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Aims: Chlorogenic acid (CGA) is a phenolic acid that has a wide range of
pharmacological effects. However, the protective effects and mechanisms of CGA on
liver fibrosis are not clear. This study explored the effects of CGA on miR-21-regulated
TGF-β1/Smad7 liver fibrosis in the hepatic stellate LX2 cell line and in CCl4-induced liver
fibrosis in Sprague-Dawley rats.

Methods: The mRNA expression of miR-21, Smad7, connective tissue growth factor
(CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1),
matrix metalloproteinase-9 (MMP-9), and transforming growth factor-β1 (TGF-β1) and
the protein levels of Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3, p-Smad2/3,
Smad7, CTGF, α-SMA, TIMP-1, MMP-9 and TGF-β1 were assayed in LX2 cells and liver
tissue. The effects of CGA after miR-21 knockdown or overexpression were analyzed in
LX2 cells. The liver tissue and serum were collected for histopathological examination,
immunohistochemistry (IHC) and ELISA.

Results: The mRNA expression of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and
the protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1, and
TGF-β1 were inhibited by CGA both in vitro and in vivo. Meanwhile, CGA elevated
the mRNA and protein expression of Smad7 and MMP-9. After miR-21 knockdown
and overexpression, the downstream molecules also changed accordingly. CGA also
lessened the degree of liver fibrosis in the pathological manifestation and reduced
α-SMA and collagen I expression in liver tissue and TGF-β1 in serum.
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Conclusion: CGA might relieve liver fibrosis through the miR-21-regulated TGF-
β1/Smad7 signaling pathway, which suggests that CGA might be a new anti-fibrosis
agent that improves liver fibrosis.

Keywords: chlorogenic acid, liver fibrosis, TGF-β1, miR-21, Smad7

INTRODUCTION

Liver fibrosis is a chronic damage process to the liver
characterized by the activation of hepatic stellate cells (HSCs),
excessive accumulation of extracellular matrix (ECM) and
distortion of hepatic architecture (Friedman, 2003; Bataller and
Brenner, 2005; Gu et al., 2016). It is an important link in
the further progression of hepatic cirrhosis, liver failure, and
hepatocellular carcinoma (Iredale, 2007; Schuppan and Kim,
2013; Zhang et al., 2015a). Epidemiology has shown that some
45% of the deaths in developed countries are due to fibrotic
diseases (Zhang et al., 2015b). In recent years, although many
important studies have given us a better understanding of
liver fibrosis (Luedde and Schwabe, 2011; Yan et al., 2011), no
drug has been identified to have a definite effect against liver
fibrosis. Therefore, searching for and developing efficient and
well-tolerated drugs that can prevent progression toward liver
fibrosis is urgently needed.

Transforming growth factor β1 (TGF-β1) is a necessary
mediator in many fields such as the immune response,
inflammation, matrix synthesis, cell growth, apoptosis, and
differentiation (Inagaki and Okazaki, 2007; Saito et al., 2013; Xu
et al., 2016). More importantly, TGF-β1 is a main profibrotic
cytokines involved in the process of liver fibrosis (Cui et al., 2010),
and the signaling pathway of TGF-β-Smad is an important signal
transduction pathway in hepatic fibrosis. Meanwhile, several
related studies have also confirmed that the inhibition of TGF-β1
expression and the regulation of the TGF-β-Smad signaling
pathway are effective methods for the prevention of liver fibrosis
(Bai et al., 2016). It is now clear that TGF-β1 can activate its
downstream signaling pathway (Smad 2/3) to mediate fibrosis
through binding to receptors on HSCs. In this signaling pathway,
microRNA-21 (miR-21) positively regulates the production of
collagen via Smad2/3 phosphorylation and is negatively regulated
by Smad7 (Wells, 2000; Ikushima and Miyazono, 2012).

Chlorogenic acid (CGA, 5-O-caffeoylquinic acid), one of
the most plentiful phenolic acids in nature, is formed by the
esterification of quinic and caffeic acids (Suzuki et al., 2006), and
is widely found in fruits, plants, and vegetables (Clifford, 1999),
such as coffee beans (Bhattacharyya et al., 2014), honeysuckle
(Luo et al., 2011), tobacco leaves (Niggeweg et al., 2004), and
kiwi fruit (Li et al., 2014). Many researches have confirmed
that CGA has multiple pharmacological effects, including anti-
inflammatory (Shin et al., 2015), anti-hypertensive (Onakpoya
et al., 2015), anti-oxidant capacities (Monteiro et al., 2007).
CGA showed an anti-hepatotoxic effect on LPS-treated mice by
suppressing the levels of TLR4 and the NF-κB p65 subunit (Xu
et al., 2010) and an anti-fibrosis effect on DMN-induced liver
fibrosis in rats (Shi et al., 2016). We have determined that CGA
has an anti-liver fibrosis effect on schistosome-infected mice

by suppressing the IL-13/miR-21/Smad7 signaling interactions
(Wang et al., 2017) and has an anti-inflammatory effect through
the suppression of the TLR2/TLR9-Myd88 signaling pathways
(Guo et al., 2015a).

However, whether CGA can inhibit liver fibrosis through
the miR-21-regulated TGF-β1/Smad7 signaling pathway has not
been studied. Therefore, in this research we investigated the
therapeutic effect and mechanisms of CGA on anti-fibrosis by
interacting with the miR-21-regulated TGF-β1/Smad7 signaling
pathway in CCl4-induced liver fibrosis rat model and TGF-β1-
stimulated human HSC line LX-2.

MATERIALS AND METHODS

Reagents and Antibodies
Chlorogenic acid (≥95% titration) was obtained from
Sigma–Aldrich China (Shanghai, China). Human recombinant
TGF-β1was purchased from Peprotech (Rocky Hill, NJ,
United States). A rat TGF-β1 ELISA kit was purchased from
Elabscience Biotechnology Co., Ltd. (Wuhan, China). Foetal
bovine serum (FBS) and RPMI 1640 basic were purchased from
Gibco (Grand Island, NY, United States). Cell counting kit-8
(CCK-8) was purchased from Dojindo Company (Japan). CCl4
was purchased from Sigma (St. Louis, MO, United States).
Rabbit anti-rat Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3,
p-Smad2/3 and TGF-β1 antibodies were purchased from Cell
Signaling Technology (CST, Boston, MA, United States). Smad7,
CTGF, α-SMA, MMP-9, TIMP-1, collagen I, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and horseradish peroxidase
(HRP)-labeled secondary antibody were acquired from Wuhan
Boster Biotechnology Co., Ltd. (Wuhan, China). The Trizol
reagent, PeproTech RNAiso Plus and realtime polymerase
chain reaction (PCR) kit were purchased from TaKaRa
(Dalian, China). The miR-21 and negative control lentiviral
vectors were synthesized by Gene Chem Co., Ltd. (Shanghai,
China).

Cell Culture and CGA Treatment
The LX2 cells were cultured in RPMI 1640 medium with
10% foetal bovine serum (FBS) at 37◦C in 5% CO2 and 95%
humidified air. Cell morphological changes after treatments were
observed by a regular phase contrast microscope. Real-time PCR
and western blot analysis were employed to evaluate the effect
of CGA on LX2 cells. The cells were passaged in 6-well plates
overnight and pretreated with CGA at various concentrations
(20 µg/ml, 40 µg/ml and 80 µg/ml) for 24 h. For the last 6 h,
TGF-β1 (10 ng/ml) was added to the wells for modeling but not
to those for the normal group. After 24 h, the supernatants and
cells were collected.
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Cell Cytotoxic Assays
The procedures were carried out according to our past study
(Li et al., 2016). The cell counting kit-8 (CCK-8) assay was
employed to examine cell cytotoxicity. LX2 cells were seeded in
96-well plates at a density of 5.0 × 104 cells/ml. CGA at different
concentrations (20 µg/ml, 40 µg/ml and 80 µg/ml) was added.
After 24 h, CCK-8 with 10 µl solution was added and the cells
were incubated at 37◦C for 2 h before meaturing the absorbance
at 450 nm on a microplate reader. The experiments were repeated
in duplicate.

Lentivirus-Mediated miR-21
Overexpression or Knockdown
To over-express the miR-21 gene, GV273-miR-21/NC-EGFP
was transfected into the 293 T cell line. Viral supernatant
were collected from the transfected 293 T cells after 48 h
(3 × 108 TU/ml) and were used to infect the LX2 cells.
To knockdown miR-21 expression, the specific sequence of
hsa-miR-21-3p-inhibition (16129-1) was 5′-TCGAGAAA
AAACAGCCCATCGACTGGTGTTGTTTTTC-3′, and the
reference sequence was 5′-TTCTCCGAACGTGTCACGT-3′.
GV369-miR-21/NC-EGFP was transfected into the 293T
cell line, and the viral supernatant was collected after 48 h
(5 × 108 TU/ml). LX2 cells were transfected with lentivirus at
a multiplicity of infection (MOI) of 10 plaque-forming units
(PFU)/cell according to the manual. The medium was replaced
12 h later, and then the cells continued to be incubated for 72 h.
overexpression and knockdown of miR-21 was confirmed by
Real-time PCR analysis.

Animal Groups
Fifty male Sprague-Dawley rats (180 to 220 g) were obtained
from the Hubei Provincial Centers for Disease Control and

Prevention (Wuhan, China). All rats were housed in a room
with controlled temperature (22–25◦C), a 12:12 h light-dark
cycle and free access to water and food. All study protocols
abided by internationally accepted principles and the Guidelines
for the Care and Use of Laboratory Animals of Huazhong
University of Science and Technology and was approved by the
Ethics Committee of Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology. The rats were
randomly divided into 5 groups (n = 10): CGA low dosage
(15 mg/kg), CGA middle dosage (30 mg/kg), CGA high dosage
(60 mg/kg), and the experiment and normal groups. All groups
except the normal group were given a CCl4 intra-peritoneal
injection (i.p.) to induce liver fibrosis (CCl4: olive oil, 2:3 (vol/vol)
per kg body weight, 4 ml/kg for the first dose and then 2 ml/kg
twice per week) for 8 weeks. After 4 weeks, the rats in the low,
middle, and high-dose CGA groups were administered CGA at
15 mg/kg, 30 mg/kg, or 60 mg/kg (at a concentration of 1.5,
3, or 6 mg/ml, the feeding volume was 1 ml/100 g) for four
consecutive weeks, and the rats in the experiment and normal
groups were administered normal saline at the same volume of
1 ml/100 g.

Liver Histopathological Evaluation
The rats were sacrificed to collect specimens. The procedure
adhered to our past experiments (Huang et al., 2013; Jin
et al., 2015). The liver tissues were collected and fixed
in 4% paraformaldehyde solution, embedded in paraffin for
histological examinations and stained with haematoxylin-eosin
(HE) and Masson’s trichrome to assess liver damage and
fibrosis development. Histological changes were observed at
magnifications of ×100 and ×200. Five non-consecutive and
random histological fields were analyzed to obtain the mean
value.

TABLE 1 | Primer sequences for Real-time PCR.

Target genes Primer sequence Human (5′→3′) Rat (5′→3′)

miR-21 RT stem-loop CTCAACTGGTGTCGTGGAGTCGGCAA
TTCAGTTGAGTCAACATC

GTCGTATCCAGTGCAGGGTCCGAGG
TATTCGCACTGGATACGACGACAGC

Forward primer ACACTCCAGCTGGGTAGCTTATCAGACTGA GCCGAGCAACAGCAGTCGAT

Reverse primer TGGTGTCGTGGAGTCG CAGTGCAGGGTCCGAGGTAT

Smad7 Forward primer AGAGGCTGTGTTGCTGTGAAT GCTGTACCTTCCTCCGATGA

Reverse primer GCAGAGTCGGCTAAGGTGATG CAAAAGCCATTCCCCTGAGG

CTGF Forward primer AATGCTGCGAGGAGTGGGT GGCAGGGCCAACCACTGTGC

Reverse primer CGGCTCTAATCATAGTTGGGTCT CAGTGCACTTGCCTGGATGG

α-SMA Forward primer GACAGCTACGTGGGTGACGAA AGAAGCCCAGCCAGTCGCCATCA

Reverse primer CGGGTACTTCAGGGTCAGGAT AGCAAAGCCCGCCTTACAGAGCC

MMP-9 Forward primer TGTACCGCTATGGTTACACTCG AAAGGTCGCTCGGATGGTTAT

Reverse primer GGCAGGGACAGTTGCTTCT CTGCTTGCCCAGGAAGACGAA

TIMP-1 Forward primer ACCACCTTATACCAGCGTTA AGCCCTGCTCAGCAAAAGG

Reverse primer AAACAGGGAAACACTGTGCA CTG TCC ACA AGC
AAT GAC TGT CA

TGF-β1 Forward primer CCCCTGGAAAGGGCTCAACAC

Reverse primer TCCAACCCAGGTCCTTCCTAAAGTC

GAPDH Forward primer ACCACAGTCCATGCCATCAC GGCACAGTCAAGGCTGAGAATG

Reverse primer TCCACCACCCTGTTGCTGTA ATGGTGGTGAAGACGCCAGTA
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Enzyme-Linked Immunosorbent Assay
(ELISA) for Measuring TGF-β1
Expression in Serum
The procedures were referred to in our previous study (Du
et al., 2016). Expression of TGF-β1 in serum was determined
by sandwich ELISA. The serum was collected and assayed for
TGF-β1 by a rat TGF-β1 ELISA kit. The procedure conformed
to the directions in the instruction manual from the kit.

Quantitative Real-Time PCR for
Detecting mRNA Expression
The procedures were carried out according to our previous study
(Zhou et al., 2013; Li et al., 2017). Total RNA was extracted from
LX2 cells and liver tissue using TRIzol reagent (Invitrogen) and
the cDNA was produced by using a PrimeScriptTM RT reagent kit
according to the manufacturer’s protocol. Real-time qPCR was
carried out in a 10 µl reaction containing 0.2 µl of cDNA and
incubated at 37◦C for 15 min and 85◦C for 5 s. Real-time PCR
reactions were performed at 95◦C for 10 s, followed by 40 cycles
of 95◦C for 5 s and 60◦C for 20 s according to the instructions
of the SYBR Premix Ex Taq kit. The data were analyzed by
the 2−11CT method. All primers were synthesized by GenScript
(Nanjing, China), and the sequences are shown as Table 1.

Western Blot Analysis
The procedures followed our past experimental steps (Guo et al.,
2015b; Ding et al., 2016). For liver tissue lysate preparation,
liver tissue was homogenized with a hand-held homogenizer in
lysis buffer. For cell lysate preparation, the LX2 monolayer cells
were rinsed with PBS and lysed in RIPA buffer with a cocktail
of protease inhibitors on ice. Total protein was extracted from
the liver tissue and LX2 cells. The protein concentration was
determined with a BCA protein assay kit. In each protein sample,
an equivalent volume of 2× sodium dodecyl sulphate (SDS)
loading buffer (100 mM Tris-HCl, pH 6.8; 4% SDS; 20% glycerine;
10% β-mercaptoethanol; and 0.2% bromophenol blue) was added
and mixed again. The mixtures were then denatured at 95◦C for
10 min, and the protein was loaded into each well and separated
with 10% SDS-PAGE gel. After separation for approximately
80 min, the proteins were transferred to PVDF membranes,
and the PVDF membranes were saturated with 5% non-fat milk
containing in PBS for 1 h at room temperature and then probed
with specific antibodies overnight at 4◦C. The membrane was
washed after incubation and then incubated for 1 h with the HRP-
labeled secondary antibody. After further washing the membrane
with TBST three times, bands were identified with enhanced
chemiluminescence (ECL) reagent, and the signals were detected
by exposing the membranes to X-ray films. The dilutions of
the primary and secondary antibody were as follows: Smad2,
1:1000; Smad3, 1:1000; Smad2/3, 1:1000; p-Smad2, 1:1000;
p-Smad3, 1:1000; p-Smad2/3, 1:1000; TGF-β1, 1:500; α-SMA,
1:1000; Smad7, 1:1000; CTGF, 1:800; MMP-9, 1:1000; TIMP-1,
1:1000; GAPDH, 1:5000; and secondary antibody 1: 5000. The
Fuji ultrasonic-Doppler velocity profile (UVP) system and the
ImageJ program were used for the densitometry analysis of the
immunoreactive bands.

FIGURE 1 | Cytotoxicity of CGA on LX2 cells was determined by CCK8 assay.
(A) LX2 cells plated in 96-well plates were treated with CGA for 24 h, and cell
viability was determined. (B) Cell morphologies of LX2 after CGA treatment for
24 h. (C) The mRNA level of miR-21 was measured by quantitative real-time
PCR.

Immunohistochemistry (IHC) for
Detection of α-SMA and Collagen I
Expression in Liver Tissue
The procedure adhered to our previous study (Yang et al., 2016).
The liver tissue (10 µm) were deparaffinized and hydrated, then
the soaked slides were inactivated in 5% H2O2/methanol to block
endogenous peroxidase activity. Next, the slides were incubated
with normal goat serum for 10 min and incubated with α-SMA
antibody (dilution, 1:500) or collagen I antibody (dilution, 1:200)
at 4◦C overnight. The slides were washed the next day and
incubated with biotinylated secondary antibody at 37◦C for
60 min. Then, the slides were washed again and incubated with
horseradish peroxidase-labeled streptavidin at 37◦C. The samples
were developed with diaminobenzidine (DAB) and stained with
haematoxylin. After the slides were washed with distilled water
and dehydrated, they were made transparent and mounted under
a microscope for examination. Image-Pro Plus software was
employed to evaluate the mean optical density value of the images
after immunohistochemical analysis.

Statistical Analysis
The results are reported as the mean ± standard deviation
(SD). Comparisons of the data between groups were expressed
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FIGURE 2 | TGF-β1 increases miR-21 and CTGF expression in a dose-dependent manner and decreases it in a time-dependent manner. (A,B) The protein levels of
CTGF were measured by western blot. (C,D) The ratio of CTGF to GAPDH was obtained by densitometric analysis. (E,F) The mRNA levels of miR-21 and CTGF
were detected by real-time quantitative PCR. Data are shown as the means ± SD. ∗P < 0.05, ∗∗P < 0.01. compared with either time point 0 or the untreated group.

with Student’s t-test and one-way ANOVA followed by Tukey’s
test. Statistical significance was considered significant when the
P-value < 0.05 (Jin et al., 2013; Ding et al., 2015). All statistical
analyses were performed with SPSS 12.0. Graphs were drawed
with GraphPad Prism software (version 6).

RESULTS

Cytotoxicity of CGA on LX2 Cells
CCK8 assay showed that pretreatment on unstimulated LX2
cells with a series of concentrations of CGA at 20 µg/ml,
40 µg/ml and 80 µg/ml for 24 h did not significantly affect cell
viability (Figure 1A). The same result was shown for the cell
morphology observation (Figure 1B). In addition, when assayed
with real-time PCR, the difference of changes of miR-21 between

CGA-treated cells and the normal group was not significant
(Figure 1C). Therefore, we chose CGA at 20 µg/ml, 40 µg/ml,
and 80 µg/ml to treat LX2 cells for 24 h.

TGF-β1 Induces miR-21 and CTGF
Expression in LX2 Cells
There was a dose-dependent increase and time-dependent
change in the protein expression of CTGF and in the mRNA
expression of miR-21 and CTGF in LX2 cells treated with TGF-β1
(Figure 2). The protein expression of CTGF was measured
after treatment with TGF-β1 at a range of 0–10 ng/ml for 6 h
(Figure 2A) and treated with TGF-β1 at 10 ng/ml for 0–24 h in
LX2 cells (Figure 2B). As shown in Figure 2C, the protein level of
CTGF was significantly increase after treatment with TGF-β1 at
10 ng/ml compared with the 0 ng/ml group. In Figure 2D, when
treated with 10 ng/ml TGF-β1 for 0–24 h. The protein expression
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FIGURE 3 | Effects of CGA on the TGF-β1/miR-21/Smad7 signaling pathway
in LX2 cells after TGF-β1 stimulation. (A–C) The mRNA levels were detected
by real-time quantitative PCR. (D) The protein levels were assayed by western
blotting. The data from three independent experiments are expressed as the
means ± SD. ∗P < 0.05 compared with the experimental group; ∗∗P < 0.01
compared with experimental group; ##P < 0.01 compared with the normal
group.

of CTGF was highest at time point of 6 h compared with the 0 h
group. The same result was shown for the mRNA expression of
miR-21 and CTGF. As shown in Figures 2E,F, TGF-β1 treatment
at 10 ng/ml for 6 h significantly increased the mRNA expression
of miR-21 and CTGF (P < 0.01), so we chose TGF-β1 treatment
at 10 ng/ml for 6 h for subsequent experiments.

Effect of CGA on the miR-21-Regulated
TGF-β1/Smad7 Signaling Pathway in LX2
Cells after TGF-β1 Stimulation
As shown in Figures 3A–C, compared with the normal group,
the mRNA levels of miR-21, CTGF, TIMP-1 and α-SMA in the
experimental group were significantly increased (P < 0.01), and
the mRNA levels of Smad7 and MMP-9 were notably decreased
(P< 0.01). After treatment with CGA at a series of concentrations
for 24 h, the mRNA levels of miR-21, CTGF, α-SMA and TIMP-1
were decreased, and the mRNA levels of Smad7 and MMP-9 were
increased compared with the experimental group (P < 0.05 or
0.01). As shown in Figure 3D, western blot analysis was used
to assess the protein levels. Compared with the normal group,
the protein expression of CTGF, α-SMA, TIMP-1, p-Smad2,
p-Smad3 and p-Smad2/3 were significantly elevated and the

FIGURE 4 | Verification of downstream signaling molecules in LX2 cells after
miR-21 overexpression. (A) LX2 cells were transfected with lentivirus, and the
expression of GFP was observed with a fluorescence microscope after 48 and
72 h. (B) The expression of miR-21, Smad7 and CTGF were measured by
quantitative real-time PCR. (C) The protein expression was detected by
western blotting. Data are shown means ± SD and significant differences
were determined by one-way ANOVA. ##P < 0.01 for lentivirus-up group vs.
normal group.

protein levels of Smad7 and MMP-9 were decreased in TGF-
β1-stimulated LX2 cells. However, the protein expression of
CTGF, α-SMA, TIMP-1, p-Smad2, p-Smad3 and p-Smad2/3 was
effectively inhibited after treatment with CGA, and CGA could
improve the protein expression of Smad7 and MMP-9 compared
with the experimental group. The protein expression of Smad2,
Smad3 and Smad2/3 had no significant changes.

Verification of Downstream Signaling
Molecules in LX2 Cells after miR-21
Overexpression
We investigated the expression of downstream signaling
molecules after transfecting LX2 cells in vitro with the miR-21
lentiviral vector GV369. The green fluorescent protein (GFP)
was observed with a fluorescence microscope after transfection
for 48 and 72 h (Figure 4A). Meanwhile, to confirm the
transduction efficiency, the mRNA expression of miR-21, Smad7
and CTGF, and the protein levels of p-Smad2, p-Smad3,
p-Smad2/3, CTGF, Smad7, α-SMA, TIMP-1 and MMP-9 were
detected at 72h after transfection (Figures 4B,C). We observed
that there was no difference in the mRNA levels of miR-21,
Smad7 and CTGF (P > 0.05, Figure 4B) and the protein
levels of p-Smad2, p-Smad3, p-Smad2/3, CTGF, Smad7, α-SMA,
TIMP-1 and MMP-9 between the normal and lentivirus-NC
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FIGURE 5 | Effects of CGA on the TGF-β1/miR-21/Smad7 signaling pathway
in LX2 cells after TGF-β1 overexpression. (A–C) The mRNA levels were
detected by real-time quantitative PCR. (D) The protein levels were assayed
by western blotting. The data from three independent experiments are
expressed as the means ± SD. ∗P < 0.05 for lentivirus-up/TGF-β1/CGA vs.
lentivirus-up/TGF-β1; ∗∗P < 0.01 for lentivirus-up/TGF-β1/CGA vs.
lentivirus-up/TGF-β1; #P < 0.05 compared with the normal group; ##P < 0.01
compared with the normal group.

group (lentivirus negative control group) (P > 0.05, Figure 4C).
However, compared with the normal group, after miR-21
overexpression, the mRNA expression of miR-21 and CTGF
increased, and the mRNA expression of Smad7 decreased
(P < 0.01, Figure 4B). The protein expression of p-Smad2,
p-Smad3, p-Smad2/3, CTGF, α-SMA and TIMP-1 increased, and
the protein levels of Smad7 and MMP-9 decreased (P < 0.01,
Figure 4C).

Effect of CGA on the miR-21-Regulated
TGF-β1/Smad7 Signaling Pathway in LX2
Cells after miR-21 Overexpression
The miR-21 in LX2 cells was overexpressed with the lentiviral
vector for 72 h, and then, the cells were treated with a series
of concentrations of CGA (20 µg/ml, 40 µg/ml, and 80 µg/ml)
for 24 h. TGF-β1 was added to the LX2 cells for the last 6 h
before harvest. As shown in Figures 5A–C, compared with the
lentivirus-up group, the mRNA levels of miR-21, CTGF, α-SMA
and TIMP-1 in the lentivirus-up/TGF-β1 group were increased
(P < 0.01 or 0.05), and the mRNA levels of Smad7 and MMP-
9 were decreased (P < 0.01 or 0.05). The protein expression of
p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA and TIMP-1 were
also increased, and the protein levels of Smad7 and MMP-9 were
decreased (Figure 5D). After treatment with CGA at a series of
concentrations, compared to that in lentivirus-up/TGF-β1 group,

FIGURE 6 | Verification of downstream signaling molecules in LX2 cells after
miR-21 knockdown. (A) LX2 cells were transfected with lentivirus, and the
expression of GFP was observed with a fluorescence microscope after 48 and
72 h. (B) The expression of miR-21, Smad7 and CTGF was measured by
quantitative real-time PCR. (C) The protein expression was detected by
western blotting. Data are shown as the means ± SD, and significant
differences were determined by one-way ANOVA. ##P < 0.01 for
lentivirus-down group vs. normal group.

the mRNA levels of miR-21, CTGF, α-SMA and TIMP-1 were
decreased (Figures 5A–C, P< 0.05 or 0.01), and the mRNA levels
of Smad7 and MMP-9 were increased relatively (Figures 5A–C,
P < 0.01 or 0.05). The protein levels of CTGF, α-SMA, TIMP-1,
p-Smad2, p-Smad3, and p-Smad2/3 were decreased, and the
protein levels of Smad7 and MMP-9 were increased (Figure 5D).

Verification of Downstream Signaling
Molecules in LX2 Cells after miR-21
Knockdown
We investigated the expression of downstream signaling
molecules after transfecting LX2 cells in vitro with the miR-21
lentiviral vector GV273. The green fluorescent protein (GFP) was
observed with a fluorescence microscope after transfection for 48
and 72 h (Figure 6A). Meanwhile, to confirm the transduction
efficiency, the mRNA expression of miR-21, Smad7 and CTGF,
and the protein levels of p-Smad2, p-Smad3, p-Smad2/3, CTGF,
Smad7, α-SMA, TIMP-1 and MMP-9 were detected at 72h
after transfection (Figure 6B,C). We observed that there was
no difference between the normal and lentivirus-NC group
(lentivirus negative control group) in the mRNA levels of miR-21,
Smad7 and CTGF (Figure 6B, P > 0.05) and the protein
levels of p-Smad2, p-Smad3, p-Smad2/3, CTGF, Smad7, α-SMA,
TIMP-1 and MMP-9 (Figure 6C). However, compared with the
normal group, after miR-21 knockdown, the mRNA expression
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FIGURE 7 | Effects of CGA on the TGF-β1/miR-21/Smad7 signaling pathway
in LX2 cells after TGF-β1 knockdown. (A–C) The mRNA levels were detected
by real-time quantitative PCR. (D) The protein levels were assayed by western
blotting. The data from three independent experiments are expressed as the
means ± SD. ∗P < 0.05 for lentivirus-down/TGF-β1/CGA vs.
lentivirus-down/TGF-β1; ∗∗P < 0.01 for lentivirus-down/TGF-β1/CGA vs.
lentivirus-down/TGF-β1; ##P < 0.01 lentivirus-down/TGF-β1 vs.
lentivirus-down.

of miR-21 and CTGF decreased, and the mRNA expression of
Smad7 increased (P < 0.01, Figure 6B). The protein expression
of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA and TIMP-1
decreased, and the protein levels of Smad7 and MMP-9 increased
(Figure 6C, P < 0.01).

Effect of CGA on the miR-21-Regulated
TGF-β1/Smad7 Signaling Pathway in LX2
Cells after TGF-β1 Knockdown
The miR-21 in LX2 cells was knocked-down with a lentiviral
vector for 72 h, and then, the cells were treated with a series
of concentrations of CGA (20 µg/ml, 40 µg/ml, and 80 µg/ml)
for 24 h. TGF-β1 was added to the LX2 cells for the last 6 h
before harvest. As shown in Figures 7A–C, compared with
the lentivirus-down group, the mRNA levels of miR-21, CTGF,
α-SMA and TIMP-1 in the lentivirus-down/TGF-β1 group were
increased (P < 0.01), and the mRNA levels of Smad7 and
MMP-9 were decreased (P < 0.01). The protein expression
levels of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA and
TIMP-1 were also decreased, and the protein expression
levels of Smad7 and MMP-9 were increased (Figure 7D).
After treatment with CGA at a series of concentrations, the
mRNA levels of miR-21, CTGF, α-SMA and TIMP-1 were
decreased (Figures 7A,B, P < 0.05 or 0.01), and the mRNA

FIGURE 8 | Effect of CGA on the expression of TGF-β1 in serum, and the
level of TGF-β1 was determined by ELISA. Data are shown as the
means ± standard deviation. n = 10, ∗∗P < 0.01 compared with the
experimental group; ##P < 0.01 compared with the normal group, as
determined by Student’s t-test.

levels of Smad7 and MMP-9 increased relatively (Figure 7C,
P < 0.05 or 0.01) compared to that in the lentivirus-
down/TGF-β1 group. The protein levels of CTGF, α-SMA,
TIMP-1, p-Smad2, p-Smad3, and p-Smad2/3 were decreased,
and the protein levels of Smad7 and MMP-9 were increased
(Figure 7D).

Effect of CGA on the Expression of
TGF-β1 in Serum
As shown in Figure 8, the expression level of TGF-β1
in the serum in the experimental group was markedly
increased when compared with that in the normal group
(P < 0.01). The level of TGF-β1 was decreased significantly
compared with that in the experimental group when the
rats were treated with CGA at different concentrations
(P < 0.05 or 0.01). The inhibitory effect was enhanced
when the concentration of CGA increased (P < 0.01),
which suggested that CGA could inhibit the expression of
TGF-β1.

Effect of CGA on Liver Histopathology
Haematoxylin-eosin and Masson’s trichrome staining were
used to evaluate the anti-fibrosis role of CGA. As shown in
Figure 9A, slices from the liver of the normal group showed
liver structural integrity without inflammatory cell infiltration.
However, CCl4-induced liver injury in the experimental group
showed fibrosis and inflammatory cell infiltration and the loss
of structural integrity. Nevertheless, in the CGA group, the
slices showed less fibrosis, less inflammatory cell infiltration
and less liver cell necrosis compared with the experimental
group. As shown in Figure 9B, collagen is blue in fibrotic
tissue when stained by Masson’s trichrome, slices from the
liver of the normal group showed no fibrosis. However,
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FIGURE 9 | Evaluation of the effect of CGA on liver histopathological and immunohistochemistry (IHC) in liver tissue. (A) Histological images of rat livers stained with
H&E (original magnification, ×200). (B) The histopathologic detection of collagen in the liver by Masson’s trichrome stain (original magnification, ×100). (C,D) Effects
of CGA on α-SMA and collagen I expression were examined with immunohistochemistry in liver tissue (original magnification, ×100).

FIGURE 10 | Effect of CGA on the TGF-β1/miR-21/Smad7 signaling pathway
in CCl4-induced rats. (A–C) The mRNA levels were measured by real-time
quantitative PCR. (D) The protein levels were assayed by western blotting.
The data from three independent experiments are expressed as the
means ± SD. ∗P < 0.05 compared with the experimental group; ∗∗P < 0.01
compared with experimental group; #P < 0.05 compared with the normal
group; ##P < 0.01 compared with the normal group.

excess blue collagen fibers were observed in the experiment
group. After treatment with CGA at different concentrations,
the area of collagen fibers decreased obviously and high
concentration of CGA showed stronger effect of anti-liver
fibrosis.

Effect of CGA on the Protein Expression
of α-SMA and Collagen I in Liver Tissue
by IHC
As shown in Figures 9C,D, the staining of α-SMA and collagen
I in the normal group was not remarkable (P < 0.01). After
induction with CCl4, the positive staining of α-SMA and
collagen I in the experimental group significantly increased,
showing as dark brown. The staining in the CGA groups
showed a smaller area and weaker staining, and fewer positive
cells were observed compared with the experimental groups
(P < 0.05 or 0.01). The inhibitory effect was strengthened
when the concentration of CGA increased (P < 0.05 or
0.01).

Evaluation of CGA on the
miR-21-Regulated TGF-β1/Smad7
Signaling Pathway in CCl4-Induced Rats
As shown in Figures 10A–C, compared with the normal group,
the mRNA levels of miR-21, CTGF, α-SMA, TIMP-1, and
TGF-β1 in the experimental group were markedly increased
(P < 0.01 or 0.05), and the mRNA levels of Smad7 and MMP-
9 was markedly decreased (P < 0.01). However, treatment with
CGA at different concentrations decreased the mRNA levels
of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and elevated
the mRNA levels of Smad7 and MMP-9 compared with that
in the experimental group (P < 0.05 or 0.01). As shown in
Figure 10D, western blot analysis was carried out to determine
the protein expression. Compared with the normal group, the
protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF,
TGF-β1, TIMP-1 and α-SMA were significantly increased, and
the protein levels of Smad7 and MMP-9 were decreased in
the experimental group. However, the protein expression of
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FIGURE 11 | The illustration of CGA protecting against liver fibrosis in vitro and in vivo by regulating miR-21-regulated TGF-β1/Smad7 signaling pathway.

p-Smad2, p-Smad3, p-Smad2/3, CTGF, TGF-β1, TIMP-1 and
α-SMA was significantly inhibited after CGA treatment, and
CGA could elevate Smad7 and MMP-9 expression compared
with the experimental group (P < 0.05 or 0.01). There
were no changes in the protein levels of Smad2, Smad3 and
Smad2/3.

DISCUSSION

Previous studies have shown that liver fibrosis is involved in
the regulation of the deposition of ECM by a complex network
of signaling pathways, and we have investigated CGA could
regulate liver firbosis through IL-13/miR-21/Smad7 signaling
way. However, the TGF-β1/Smad signaling pathway is considered
another important prominent mediator in promoting liver
fibrosis (Bataller and Brenner, 2005; You et al., 2016) and it
is one of the most important fibrogenic stimulators. TGF-β1
has many cellular sources, including Kupffer cells, platelets,
endothelial cells and lymphocytes (Cui et al., 2010; Hernandez-
Gea and Friedman, 2011), and autocrine expression of activated
HSC is another important sources (Bartley et al., 2006). TGF-
β signaling is initiated by ligand binding to TβR-II, which
leads to the activated type II receptor; then, protease TβR-
I is phosphorylated, and the TβR-I kinase activates Smad2
and Smad3. Phosphorylated Smad2 and Smad3 then form
a complex that translocates to the nucleus and regulates

the expression of miR-21, which then prevents Smad7 from
regulating Smad2/3 activation through negative feedback by
interfering with the target gene of miR-21 and Smad7 (Inagaki
and Okazaki, 2007). Meanwhile, a variety of collagens, including
a large number of smooth muscle actins (e.g., α-smooth
muscle actin and α-SMA), collagen I, collagen III and other
ECM components are expressed. Therefore, interfering with
the miR-21-regulated TGF-β1/Smad7 signaling pathway may
be another effective method to block the development of liver
fibrosis.

Connective tissue growth factor (CTGF), synthesized by
HSCs and hepatocytes, plays a critical role in the process
of liver fibrosis (Huang and Brigstock, 2012). Although the
production of CTGF is usually low in normal, healthy liver,
increased expression of CTGF was observed in fibrotic livers
of both patients and experimental animal models (Hayashi
et al., 2002; Kodama et al., 2011). It has been proven CTGF
could promote the increase of ECM (Chen et al., 2009).
Matrix metalloproteinases (MMPs) and tissue inhibitors of
metalloproteinases (TIMPs) are the key factors of the degradation
and remodeling of the ECM. MMP-9 is one of the most relevant
MMPs that degrades normal liver matrix, and it could promote
the development of liver fibrosis (Roderfeld et al., 2006). TIMP1,
which has been demonstrated to reduce MMP activity, plays
an important role in the progress of liver fibrosis and it is an
important target for the treatment of liver fibrosis (Liu et al.,
2013).
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MicroRNAs (miRNAs) are a group of non-coding small RNA
molecules that affect gene expression by binding to the 3′-
untranslated region (3′-UTR) of target mRNAs (Ambros, 2004).
The development of many diseases, including liver fibrosis, is
caused by dysregulation of miR-21 (Png et al., 2011). A high
expression of miR-21 has been found in many fibrotic tissues,
including the rat liver and human liver (Marquez et al., 2010;
Wei et al., 2013). Based on the above studies, we guessed that
miR-21 could regulate the development of hepatic fibrosis in
LX2 cells, and we up- or down-regulated miR-21 by lentiviral
transfection to investigate the effect and specific mechanism of
CGA.

In this study, we found that the mRNA levels of miR-
21, CTGF, α-SMA, TIMP-1 and TGF-β1 and the protein
expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, TIMP-
1, α-SMA, and TGF-β1 in the experimental group were
significantly increased compared with that in the normal
group, and the mRNA levels of Smad7 and MMP-9 and the
protein expression of Smad7 and MMP-9 in the experimental
group were significantly decreased compared with those in
the normal group. There were no significant changes in
the protein levels of Smad2, Smad3 and Smad2/3. After
treatment with CGA, the mRNA levels of miR-21, CTGF,
α-SMA, TIMP-1, and TGF-β1 and the protein expression
of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1
and TGF-β1 were inhibited, and the mRNA expression of
Smad7 and MMP-9 and the protein expression of Smad7
and MMP-9 were elevated. Meanwhile, TGF-β1 could activate
TGF-β1/Smad7 signaling pathway no matter miR-21 was up-
regulated or down-regulated in LX2 cells. When treated
with CGA in miR-21 up-regulated or down-regulated LX2
cells, the TGF-β1/Smad7 signaling pathway in LX2 cells
was significantly inhibited. In addition, in the CCl4-induced
fibrosis rat model, compared with the normal group, the
level of TGF-β1 in the serum was significantly increased
in the experimental group, and CGA could decrease the
concentration of TGF-β1 in the serum. CGA could also

reduce the expression of α-SMA and collagen I in liver tissue
and relieve the degree of liver fibrosis in the pathological
manifestation.

CONCLUSION

Chlorogenic acid exerts the ability to suppress liver fibrosis
through regulation of the miR-21-regulated TGF-β1/Smad7
signaling pathway in vivo and in vitro (Figure 11), which
suggests that CGA may be an attractive anti-liver fibrosis agent.
However, it is important to explore whether CGA targets the
anti-liver fibrosis effect through other than the TGF-β1 pathway.
We are hoping that additional studies on the anti-liver fibrosis
mechanisms of CGA may give us a more complete understanding
so that new methods to prevent and treat liver fibrosis can be
identified.
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