhouM, Scott J, Chaudhury B, Hall L, Goldgof D, YeomKW, IvM, Ou Y, Kalpathy-
Cramer J, Napel S, Gillies R, Gevaert O, Gatenby R. 2017b. Radiomics in
brain tumor: image assessment, quantitative feature descriptors, and machine-
learning approaches. American Journal of Neuroradiology 39(2):208–216
DOI 10.3174/ajnr.A5391.

Zinn PO, Singh SK, Kotrotsou A, Hassan I, Thomas G, Luedi MM, Elakkad A, Elshafeey
N, Idris T, Mosley J, Gumin J, Fuller GN, DeGroot JF, Baladandayuthapani
V, Sulman EP, Kumar AJ, Sawaya R, Lang FF, Piwnica-Worms D, Colen RR.
2018. A co-clinical radiogenomic validation study-conserved magnetic reso-
nance radiomic appearance of Periostin expressing Glioblastoma in patients
and xenograft models. Clinical Cancer Research Epub ahead of print Oct 8 2018
DOI 10.1158/1078-0432.CCR-17-3420.

Cho et al. (2018), PeerJ, DOI 10.7717/peerj.5982 17/17

https://peerj.com
http://dx.doi.org/10.1158/0008-5472.CAN-17-0339
http://dx.doi.org/10.1093/neuonc/nop019
http://dx.doi.org/10.1088/0031-9155/61/13/R150
http://dx.doi.org/10.1002/mrm.22147.Classification
http://dx.doi.org/10.1002/jmri.25497
http://dx.doi.org/10.3174/ajnr.A5391
http://dx.doi.org/10.1158/1078-0432.CCR-17-3420
http://dx.doi.org/10.7717/peerj.5982

