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Abstract

Due to the recent evolution of the COVID-19 outbreak, the scientific community is making

efforts to analyse models for understanding the present situation and for predicting future

scenarios. In this paper, we propose a forced Susceptible-Exposed-Infected-Recovered-

Dead (fSEIRD) differential model for the analysis and forecast of the COVID-19 spread in

Italian regions, using the data from the Italian Protezione Civile (Italian Civil Protection

Department) from 24/02/2020. In this study, we investigate an adaptation of fSEIRD by pro-

posing two different piecewise time-dependent infection rate functions to fit the current epi-

demic data affected by progressive movement restriction policies put in place by the Italian

government. The proposed models are flexible and can be quickly adapted to monitor vari-

ous epidemic scenarios. Results on the regions of Lombardia and Emilia-Romagna confirm

that the proposed models fit the data very accurately and make reliable predictions.

Introduction

The recent evolution of the COVID-19 epidemic has renewed the interest of the scientific and

political community in the mathematical models for the epidemic. Many researchers all over

the world are proposing new refined models to analyse the present situation and predict possi-

ble future scenarios (see for example [1–6]).

With this paper, we hope to contribute to the ongoing research on this topic and to give a

practical instrument for a deeper comprehension of the outbreak evolution.

The modelling of epidemics is currently performed by Ordinary Differential Equations

(ODEs) deterministic compartmental models [7, 8], or by stochastic procedures [9]. We con-

sider here deterministic compartmental models, based on a system of initial value ODEs,

whose theory has been studied since the beginning of the century by W.O. Kermack and A. G.

MacKendrick [10] who proposed the basic Susceptible-Infected-Removed (SIR) model. Since

then, many modifications have been developed to study the epidemics of different infectious

diseases [7]. These models split the population into groups, compartments, and reproduce

their behaviour by formalising their reciprocal interactions. For example, the SIR model

groups are: susceptible, who can catch the disease, infected, who have the disease and can

spread it, and removed, who have either had the disease or have recovered, are immune or
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isolated until recovery. The Susceptible-Exposed-Infected-Removed (SEIR) model also consid-

ers the exposed group, containing individuals who are in the incubation period. Since we

believe that relevant information concerns not only infected but also Recovered and Dead pop-

ulations, we choose to split removed population into Recovered and Dead, obtaining the

SEIRD model. Such an approach is similar to [11], without accounting for infections from

deceased to susceptibles, that do not apply to COVID-19.

Compared to previous outbreaks, such as SARS-CoV or MERS-CoV [2], the COVID-19

epidemic had a more rapid spread and it was proclaimed pandemic by the WHO on 11/03/

2020. Indeed, the number of infected people would grow exponentially, if not contained by

social isolation of the affected areas, as first evidenced by the COVID-19 outbreak in the Chi-

nese city of Wuhan in December 2019 and currently applied almost worldwide.

In particular, the Italian government has started to impose severe restrictions since 09/03/

2020 registering a substantial reduction in the growth rate of infected people ever since. The

introduction of such social restricting measures requires an adaptation of the standard epi-

demic models to this new situation.

The evolution of the infected population depends on the basic reproduction number,

denoted as R0, which measures how transferable a disease is. This quantity determines whether

the infection will spread exponentially (R0 > 1), die out (R0 < 1), or remain constant (R0 = 1).

In this paper we propose a time-dependent infection rate function R0(t), instead of a constant

parameter, since we believe that it could provide a model that better represents the COVID-19

outbreak evolution in Italy. The idea of introducing a non-constant infection rate has been

adopted in several different situations. See for example in [7], ch. 5, where periodic infection

rate functions model influenza epidemic seasonality, naming such modified models as forced
models. In [12], an exponential infection rate function was used to represent the Ebola out-

break. Recently, in [13, 14] the authors have proposed multi-scale models with several time-

dependent parameters, to study COVID-19 epidemic.

In this paper, we propose two infection rate piecewise functions and we calibrate the two

forced SEIRD models employing the COVID-19 Italian data, relative to Lombardia and Emi-

lia-Romagna regions. The actual data is relative to about three months, where the peak of the

infected population has already been reached. The calibrated models yield excellent data fit on

both regions. Moreover, we have simulated a prevision based on early-stage epidemic data, rel-

ative to the first 30 days: the comparison of the results with the real epidemic evolution shows

a difference of very few days between the real and predicted peaks.

Materials and methods

In this section we introduce the epidemic data used for our analysis of COVID-19 in Italy, we

present the proposed mathematical model, the method used for calibrating the parameters and

the strategies applied for predictions.

Epidemic data and containment measures in Italy

In our analysis we refer to the dataset of the Italian Civil Protection Department, which is

described in [15] and publicly available in the GitHub repository [16]. The data have been

collected since 24/02/2020. We consider the infected population I as the infected active

cases (field name: totale_attualmente_positivi in Table 1 [15]). The Recovered R
and Dead D compartments are given in the fields dimessi_guariti and deceduti
respectively (Table 1 [15]). This study considers two Italian regions, Lombardia and Emilia-

Romagna.
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On 09/03/2020 lockdown was declared for the entire country, while more severe restric-

tions were adopted in the different regions. For example in Lombardia, the Codogno munici-

pal area was locked down from 21/02/2020 up to 08/03/2020, conversely in Emilia-Romagna

the complete closure of the Medicina municipal area was applied from 16/03/2020 up to 04/

04/2020 [17]. Therefore, we have chosen to calibrate the models in each region separately.

Further information about COVID-19 in Italy can be found at [18].

The proposed forced SEIRD model

The epidemiological compartmental models divide the population into groups, whose evolu-

tion in time is described by continuous functions, and describe the relations between the

groups with ODEs. In this paper we use a SEIRD model [7, 11], which considers five popula-

tion compartments: susceptible (S), exposed (E), infected (I), Recovered (R) and Dead (D).

The system of equations in the SEIRD model is given by:

dS
dt
¼ �

b

N
SI

dE
dt
¼
b

N
SI � aE

dI
dt
¼ aE �

1

TI
I

dR
dt
¼
ð1 � f Þ

TI
I

dD
dt
¼

f
TI

I

ð1Þ

where N is the total population, i.e. N = S + E + I + R + D at each time t, β is the infection rate,

i.e. a coefficient accounting for the susceptible people get infected by infectious people, α is the

incubation rate for the transition from exposed to infected, TI is the average infectious period

and f is the fraction of all the removed individuals who die. The basic reproduction number R0

has the following expression:

R0 ¼ bTI: ð2Þ

The system (1) is solved by starting from an initial time t = t0 where the values of the popula-

tions S(t0), E(t0), I(t0), R(t0), D(t0) are assigned on the basis of the available data and integrated

up to a final time T.

However, the SEIRD model (1) with constant parameters β, α, f does not fit well the avail-

able data for more than few days, due to the rapidly changing social scenarios during the initial

period of the COVID-19 spread in Italy. In particular, since the applied restrictions, described

in the previous section, cause a decrease in the number of contacts between infected and sus-

ceptible, we model the coefficient β in (1) as a time-dependent decreasing function β(t), yield-

ing a forced SEIRD model fSEIRD [7].

Moreover, to improve the model flexibility, we split the integration interval [t0, T] into p
sub-intervals [tk, tk+1], k = 1, . . . p and propose two alternative piecewise infection rate func-

tions: a rational function βr(t) or an exponential function βe(t). In each sub-interval [tk, tk+1]

the infection rate functions have the following expression:

brðtÞ ¼ bðtkÞð1 � rkðt � tkÞ=tÞÞ t 2 ðtk; tkþ1�; rk 2 ð0; 1Þ ð3Þ

beðtÞ ¼ bðtkÞe� rkðt� tkÞ; t 2 ðtk; tkþ1�; rk � 0: ð4Þ
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for an assigned starting value β(t0). The parameters α and f are assumed to be constant on each

sub-interval, hence they are represented by piecewise constant functions:

aðtÞ ¼ ak; ak � 0

f ðtÞ ¼ fk; fk � 0
; t 2 ðtk; tkþ1�; k � 0: ð5Þ

The proposed fSEIRD model is expressed as follows:

dS
dt
¼ �

bðtÞ
N

SI

dE
dt
¼
bðtÞ
N

SI � aðtÞE

dI
dt
¼ aðtÞE �

1

TI
I

dR
dt
¼
ð1 � f ðtÞÞ

TI
I

dD
dt
¼

f ðtÞ
TI

I

ð6Þ

with the following time dependent basic reproduction function:

RðtÞ ¼ bðtÞTI: ð7Þ

In the following, we name fSEIRDr and fSEIRDe the model (6) with the rational infection rate

(3) and the exponential infection rate (4), respectively.

Parameter estimation and prevision

In order to estimate the parameters αk, fk and ρk in (3), (4) and (5), we fit the solution of (6) to

the measured data of the infected, recovered and Dead populations Î ; R̂; D̂, relative to M days

starting from 24/02/2020. We calibrate the parameters of fSEIRDr or fSEIRDe by solving a

nonlinear least-squares problem with positivity and bound constraints. Mathematically, the

problem can be formulated as follows. Let u(t) be the multi-value function:

uðtÞ : ½t0;T� � !R5; uðtÞ ¼ ðSðtÞ;EðtÞ; IðtÞ;RðtÞ;DðtÞÞ;

solution of the ODE system (6) and let

a ¼ ða1; . . . ; apÞ; f ¼ ðf1; . . . ; fpÞ; r ¼ ðr1; . . . ; rpÞ

be the vectors of the model parameters. The function u(t) depends on the unknown parame-

ters a, f, r, hence we write u(t; a, f, r)� u(t). We define the restriction of u(t; a, f, r) to the three

measured populations (I(t), R(t), D(t)) by means of the function:

vðt; a; f; rÞ : ½t0;T� � !R3; vðt; a; f; rÞ ¼ ðIðtÞ;RðtÞ;DðtÞÞ:

For each day t(i) in the vector of times t = (t(0), t(1), . . . t(M)), we compute the vectors v(t(i);a,

f, r) 2 R3, i = 1, . . . M, and we stack them into the vector v(t;a, f, r), of length 3 �M. Analo-

gously, we define the observations vector at time t(i) as yðiÞ ¼ ðÎðiÞ; R̂ðiÞ; D̂ðiÞÞ 2 R3;, and we

stack the vectors y(i) i = 1, . . . M into the vector Y of length 3 �M. The model parameters a, f, r

are estimated by solving the following nonlinear constrained least-squares problem:

min
a;f;r
kvðt; a; f; rÞ � Yk2

2
s:t: a � 0; f � 0; r � 0: ð8Þ
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Conceptually, this least-squares optimization is equivalent to a maximum likelihood estima-

tion, where the likelihood of data given parameters is a multivariate normal distribution with

mode v and spherical unit covariance. Eq (8) may be interpreted as the minimum of the nega-

tive log of this likelihood. The iterative trust-region based method implemented by the

lsqnonlin Matlab function is applied to solve problem (8) (see [19] for details about this

aspect). It is well known that the nonlinear problem (8) may have many local minima and that

the iterative method, implemented by the solver, converges to one of them. Furthermore, the

starting guess is discriminatory for the accuracy of the computed solution. To choose suitable

starting guesses approximating the real parameters, we perform a two phase process, where in

phase 1 we estimate the parameters β, α, f of the classical SEIRD model (1) on a restricted num-

ber of days Ml<M [20] and then, in phase 2, we calibrate the parameters of fSEIRDr or

fSEIRDe by applying the solutions of phase 1 as starting guesses. Indeed, the identification pro-

cess in phase 2 requires initial values α0, f0, ρ0 for the iterative process solving (8) and β(t0) for

the computation of the functions β(t) (3) or (4), therefore the parameters α, f, β computed in

phase 1 are assigned as starting guesses. The starting value ρ0 is fixed as ρ0 = 0.9. To define the

intervals [tk, tk+1] in Eqs (3) and (4), we fix a value Δt> 0 and partition the measurements

interval [t(0), T] in p sub-intervals [tk, tk+1] where

t0 � tð0Þ < t1 < t2 < � � � < tp � T; and tkþ1 ¼ tk þ Dt; k < p � 1 ð9Þ

allowing the length of last interval [tp−1, tp] to be larger than Δt> 0. Finally, we apply (8) to

compute the parameters a, f, r.

After having carried out the estimation of the model parameters we use fSEIRDr, fSEIRDe

to monitor the epidemic evolution and make some predictions about the infection behaviour

in the successive few weeks. This information is extremely important to predict the length of

the epidemic spread.

Results

In this section, we test the fSEIRDe and fSEIRDr models using data of Lombardia and Emilia-

Romagna regions. In paragraph Model Calibration, we calibrate the two models on the whole

time interval available in the dataset from 24/02/2020 to 24/05/2020, which includes the epi-

demic Infections peak. Then in paragraph Epidemic Evolution Forecast we test the models

behaviour restricting the calibration time to the interval [24/02/2020, 27/03/2020], to monitor

the COVID-19 evolution and forecast of the epidemic peak.

The differential systems are solved applying the ode45 Matlab function, implementing a

variable step Runge-Kutta method based on Dormand-Prince formulae, with the following ini-

tial conditions: Iðt0Þ ¼ Îð1Þ, Rðt0Þ ¼ R̂ð1Þ, Dðt0Þ ¼ D̂ð1Þ where Îð1Þ; R̂ð1Þ; D̂ð1Þ correspond

to the infected, recovered, Dead individuals in the first measurement day. Concerning the

exposed population, for which no measurement is available, we set E(0) = 10 � I(t0) in Emilia-

Romagna. This value is reasonable for the initial epidemic evolution, leading to a basic repro-

duction index R0’ 6.6. Concerning the region of Lombardia, the same initial value E(0) = 10 �

I(t0) leads to an excessively high reproduction index. However, since the available data in the

first days of the outbreak diffusion were uncomplete, we have decided to use that value of E(0)

and concentrate our analysis in the subsequent times of the pandemic (from day 20th

onwards). In future software versions, the value of E(0) could be possibly estimated from data.

Finally we set S(t0) = N − E(t0) − I(t0) − R(t0) − D(t0) where and N is the total population of

the region.
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To evaluate the estimated data, we consider the Root Mean Squared Error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

; MSE ¼
PNc

i ðXmodðiÞ � XdataðiÞÞ
2

Nc

ð10Þ

where Xmod represents a single population among the modelled compartments ({I,R,D} respec-

tively) and Xdata is the corresponding compartment data in the calibration days t(i), i = 1,

2, . . ., Nc, Nc�M, and the Bayesian Information Criterion (BIC) [21], defined as follows:

BIC ¼ Np logðNcÞ þ logðMSEÞ ð11Þ

where Np represents the number of the parameters estimated by the model. The RMSE mea-

sures the average error performed by the model in predicting the outcome for an observation

while the BIC takes into account the number of model estimated parameters and tends to

penalize the inclusion of additional parameters. In both cases the best models are given by the

lowest values.

In this study we choose as the average infectious period TI = 20(d), the time in which the

viral RNA may be detected by means of laboratory procedures, as reported in [3]. This value is

different from the infectious period reported in [22] which is variable in the interval [2(d),

14(d)] with possible outliers at 24(d) and 27(d).

All the computations are performed using Matlab R2020a 2,9 GHz Intel Core i7 quad-core

16 GB ram.

Model calibration

To calibrate fSEIRDr and fSEIRDe models we perform the phase 1 to obtain the starting guesses

to be used in phase 2. We apply the SEIRD model (1), with initial parameters α = 0.1 d−1, f = 0.1

and β = 0.25 d−1, on the data [16] relative to the first 15 days [24/02/2020, 09/03/2020] for both

regions. The estimated parameters, applied as starting guesses in phase 2, are reported in

Table 1. Concerning phase 2, we calibrate the fSEIRDr or fSEIRDs parameters using the avail-

able data relative of the first 90 days from 24/02/2020 up to 24/05/2020 and set ρ0 = 0.9. We first

investigate the choice of time partitions (9) by changing the value of the intervals length Δt.
Such value should balance the increasing number of parameters, when Δt is small, with the

increasing value of the RMSE, for large Δt values. This behaviour has been studied by computing

the BICi values corresponding to each Dt 2 I , where I � f3; 5; 7; 14; 21; 28gdays and then

computing the values of the scaled BIC parameter [23]:

DðBICÞi ¼ BICi � BICmin; i ¼ 1; . . . ; Ik ð12Þ

where BICmin is the minimum value of the BICi and Ik is the number of elements in the set I ;

the best value is obtained when Δ(BIC)i = 0. Comparing the plots reported in Figs 1 and 2, we

observe that the two models reach the minimum BIC when Δt is 7 for Emilia-Romagna data.

For Lombardia we observe that fSEIRdr has very small values for 3� Δt� 14 while fSEIRDe is

very sensitive to Δt and reaches its minimum when Δt = 14. Therefore, in the following we use

Table 1. Phase 1 SEIRD parameters.

Region α0 (d−1) f0 (−) β0 (d−1)

Lombardia 4.09 10−2 0.27 1.665

Emilia R. 0.258 0.567 0.457

Parameters obtained in phase 1 by SEIRD (1) in the first 15 days measurements: [24/02/2020, 09/03/2020].

https://doi.org/10.1371/journal.pone.0237417.t001
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Fig 1. BIC parameters for Emilia-Romagna. Scaled BIC parameters Δ(BIC)i (12) computed for intervals widths {3, 5,

7, 14, 21, 28} with fSEIRDe (red continuous line), fSEIRDr (blue dash-dotted line) models.

https://doi.org/10.1371/journal.pone.0237417.g001

Fig 2. BIC parameters for Lombardia. Scaled BIC parameters Δ(BIC)i (12) computed for intervals widths {3, 5, 7, 14,

21, 28} with fSEIRDe (red continuous line), fSEIRDr (blue dash-dotted line) models.

https://doi.org/10.1371/journal.pone.0237417.g002
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Δt = 14 for Lombardia and Δt = 7 for Emilia-Romagna in the calibration of the parameters and

we show in Figs 3 and 4 the infected populations obtained by both models in Emilia-Romagna

and Lombardia respectively.

Regarding Lombardia region, we observe a quite good fit of the Recovered population (Fig

6) while the Dead population is well fitted in the first 40 days, successively the model tends to

over estimate the data (Fig 8). Conversely, for Emilia-Romagna data, the good fit of the

infected population does not extend to Recovered and Dead compartments, although the

Recovered data are quite well fitted in the last 10 days (Fig 5).

The two models show similar fitting properties, as confirmed by the BIC and RMSE values

in Table 2 as well as by the infected, (Figs 3 and 4), Recovered (Figs 5 and 6) and Dead (Figs 7

and 8) populations. Finally, we observe in Figs 9 and 10 the different behaviour of the infection

rate function β(t) in the two considered regions. The exponential function βe has a steeper

decreasing behaviour, compared to the rational function βr. Hence we expect that fSEIRDe

forecasts a reduction of the epidemic spread in a shorter time than fSEIRDr. Conditioned

upon this model space, from Table 2 there is strong evidence in favour of the fSEIRDr model

as a description of the epidemic in Lombardia (difference in BIC of 28), and weak evidence in

favour of a fSEIRDe model in Emilia-Romagna (difference in BIC of 2).

Epidemic evolution forecast

In this section we investigate how these models could be used at an early stage of the epidemic

evolution, to see how and to what extent they could yield useful information in terms of pre-

dicting the epidemic peak of the infected population. To this purpose, we calibrate fSEIRDe

Fig 3. Infected compartments for Emilia-Romagna. Infected data (gray circles) and infected modelled population,

obtained by fSEIRDr (blue dash-dotted line) and fSEIDRe (red continuous line).

https://doi.org/10.1371/journal.pone.0237417.g003
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Fig 4. Infected compartments for Lombardia. Infected data (gray circles) and infected modelled population,

obtained by fSEIRDr (blue dash-dotted line) and fSEIDRe (red continuous line) for Lombardia.

https://doi.org/10.1371/journal.pone.0237417.g004

Fig 5. Recovered compartments for Emilia-Romagna. Recovered data (cyan dots) and Recovered modelled

population, obtained by fSEIRDr (blue dash-dotted line) and fSEIDRe (red continuous line).

https://doi.org/10.1371/journal.pone.0237417.g005
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and fSEIRDr using the data from 24/02/2020 to 27/03/2020 and then we use the calibrated

models to make previsions until 23/06/2020. Observing the results reported in Table 3 we see

that the infected peaks are localized quite accurately (maximum three days error). In Emilia-

Romagna, both models over-estimate the real peak populations of about [70%–90%]. Con-

versely, the situation in the Lombardia region is more complicated, and the two models pres-

ent two different possible evolutions. In this case only fSEIRDr localizes the peak precisely, still

overestimating the infected numbers (137%). On the contrary, fSEIRDe finds an epidemic

peak 21 days earlier but with a milder underestimate.

The global trend, represented in Figs 11 and 12 for Emilia-Romagna and Lombardia, con-

firms that fSEIRDr and fSEIRDe can be applied to predict possible epidemic evolutions even

Fig 6. Recovered compartments for Lombardia. Recovered data (cyan dots) and Recovered modelled population,

obtained by fSEIRDr (blue dash-dotted line) and fSEIDRe (red dashed line).

https://doi.org/10.1371/journal.pone.0237417.g006

Table 2. RMSE and BIC values.

Model Compartment Lombardia Emilia-Romagna

RMSE BIC RMSE BIC

fSEIRDr I 2782 1525 525.5 1303

R 8281 1723 3289 1636

D 8417 1726 3463 1646

fSEIRDe I 3250 1553 520 1301

R 8001 1717 3291 1636

D 8163 1721 3464 1646

RMSE and BIC values of the infected (I), Recovered (R) and Dead (D) compartments of fSEIRDr and fSEIRDe models calibrated on data from 24/02/2020 to 24/06/

2020.

https://doi.org/10.1371/journal.pone.0237417.t002
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Fig 8. Recovered compartments for Lombardia. Dead data (black dots) and Dead modelled population, obtained by

fSEIRDr (blue dash-dotted line) and fSEIDRe (red dashed line).

https://doi.org/10.1371/journal.pone.0237417.g008

Fig 7. Recovered compartments for Emilia-Romagna. Dead data (black dots) and Dead modelled population,

obtained by fSEIRDr (blue dash-dotted line) and fSEIDRe (red dashed line).

https://doi.org/10.1371/journal.pone.0237417.g007
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Fig 9. Infection rate in Emilia-Romagna. Functions βr(t) (blue dashed line), βe(t) (red dash-dotted line), obtained by

fSEIRDr and fSEIDRe respectively.

https://doi.org/10.1371/journal.pone.0237417.g009

Fig 10. Infection rate in Lombardia. Infection rate functions βr(t) (blue dashed line), βe(t) (red dash-dotted line),

obtained by fSEIRDr and fSEIDRe respectively.

https://doi.org/10.1371/journal.pone.0237417.g010
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from early-stage data. Hence, the different behaviour of the models can be usefully applied to

predict different possible future scenarios.

Concerning the basic reproduction functions RðtÞ in Fig 13 and in Fig 14, we choose to

report it from the 20th day, to focus our observations on the prediction phase. Regarding the

fSEIRDe model we observe that RðtÞ < 1 is achieved at t = 41(d) (4 April 2020) in Emilia-

Romagna and t = 69(d) (2 May 2020) in Lombardia. The fSEIRDr model never reaches

RðtÞ < 1 for Lombardia while for Emilia-Romagna it is reached at t = 116(d) (20 June 2020).

In the case of fSEIRDe model the function RðtÞmatches the trend of the infected curve,

whereas RðtÞ has too large values for fSEIRDr model. From our observations we believe that

two factors cause this misbehaviour: the inaccurate initial value of the exposed population,

which should be calibrated, and the evolution of the function α(t), whose change should be

adaptively bounded by a more refined calibration procedure.

Table 3. Infected peak days.

Emilia-Romagna Lombardia

Peak day Infected Peak day Infected

data 13 Apr 2020 13818 04 May 2020 37307

fSEIRDr 11 Apr 2020 24613 03 May 2020 88763

fSEIRDe 10 Apr 2020 26297 13 Apr 2020 30576

Infected Peak days and values for measured data, fSEIRDr and fSEIRDe models calibrated in the period [24/02-27/

03].

https://doi.org/10.1371/journal.pone.0237417.t003

Fig 11. Prevision for infected in Emilia-Romagna. Infected population of fSEIRDe (continuous red line) and

fSEIDRr (blue dash-dotted line) calibrated on the first 30 days observed infection data [24/02-27/03], delimited by the

vertical black dashed line. Prediction is shown until 30 days after the last measured data (day 24/05). Grey circles

represent the infected data in the period [24/02-24/05].

https://doi.org/10.1371/journal.pone.0237417.g011

PLOS ONE Monitoring Italian COVID-19 spread by a forced SEIRD model

PLOS ONE | https://doi.org/10.1371/journal.pone.0237417 August 6, 2020 13 / 17

https://doi.org/10.1371/journal.pone.0237417.t003
https://doi.org/10.1371/journal.pone.0237417.g011
https://doi.org/10.1371/journal.pone.0237417


Fig 12. Prevision for infected in Lombardia. Infected population of fSEIRDe (continuous red line) and fSEIDRr

(blue dash-dotted line) calibrated on the first 30 days observed infection data [24/02-27/03], delimited by the vertical

black dashed line. Prediction is shown until 30 days after the last measured data (day 24/05). Grey circles represent the

infected data in the period [24/02-24/05].

https://doi.org/10.1371/journal.pone.0237417.g012

Fig 13. Reproduction function in Emilia-Romagna. RðtÞ predicted until 24/06/2020 after the calibration of fSEIRDe

(red continuous line) and fSEIDRr (blue dash-dotted line) on the data in the period [24/02-27/03].

https://doi.org/10.1371/journal.pone.0237417.g013
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Conclusion

In this paper, we have proposed a forced SEIRD model and investigated two different infection

rate functions for the analysis of the COVID-19 outbreak evolution in Italy. In our new formu-

lation, we have partitioned the integration time into sub-intervals, where the model parameters

have been adaptively estimated.

The results obtained by fitting the data of two Italian regions, Lombardia and Emilia-Romagna,

available from February 24th 2020 until May 24th 2020, show a very good fit to the data. We have

then used the model to make predictions by calibrating it only over a short period of about 30

days, and we have compared our prevision with the actual collected data. We believe that the pro-

posed model can be quickly adapted to monitor various infected areas at different epidemic stages.

Concerning the Italian epidemic evolution, we are now facing the end of the movement restric-

tion measures, and one crucial challenge is the prediction of potential new epidemic outbreaks,

possibly connected to the spread of autumnal influenza. Further studies on forced models will be

carried out in this perspective, together with further improvement of the calibration procedure.
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