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Early detection and tracking of bulbar changes in ALS via
frequent and remote speech analysis
Gabriela M. Stegmann 1,2✉, Shira Hahn1,2, Julie Liss1,2, Jeremy Shefner3, Seward Rutkove4, Kerisa Shelton3, Cayla Jessica Duncan3 and
Visar Berisha1,2

Bulbar deterioration in amyotrophic lateral sclerosis (ALS) is a devastating characteristic that impairs patients’ ability to
communicate, and is linked to shorter survival. The existing clinical instruments for assessing bulbar function lack sensitivity to early
changes. In this paper, using a cohort of N= 65 ALS patients who provided regular speech samples for 3–9 months, we
demonstrated that it is possible to remotely detect early speech changes and track speech progression in ALS via automated
algorithmic assessment of speech collected digitally.
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INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is characterized by a progres-
sive loss of motor function due to central nervous system damage
and loss of spinal and bulbar motor neurons. ALS causes
individuals to become progressively weaker and lose motor
function, eventually resulting in death. Social and economic
consequences of ALS include cost of care for the patients, loss of
employment, and cost of treatment, medications, and orthopedic
devices1–3. Bulbar deterioration is particularly devastating, impair-
ing the ability to communicate, leading to faster decline, shorter
survival (less than 2 years from diagnosis), and reduced quality of
life4–6. Studies have found that while 30% of individuals in the
population present with bulbar symptoms at the onset of ALS,
most ALS patients eventually develop them and lose their ability
to speak and swallow safely7.
The standard ways of assessing bulbar dysfunction are the ALS

functional rating scale-revised (ALSFRS-R) and, less commonly, the
Center for Neurologic Study Bulbar Function Scale (CNS-BFS)8.
Both instruments, however, lack sensitivity to early bulbar
changes9. Several studies have found that speech features, such
as jitter, shimmer, articulatory rate, speaking rate, and pause rate,
are affected in ALS10,11, and that these can be measured from
remotely-collected speech samples12,13. However, no study has
assessed the sensitivity of remote speech analysis in detecting and
tracking bulbar change. In this study, we assessed speech features
digitally and evaluated their sensitivity to detecting early changes
and tracking progression.
We defined early changes as speech changes that occurred

before any changes in the ALSFRS-R bulbar subscales. We defined
sensitive tracking as the ability to detect longitudinal within-
person changes in speech. We used a cohort of healthy and ALS
patients from ALS at Home14, a longitudinal, observational study
that was conducted entirely remotely. Participants were recruited,
screened, enrolled, and assessed daily from home. Speech was
collected via a mobile application and assessed through
automated speech analysis. Although it is possible to analyze a
large number of speech features, we focused on articulatory
precision (AP) and speaking rate (SR) as they relate to articulation
and rate, both of which are known to decline in dysarthria15

secondary to ALS. We evaluated whether the automatic analysis of
remotely-collected speech could (1) detect early speech changes
and (2) sensitively track speech changes longitudinally.
The ALS sample was divided according to the following

categories:

● Impairment category: We identified participants who had
normal function according to ALSFRS-R bulbar subscales
(speech, salivation, and swallowing subscales with score =
4) at the beginning of the study. Twelve participants had
normal bulbar function and the other participants had impaired
bulbar function. This sample was used to test whether AP and
SR significantly differed between the normal bulbar function
group and the healthy controls, thus evaluating their ability to
detect early changes.

● Onset category: Type of onset was collected from participants.
Twelve ALS participants initially presented with bulbar onset,
while the other 52 participants presented with other types of
onset (nonbulbar onset). The non-bulbar onset group included
participants with axial, limb, and generalized onset. This
sample was used to compare the SR and AP longitudinal
trajectories of individuals according to their type of onset
(bulbar and nonbulbar onset). We expected that bulbar-onset
participants would exhibit faster speech decline, and thus
used onset type to evaluate whether AP and SR were sensitive
to these differences in speech decline.

RESULTS
Description of sample
Tables 1 and 2 show the descriptive statistics of the sample,
including their demographics and ALS severity. The ALSFRS-R
speech, ALSFRS-R bulbar, SR, and AP scores all indicate that the
most severe group in terms of bulbar symptoms were the ALS
participants with bulbar onset, followed by ALS participants with
bulbar impairment. Overall, lower scores in AP and SR were
associated with greater impairment in speech (mixed-effects16

correlations between the ALSFRS-R speech subscale and AP, SR
were r= 0.73, r= 0.64, respectively; Lorah16). Figure 1 shows the
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distributions of the AP and SR scores for healthy, ALS with normal
bulbar function, impaired bulbar function, bulbar onset, and
nonbulbar onset participants.

Analyses
Three sets of analyses were conducted. First, to evaluate whether
declines in AP and SR occurred earlier than declines on the
ALSFRS-R bulbar subscale, we compared the healthy individuals to
ALS individuals with normal bulbar function. If participants started
the study with normal bulbar function but their ALSFRS-R bulbar
scores declined throughout the study due to ALS progression, we
only used their data before the decline began. Both AP and SR
were significantly higher in the healthy individuals than in the ALS
individuals with normal bulbar function (see top section of Table 3),
indicating that AP and SR decline was detected earlier than declines
on the ALSFRS-R bulbar subscale.
Second, we further evaluated the validity of AP and SR as a

measure of speech decline in ALS by comparing the scores in
healthy controls and all ALS participants regardless of bulbar
impairment or onset. AP and SR were significantly higher in
healthy participants than all ALS participants regardless of onset
or impairment (middle section of Table 3), strengthening the
evidence that these two measures can detect ALS speech
impairment.
Third, we evaluated the sensitivity of AP and SR to detect

longitudinal within-person changes in speech. We used a growth
curve model17 (GCM), which is a mixed-effects model that
estimates the longitudinal trajectory of an outcome for a sample
of the participants with multiple observations over time. We

compared the rates of decline between the bulbar-onset and
nonbulbar-onset participants expecting that bulbar-onset partici-
pants would have steeper speech decline than nonbulbar onset
participants. The time variable was the number of days since the
onset of the first symptom. For both features, the final GCM17

followed a linear trajectory, had a random intercept and random
slope, and had distinct mean slopes for bulbar-onset and
nonbulbar-onset participants. For AP, both groups had signifi-
cantly negative mean slopes, such that AP decreased as ALS
progressed. However, bulbar-onset participants declined more
rapidly as their mean slope was significantly more negative than
the mean slope for nonbulbar-onset. For SR, the decline over time
in nonbulbar-onset participants was nonsignificant (mean slope
not significantly different from 0), whereas the bulbar-onset group
showed significant decline (the mean slope was negative and
significantly lower than nonbulbar-onset group). The longitudinal
plots are shown in Fig. 2, and the GCM parameters are in the
bottom section of Table 3.

DISCUSSION
In this study, we have identified two objective speech metrics that
detected bulbar impairment before the ALSFRS-R bulbar subscale,
sensitively tracked longitudinal decline, and could be assessed
from remotely collected speech samples via a mobile app. They
were consistent with both cross-sectional and longitudinal
expectations: cross-sectionally, healthy participants had the high-
est SP and AP, followed by ALS participants with no bulbar
impairment, and finally followed by all ALS participants, including
those with bulbar impairment. Furthermore, the analyses were
repeated controlling for time of day, age, and gender, and the
results remained consistent. Longitudinally, bulbar-onset ALS
participants declined faster in SR and AP than nonbulbar-onset
ALS participants. This represents a unique opportunity for earlier
and more sensitive identification and remote tracking of bulbar
impairment than is currently available.
The ability to digitally detect early changes and sensitively track

progression has important implications for personal planning and
for research. Such information is valuable to the patient, family,
and medical staff to inform life planning decisions, such as making
necessary work and family decisions while speech is still
intelligible, deciding on the timing of therapeutic interventions,
and obtaining augmented and alternative communication tech-
nology18. These objective measures are also useful for ALS clinical
trials as they can be used to provide valuable information about
disease progression, determine enrollment, stratify participants,
and appropriately power a study19. Furthermore, the ability to
remotely assess participants in a study has the additional benefit
of reducing participant burden, reducing attrition, and enrolling

Table 1. Sample description (enrollment).

Total number of participants 86

Total number of observations 8416

Number of healthy; ALS 21; 65

ALS participants: number of participants
with normal bulbar function

11

ALS participants: number of participants
with bulbar onset

12

Average length of enrollment 203.9 days

Average frequency of data collection Every 2.9 days

Gender for ALS and healthy participants
(% females)

ALS 35%; healthy 71%

Mean (standard deviation) years since first
symptom onset

2.9 (2.0)

Average (standard deviation) age for ALS
and healthy participants

ALS 61 (10.2); healthy
55 (12.5)

Table 2. Sample Description (by group).

Sample description Healthy All ALS ALS with
Bulbar Onset

ALS with Non-
Bulbar Onset

ALS with Bulbar
Impairment

ALS with No Bulbar
Impairment

ALSFRS-R speech mean (standard deviation); scale
0–4, higher is better

– 3.1 (1.0) 1.9 (0.89) 3.5 (0.70) 2.7 (1.0) 4 (0)

ALSFRS-R bulbar mean (standard deviation); 0–12,
higher is better

– 9.7 (2.6) 6.2 (2.6) 10.7 (1.5) 8.4 (2.5) 12 (0)

ALSFRS-R total mean (standard deviation); scale
0–48, higher is better

– 37.1 (5.7) 38.0 (4.9) 36.9 (5.8) 35.9 (5.5) 41.6 (3.1)

Speaking rate mean (standard deviation);
syllables/second, higher is better

5.1 (0.6) 3.9 (1.3) 2.7 (1.4) 4.2 (1.2) 3.6 (1.4) 4.6 (0.7)

Articulatory precision mean (standard deviation);
scale 0–10, higher is better

9.4 (0.3) 8.2 (1.8) 6.3 (2.7) 8.6 (1.4) 7.8 (2.1) 9.0 (0.6)
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individuals who would otherwise not be able to participate, such
as those with transportation or ambulation challenges.
One limitation of the study was that participant information

such as cognitive function, drinking, smoking, vision problems,
medications, ability to read, or other health problems was not
available, and therefore we were not able to explore these as
potential confounders. However, given the consistency of the
results, we do not expect that controlling for these additional
variables would lead to a different conclusion, although a
prospective study is needed to confirm this. Other limitations of
remote assessment include misperformance of tasks, for example,
reading a sentence incorrectly. We screened for this by automatic
QA on all samples and random manual QA on a subset of samples.

METHODS
Sample
The study was approved by the institutional review board at Barrow
Neurological Institute. All participants provided written informed consent
to participate in the study. Participants from ALS at Home provided daily
speech samples for 3 months, twice weekly for an additional 6 months,
and ALSFRS-R scores on a weekly basis. Participants were allowed to
receive assistance from their caregivers if needed. In the current analysis,
we included participants who were enrolled for at least 45 days to use
participants that were engaged in the study and avoid those who dropped
out too early. This resulted in 21 healthy participants and 65 participants
with ALS.

Speech collection and analysis
Speech samples were collected remotely via a mobile application20, where
participants were requested to complete a series of speech elicitation
tasks, including readings of five sentences. The instructions, including the

sentences, were provided in the application, and participants read the text
from the application. The same text was shown each day to all participants.
Figure 3 shows a screenshot of the app. Speech was recorded locally on
the participants’ phones, uploaded to a separate cloud-based repository,
saved as a.wav file, and algorithmically analyzed on the cloud. Participants
were requested to make the recordings from a quiet room, and ambient
noise was recorded for 5 s and used in the speech analysis.
The speech obtained from the five sentences was used to extract SR and

AP14,20. SR is a measure of how fast participants read the sentences. The SR
is determined by automatically estimating the total speech time from the
read sentences and dividing the number of syllables in the target
sentences by the total speech time. To determine the speech onset and

Table 3. Results from all analyses.

Analysis Estimate
(standard error)

p-valuec

Mixed-effects models for comparisons between healthy controls and
ALS with normal bulbar function

Articulatory precision −0.62 (0.29)a 0.0236

Speaking rate −0.77 (0.28)a 0.009

Mixed-effects models for comparisons between healthy controls and
all ALS

Articulatory precision −0.82 (0.28)a 0.005

Speaking rate −1.01 (0.25)a <0.001

Growth curve model for articulatory precision

Fixed-effects parameters

Intercept 9.94 (0.37)

Slope for nonbulbar-onset
participants (change
per month)

−0.03 (0.02)b 0.025

Difference in slope between
bulbar and non-bulbar -onset
participants

−0.12 (0.03)b <0.001

Random effects parameters

Intercept standard deviation 2.54

Slope standard deviation 0.10

Correlation between intercepts
and slopes

−0.67

Residual standard deviation 0.33

Growth curve model for
speaking rate

Fixed-effects parameters

Intercept 4.21 (0.25)

Slope for non-bulbar -onset
participants (change
per month)

−0.003 (0.007)b 0.960

Difference in slope between
bulbar and non-bulbar -onset
participants

−0.05 (0.01)b <0.001

Random effects parameters

Intercept standard deviation 1.57

Slope standard deviation 0.04

Correlation between intercepts
and slopes

−0.70

Residual standard deviation 0.25

aFor group comparison analyses, the metrics were standardized to have
mean 0 and standard deviation 1 for easier interpretation of the
coefficients16.
bFor growth curve models, the slopes are scaled to the amount of change
per month. p-values are provided for slopes; no p-values are available for
intercepts or random effects parameters.
cp-values calculated using χ2 likelihood ratio tests.

Fig. 1 Boxplots for healthy controls, ALS participants with no
bulbar impairment (normal ALSFRS-R scores for speech, swallow-
ing, and salivation), ALS participants with bulbar impairment (at
least one score below 4 in the ALSFRS-R scores for speech,
swallowing, and salivation), and ALS participants with bulbar-
onset (type of ALS onset). All data points are used. Note: the mixed-
effects models indicated that the healthy controls significantly
differed from all ALS participants (p-value= 0.005 and p-value <
0.001 for AP and SR, respectively) and from ALS participants with no
bulbar impairment (p-value= 0.024 and 0.009 for AP and SR,
respectively). Center line = median; box limits = upper and lower
quartiles; whiskers = 1.5× interquartile range.
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offset times, we use a statistical model-based voice activity detector similar
to the one described in Sohn et al.21. This model uses spectral and energy
features extracted from the collected background noise sample to identify
an optimal speech detection threshold. The total speech time is then
measured by finding the time elapsed from speech onset to speech offset.
The number of syllables is known as the participant is asked to read
specific sentences. The speaking rate is the total number of syllables
divided by the total speech time. AP is a measure of the match between
the expected and observed acoustic features for each phoneme. The
algorithm, an extension of existing work22, takes as input connected
speech, elicited from the speaker via the mobile app, and the
corresponding transcript. The algorithm assesses how well the acoustics
of each phoneme correspond to the acoustics of the expected phoneme in
spoken English. This assessment is made by creating a distribution of
acoustic features for every English phoneme from a large corpus of read
speech (~1000 h) in American English. We then calculate a likelihood ratio
from a comparison between the acoustic features extracted from each
phoneme in the speech collected by the app and the normative
distribution for the expected phoneme. For ease of interpretation,
articulatory precision was projected onto a 0–10 scale (higher scores are
indicative of more precise articulation).

Statistical analyses
Given that each participant had repeated observations, the analysis
necessitated mixed-effects models, where fixed-effects parameters were
used for estimating the mean difference between the two groups and the
mean trajectories. All analyses were performed in R. The packages lme423

and nlme24 were used, since these two are widely used R packages to
estimate mixed-effects models.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon request.

CODE AVAILABILITY
All analyses were conducted in R language. The code is available from the
corresponding author upon request.

Received: 19 May 2020; Accepted: 17 September 2020;

REFERENCES
1. López-Bastida, J., Perestelo-Pérez, L., Montón-Álvarez, F., Serrano-Aguilar, P. &

Alfonso-Sanchez, J. L. Social economic costs and health-related quality of life in
patients with amyotrophic lateral sclerosis in Spain. Amyotroph. Lateral Scler. 10,
237–243 (2009).

2. Jennum, P., Ibsen, R., Pedersen, S. W. & Kjellberg, J. Mortality, health, social and
economic consequences of amyotrophic lateral sclerosis: a controlled national
study. J. Neurol. 260, 785–793 (2013).

Fig. 3 Screenshot of the mobile application. This figure illustrates a
sentence from themobile application used for collecting speech samples.

Fig. 2 Articulatory precision (AP) and speaking rate (SR) scores as
a function of number of days since date of ALS onset. AP was
extracted from data collected for the participants’ full duration of
enrollment, whereas for SR, the initial 45 days were excluded to
avoid rate increases which were observed in healthy controls,
possibly due to familiarization with the sentences. Note: The thin
lines and points show the observed data of a random sample of 35
participants. The dark red thick line represents the expected
trajectory for all nonbulbar participants. The dark blue thick line
represents the expected trajectory for all bulbar participants. The
expected trajectories were obtained from the fixed-effects estimates
from the growth curve models. The shaded areas indicate the
bootstrap 95% confidence bands for the expected trajectories. In
the equations: 1 month = 30 days.

G.M. Stegmann et al.

4

npj Digital Medicine (2020)   132 Seoul National University Bundang Hospital



3. Oh, J. et al. Socioeconomic costs of amyotrophic lateral sclerosis according to sta-
ging system. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 202–208 (2015).

4. Shellikeri, S. et al. The neuropathological signature of bulbar-onset ALS: a sys-
tematic review. Neurosci. Biobehav. Rev. 75, 378–392 (2017).

5. del Aguila, M. A., Longstreth, W. T., McGuire, V., Koepsell, T. D. & van Belle, G.
Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology
60, 813–819 (2003).

6. Makkonen, T., Ruottinen, H., Puhto, R., Helminen, M. & Palmio, J. Speech dete-
rioration in amyotrophic lateral sclerosis (ALS) after manifestation of bulbar
symptoms. Int. J. Lang. Commun. Disord. 53, 385–392 (2018).

7. Green, J. R. et al. Bulbar and speech motor assessment in ALS: challenges and future
directions. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 494–500 (2013).

8. Smith, R. A. et al. Assessment of bulbar function in amyotrophic lateral sclerosis:
validation of a self-report scale (Center for Neurologic Study Bulbar Function
Scale). Eur. J. Neurol. 25, 907–e66 (2018).

9. Yunusova, Y., Plowman, E. K., Green, J. R., Barnett, C. & Bede, P. Clinical measures
of bulbar dysfunction in ALS. Front. Neurol. 10, 1–11 (2019).

10. Chiaramonte, M. & Bonfiglio M. Acoustic analysis of voice in bulbar amyotrophic
lateral sclerosis: a systematic review and meta-analysis of studies. Logop. Pho-
niatr. Vocol. 22, 1–13 (2019).

11. Vieira, H., Costa, N., Sousa, T., Reis, S. & Coelho, L. Voice-based classification of
amyotrophic lateral sclerosis: where are we and where are we going? A sys-
tematic review. Neurodegener. Disord. 19, 163–170 (2019).

12. Connaghan, K. P. et al. Use of Beiwe smartphone app to identify and track speech
decline in amyotrophic lateral sclerosis (ALS). In: Interspeech 2019, ISCA
4504–4508 (2019).

13. Arora, S. et al. Detecting and monitoring the symptoms of Parkinson’s disease
using smartphones: a pilot study. Parkinsonism Relat. Disord. 21, 650–653 (2015).

14. Rutkove, S. B. et al. ALS longitudinal studies with frequent data collection at
home: study design and baseline data. Amyotroph. Lateral Scler. Frontotemporal
Degener. 20, 61–67 (2019).

15. Enderby, P. Handbook of Clinical Neurology, Vol. 110. 273–281 (Elsevier, Amster-
dam, 2013).

16. Lorah, J. Effect size measures for multilevel models: definition, interpretation,
TIMSS example. Large Scale Assess. Educ. 6, 1–11 (2018).

17. Grimm, K. J., Ram, N. & Estabrook, R. Growth Modeling: Structural Equation and
Multilevel Modeling Approaches (Guilford, New York, 2017).

18. Ball, L., Beukelman, D. & Pattee, G. Timing of speech deterioration in people with
amyotrophic lateral sclerosis. J. Med. Speech Lang. Pathol. 10, 231–235 (2002).

19. Chiò, A. et al. Prognostic factors in ALS: a critical review. Amyotroph. Lateral Scler.
10, 310–323 (2009).

20. Aural Analytics. ALS at Home—Speech. 2016. https://apps.apple.com/in/app/als-
at-home-speech/id1169813257 (2016).

21. Sohn, J., Kim, N. & Sung, W. A statistical model-based voice activity detection. IEEE
Signal Process. Lett. 6, 1–3 (1999).

22. Jiao, Y. et al. Articulation entropy: an unsupervised measure of articulatory pre-
cision. IEEE Signal Process. Lett. 24, 485–489 (2017).

23. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models
using lme4. J. Stat. Softw. 67, 1–48 (2015).

24. Pinheiro, J., Bates, D., DebRoy, S., Sarkar D. & R Core Team. nlme: Linear and
Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme (2019).

ACKNOWLEDGEMENTS
This work was supported by NIH SBIR (1R43DC017625-01), NSF SBIR (1853247), and
NIH R01 (5R01DC006859-13).

AUTHOR CONTRIBUTIONS
G.S.: statistical analyses; led the writing of the paper. S.H.: provided expertise in which
speech features to measure, helped with writing and editing, provided input in
statistical analyses. J.L. and V.B.: speech study design, helped with writing and editing,
provided input in statistical analyses. J.S. and S.R.: ALS study conception and
supervision of the study. K.S. and C.J.D.: study execution, data management, and
preliminary analysis.

COMPETING INTERESTS
V.B. and J.L. are co-founders of Aural Analytics. J.S. is a scientific advisor to Aural
Analytics. G.S. and S.H. are employed by Aural Analytics. This work was supported by
NIH SBIR (1R43DC017625-01), NSF SBIR (1853247), and NIH R01 (5R01DC006859-13).

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41746-020-00335-x.

Correspondence and requests for materials should be addressed to G.M.S.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

G.M. Stegmann et al.

5

Seoul National University Bundang Hospital npj Digital Medicine (2020)   132 

https://apps.apple.com/in/app/als-at-home-speech/id1169813257
https://apps.apple.com/in/app/als-at-home-speech/id1169813257
https://CRAN.R-project.org/package=nlme
https://doi.org/10.1038/s41746-020-00335-x
https://doi.org/10.1038/s41746-020-00335-x
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Early detection and tracking of bulbar changes in ALS via frequent and remote speech analysis
	Introduction
	Results
	Description of sample
	Analyses

	Discussion
	Methods
	Sample
	Speech collection and analysis
	Statistical analyses
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




