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Abstract: The embryonic stem cell marker Oct4 is expressed in several human cancers and is
positively correlated with a poor outcome in cancer patients. However, its physiological role in
cancer progression remains poorly understood. Tumor cells block apoptosis to escape cell death so
that they can proliferate indefinitely, leading to ineffective therapy for cancer patients. In this study,
we investigated whether Oct4 regulates the apoptosis pathway and contributes to poor prognosis
in patients with lung adenocarcinoma. Our results revealed that Oct4 expression is correlated with
Stat1 expression in lung adenocarcinoma patients and Oct4 is directly bound to the Stat1 promoter to
transactivate Stat1 in lung adenocarcinoma cells. Expression of the Stat1 downstream gene Mcl-1
increased in Oct4-overexpressing cancer cells, while Stat1 knockdown in Oct4-overexpressing cancer
cells sensitized them to cisplatin-induced apoptosis. Furthermore, Oct4 promoted Stat1 expression
and tumor growth, whereas silencing of Stat1 reduced Oct4-induced tumor growth in human lung
tumor xenograft models. Taken together, we demonstrate that Oct4 is a pro-survival factor by
inducing Stat1 expression and that the Oct4/Stat1/Mcl-1 axis may be a potential therapeutic target
for lung adenocarcinoma.

Keywords: lung adenocarcinoma; anti-apoptosis; cell survival; Oct4; Stat1; Mcl-1

1. Introduction

Lung cancer is the leading cause of death due to cancer in the world. Most patients
with lung cancer have lung adenocarcinoma and their 5-year survival rate is approximately
10% [1]. Surgery is the general treatment for patients with early-stage lung adenocarcinoma,
while late-stage lung adenocarcinoma patients require multidisciplinary treatment strate-
gies, such as chemotherapy followed by surgery, or concurrent chemoradiotherapy [2].
Because of the difficulties in early detection and the high risk of local recurrence and distant
metastasis, the prognosis of lung cancer is poor. Therefore, the development of effective
treatment modalities for lung cancer is a matter of urgency.

Cells 2021, 10, 2642. https://doi.org/10.3390/cells10102642 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-0011-5636
https://orcid.org/0000-0001-7821-9406
https://doi.org/10.3390/cells10102642
https://doi.org/10.3390/cells10102642
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10102642
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10102642?type=check_update&version=1


Cells 2021, 10, 2642 2 of 13

Oct4, a transcription factor of the POU homeobox gene family, plays a key role in the
self-renewal and pluripotency of embryonic stem cells [3–5]. In addition to stem cells, Oct4
is expressed in cancer cells, for example, in lung, breast, pancreas and bladder cancers [6–9].
Oct4 expression is correlated with tumor progression and poor patient prognosis [7,10]. We
previously demonstrated that Oct4 promotes tumor metastasis through the Egr1/OPN axis
in lung cancer [11]. Moreover, Oct4 is involved in modulating the tumor microenvironment.
Oct4 promotes M2 polarization by increasing M-CSF secretion, thus stimulating tumor
metastasis [12]. These data imply the critical role of Oct4 in tumor metastasis. During cancer
progression, tumor cells block apoptosis to escape cell death so that they can proliferate
indefinitely, leading to ineffective therapy of cancer patients. In this study, we investigated
whether Oct4 regulates the apoptosis pathway and contributes to poor prognosis in patients
with lung adenocarcinoma.

The transcription factor Stat1 functions as a regulator of cell proliferation, differentia-
tion, inflammation and apoptosis [13]. When cytokines bind to the receptor, cytoplasmic
Stat1 is phosphorylated and forms a homodimer or a heterodimer, which then translo-
cates to the nucleus to initiate transcription. Traditional Stat1 signaling has pro-apoptotic
functions [14]. However, recent works have shown that Stat1 expression is dysregulated
in cancers, including lung cancer, melanoma and Wilms’ tumor [15–17]. Reduced mi-
gration and metastasis are detected in Stat1-knockdown melanoma cells [15]. Moreover,
Stat1 overexpression is associated with the protection of cancer cells from radiation and
chemotherapy [18,19]. Therefore, Stat1 may participate in some unidentified mechanisms
to regulate tumor progression.

Apoptosis is the process of programmed cell death to maintain tissue homeostasis [20].
In malignant transformation, anti-apoptotic mechanisms cause uncontrolled cell prolifera-
tion [21]. Blocking the apoptotic pathway results in ineffective therapy and poor prognosis
in cancer patients [22,23]. Given that apoptosis causes the least immune reaction [24], it is
critical to better understand the anti-apoptotic mechanism in order to develop effective
strategies for cancer treatment. Previous studies have revealed that both Oct4 and Stat1 are
overexpressed in lung adenocarcinoma and might play a role in cell survival [7,12,16,17].
Computational analysis shows that Oct4 may bind to the Stat1 promoter to transactivate
Stat1 gene expression. Therefore, we hypothesized that Oct4 regulates the apoptotic path-
way by upregulating Stat1 expression. In this study, we show that Stat1 expression is
correlated with Oct4 expression in lung adenocarcinoma patients. We found that Oct4
enhances Stat1 expression by directly binding to the Stat1 promoter. Moreover, Oct4 pro-
motes tumor growth, whereas silencing of Stat1 expression reduces tumor growth in vivo.
Our results support the critical role of the Oct4/Stat1/Mcl-1 axis in cell survival in lung
adenocarcinoma.

2. Materials and Methods
2.1. Oncomine Database Analysis

The Oncomine cancer microarray database (https://www.oncomine.org, accessed on
9 March 2016) was used to compare the gene expression level of lung adenocarcinoma with
normal tissues. We used the following filters: (1) cancer type, lung cancer; (2) analysis type,
cancer vs. normal analysis. Among 12 gene expression profiles, Okayama Lung contains
most lung adenocarcinoma cases. Expression of Oct4 and Stat1 were analyzed in 226 lung
adenocarcinoma and 20 normal lung tissues.

2.2. Cell Lines

Human lung adenocarcinoma cell lines (A549 and H1299) were purchased from the
Bioresource Collection and Research Center (Food Industry Research and Development
Institute, Hsinchu, Taiwan). The short tandem repeat profiling of the cell lines was per-
formed at the Center for Genetic Medicine of the NCKU and the use of the authenticated
cell lines was verified. Cells were cultured at 37 ◦C in a 5% CO2 atmosphere in Dulbecco’s
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modified Eagle minimum essential medium (DMEM) supplemented with 10% cosmic calf
serum (Hyclone, Logan, UT, USA), 2 mmol/L of L-glutamine and 50 µg/mL of gentamicin.

2.3. Plasmids

The lentiviral vector pSin-EF2-Oct4-Pur was purchased from Addgene (Cambridge,
MA, USA) and the coding region of Oct4 was removed to generate the control vector pSin-
EF2-Pur. The Stat1 promoter region from−585 to +1545 bp relative to the transcription start
site of Stat1 was amplified by PCR with the forward primer 5′-CGTTTAGGAGAAGCCCA
GGTAAAGAAGCTG-3′ and the reverse primer 5′-AAAGAATTCAACCCAGTCACCAAA
TCATTTACTGTT-3′. The PCR product was digested with KpnI and SalI and inserted into
a luciferase reporter vector pFRL2 [25], resulting in the plasmid pFRL2-Stat1p. Next,
pFRL2-Stat1p was digested with KpnI/MluI, KpnI/XhoI and KpnI/AleI; the resulting
large fragment was treated with T4 DNA polymerase and self-ligated to generate dele-
tions of the Stat1 promoter from +364 to +1545, from +598 to +1545 and from +1064
to +1545 bp, respectively. pFRL2-Stat1p, with a point mutation (T577G) in the Oct4-
binding site, was generated by site-directed mutagenesis with the forward primer 5′-
CGTTTTCTTCTTTTCGCAGAAAGTGTCATTTGC-3′ and the reverse primer 5′-CGAGGA
TGGCATACAGCAAATGACACTTTCT-3′. The DNA sequences of mutated vectors were
confirmed by sequence analyses.

For knockdown experiments, pLKO.1-puro-based lentiviral vectors expressing short
hairpin RNA (shRNA) specific for human Stat1 (TRCN0000004265 and TRCN0000004267)
and luciferase (Luc) (TRCN0000072246) were obtained from the National RNAi Core
Facility, Academia Sinica, Taiwan. Lentiviruses were produced as previously described [26]
and viral titers expressed as lentiviral particles (LPs) were determined using the virus-
associated p24 ELISA kit (QuickTiter Lentivirus titer kit; Cell Biolabs, San Diego, CA, USA).

2.4. Luciferase Reporter Assay

A549 and H1299 cells were cotransfected with pSin-EF2-Oct4-Pur and pFRL2-Stat1p
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) for 48 h. Cell lysates were
collected to examine luciferase activity using the dual-luciferase reporter assay system
(Promega Corporation, Madison, WI, USA). The relative luciferase activity was measured
as firefly luciferase activity divided by renilla luciferase activity in order to normalize
transfection efficiency.

2.5. Quantification of mRNA Expression

Total RNA was isolated from cells using the TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) and 1 µg of RNA was used for cDNA synthesis using a reversed iT first-strand
synthesis kit (Thermo Fisher Scientific, Bremen, Germany) according to the manufacturer’s
instructions. Quantitative real-time RT-PCR was performed using a Rotor-Gene Q sys-
tem (Qiagen, Hilden, Germany). The following primers were used for RT-PCR: Oct4,
5′-GTCCGAGTGTGGTTCTGTA-3′ (forward) and 5′-CTCAGTTTGAATGCATGGGA-3′ (re-
verse); Stat1, 5′-TGTCTCGGATAGTGGGCTCTG-3′ (forward) and 5′-GCTGGCCTTTCTTT
CATTTCC-3′ (reverse); GAPDH, 5′-ACTTCAACAGCGACACCCACT-3′ (forward) and
5′- GCCAAATTCGTTGTCATACCAG-3′ (reverse). The relative quantification of Oct4 and
Stat1 mRNA was analyzed using the comparative CT method and normalized to that
of GAPDH.

2.6. Immunological Assays

For immunoblotting, cell lysates were separated on 8–15% SDS-PAGE and transferred
onto PVDF membranes (Merck Millipore, Burlington, MA, USA). The PVDF membranes
were blocked with 5% BSA and then incubated with primary antibodies. After washing
with PBST, the membranes were incubated with HRP-conjugated secondary antibodies
(Jackson Immunoresearch, West Grove, PA, USA). The specific signal was detected using
ECL reagents (Merck Millipore) and a UVP imaging system (Upland, CA, USA). For
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immunohistochemical staining, tumor tissues were fixed in 10% buffered formalin and
paraffin-embedded sections were prepared. The sections were de-paraffinized in xylene,
then dehydrated in ethanol and finally rehydrated in distilled water. After antigen retrieval,
the sections were blocked with 5% BSA and then incubated with primary antibodies
overnight. Then, HRP-conjugated secondary antibodies (Jackson Immunoresearch) and
AEC reagent (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) were used to detect
specific signals. The primary antibodies used for immunoblotting were Oct4 (Cell Signaling
Technology, Beverly MA, USA), Stat1 (Santa Cruz), phospho-Stat1 (Tyr701) (Cell Signaling
Technology), Mcl-1 (Santa Cruz Biotechnology, Inc.), cleaved caspase-3 (Cell Signaling
Technology) and β-actin (Sigma-Aldrich, St. Louis, MO, USA).

2.7. Chromatin Immunoprecipitation (ChIP) Assay

ChIP was performed using the EZ-ChIP kit (Millipore, Billerica, MA, USA) according
to the manufacturer’s instructions [11]. The following primers were used for PCR: with
the Oct4 response element (ORE), 5′-GCCAGTCGTGCTCTGGCAGT-3′ (forward) and 5′-
CGCACAGCACGTTAGGTGCCA-3′ (reverse); without the ORE, 5′-GCAGAGGTGTGGTT
GATTGTGCT-3′ (forward) and 5′-TGTGAGTCCAGCATCCTCATTAAGC-3′ (reverse).

2.8. TUNEL Assay

A549 cells were fixed in 4% paraformaldehyde for 30 min. TUNEL staining was
performed using the DeadEnd fluorometric TUNEL system (Promega Corporation). The
percentage of apoptotic cells was calculated by dividing the number of TUNEL-positive
cells by the number of DAPI-stained cells.

2.9. Animal Experiments

All procedures in the experiments adhered to the guidelines approved by the Labora-
tory Animal Care and Use Committee of National Cheng Kung University (NCKU).

Male NOD/SCID mice at 8 weeks of age were subcutaneously inoculated with A549-
vector or A549-Oct4 cells (1 × 106 cells). For knockdown and drug treatment experiments,
tumor-bearing mice were intratumorally treated with 1× 109 LPs of LV-shLuc or LV-shStat1
at day 21 or fludarabine (2.5 µg) at day 14. Tumor volumes were measured every 3 days
and calculated as length × width2 × 0.45 [27].

2.10. Statistical Analyses

The survival analysis in the human study was performed by Kaplan–Meier analysis
and the log-rank test. Correlations were measured using Pearson correlation coefficient (r).
Statistical significance between groups was assessed using a Student’s t-test or one-way
analysis of variance (ANOVA). Differences in animal tumor growth were compared by
two-way ANOVA with repeated measures.

3. Results
3.1. Oct4 and Stat1 Expression Is Elevated and Associated with Poor Prognosis of Human Lung
Adenocarcinoma

To compare Oct4 and Stat1 expression in lung adenocarcinoma patients with that in the
controls, we analyzed the RNA expression in human lung adenocarcinoma in the Oncomine
database (accession no. GSE31210) [28]. RNA levels of both Oct4 and Stat1 increased 1.2-
and 1.6-fold, respectively, in the lungs of adenocarcinoma patients compared with the
controls (Figure 1A,B). There was a positive correlation between Oct4 and Stat1 expression
in the Oncomine data (Figure 1C). To further assess whether Oct4 or Stat1 expression is
associated with the survival of patients with lung cancer, we analyzed the prognosis of lung
cancer patients using the Kaplan–Meier plotter database (http://kmplot.com/analysis/,
accessed on 1 June 2017) [29]. Patients with low expression of either Oct4 or Stat1 had longer
relapse-free survival than those with high expression (Figure 1D,E). Moreover, patients
with high expression of both Oct4 and Stat1 had poorer prognosis than those with low

http://kmplot.com/analysis/
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expression of both (Figure 1F). Taken together, these results show that Oct4 is associated
with Stat1 expression and may be useful as a prognostic marker for lung adenocarcinoma.
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Figure 1. Oct4 is highly expressed in human lung adenocarcinoma and is correlated with Stat1 expression. (A,B) Comparison
of Oct4 (A) and Stat1 (B) expression in a normal human lung and lung adenocarcinoma (AC). (C) Correlation of Oct4
and Stat1 was analyzed by Pearson correlation coefficient in human lung adenocarcinoma. Data were obtained from
Oncomine.org (accession no. GSE31210). Data are the mean ± S.E.M. (D,E) Kaplan–Meier analysis of relapse-free survival
in lung cancer patients according to the expression levels of Oct4 (D) and Stat1 (E). H, high expression; L, low expression.
(F) Kaplan–Meier analysis of relapse-free survival in lung cancer patients with high (H) or low (L) expression levels of
both Oct4 and Stat1. Data were obtained from the Kaplan–Meier plotter database (Affymetrix ID: 208286_x_at (Oct4) and
M97935_MB_at (Stat1); cut-off value, 190 (Oct4) and 360 (Stat1)). Statistical differences were analyzed by the log-rank test.
* p < 0.05, ** p < 0.01 and *** p < 0.001.

3.2. Oct4 Transactivates the Stat1 Promoter

To explore the potential relationship between Oct4 and Stat1, their promoter regions
were analyzed. The results reveal that Oct4 may bind to the Stat1 promoter. We examined
whether Oct4 can transactivate the Stat1 promoter using the luciferase reporter assay. The
result show that Oct4 can enhance Stat1 promoter activity in both A549 and H1299 cells
(Figure 2A). Simultaneously, Oct4 upregulated the RNA level of Stat1 (Figure 2B). The
protein level of Stat1 also increased in Oct4-overexpressing cells (Figure 2C).

Next, we serially deleted four putative OREs on the Stat1 promoter in order to de-
termine the location of the ORE that is important for Oct4 to bind to and transactivate
the Stat1 promoter. Deletion of the promoter region between +364 and +598 bp signifi-
cantly eliminated the responsiveness of the Stat1 promoter to Oct4, suggesting that the
response element within this region may be involved in Oct4-induced transactivation of
the promoter (Figure 3A).
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Figure 3. Oct4 directly binds to the Stat1 promoter to modulate Stat1 expression. (A) A549 cells were transfected with
pSin-EF2-Oct4-Pur and different deletion forms of the Stat1 promoter, termed from -585 to +1545, from +364 to +1545,
from +598 to +1545 and from +1064 to +1545, were transfected into A549 cells. Total cell lysates were collected at 48 h
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performed in A549 cells using anti-Oct4 antibody. Normal IgG served as negative control. (C) The transactivation activity
of wild-type and mutant Stat1 promoters was determined in Oct4-overexpressing A549 cells. Data are the mean ± S.E.M.
** p < 0.01 and *** p < 0.001.

In addition, the ChIP assay revealed that Oct4 can bind to the Oct4 response element
region (from +414 to +648 bp) but not to the non-response element region (from +925 to
+1059 bp) within the Stat1 promoter (Figure 3B). Furthermore, we used PROMO, a computer
software, for predicting transcription-factor binding sites [30], to design a mutant sequence
of the ORE (from ATTTGAAT to AGTTGAAT; from +576 to +583 bp). The point mutation
of the potential response element within the Stat1 promoter eliminated Oct4-mediated
transactivation, indicating that this ORE is involved in Oct4-induced transactivation of the
Stat1 promoter (Figure 3C). Taken together, these results indicate that Oct4 can bind to the
region between +576 and +583 bp in the Stat1 promoter, increasing Stat1 expression.

3.3. Oct4 Modulates Anti-Apoptosis via the Stat1 Downstream Gene Mcl-1 and Inhibition of Stat1
Expression Induces Apoptosis

As Stat1 phosphorylation is essential for regulating its downstream genes, we further
explored whether Oct4 can enhance Stat1 phosphorylation. Oct4 overexpression increased
not only Stat1 expression but also Stat1 phosphorylation on tyrosine 701 (Figure 4A). We
next evaluated the transactivation of Stat1 using the Stat1 binding motif reporter construct
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pISRE-Luc. The luciferase reporter assay demonstrated that the transactivation activity
of Stat1 significantly increased in Oct4-overexpressing cells, compared with control cells
(Figure 4B). Mcl-1 is a survival factor and is regulated by Stat1 through its ISRE motif within
the promoter region [31]. Mcl-1 expression was also upregulated in Oct4-overexpressing
cells (Figure 4C).
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Cisplatin can induce cell apoptosis and has been used clinically for nearly 30 years
as part of the treatment package in many cancers. The use of cisplatin in chemotherapy is
limited by the acquired or intrinsic resistance of cancer cells to the drug. As Mcl-1 plays a
pivotal role in protecting cells from apoptosis, we explored the anti-apoptotic effect of Stat1.
We confirmed that Mcl-1 expression reduced in Stat1-knockdown A549 cells (Figure 5A).
Stat1 knockdown increased the cleavage of caspase-3 in cancer cells treated with cisplatin
for 24 h (Figure 5B). To further confirm the anti-apoptotic role of Stat1, the Stat1 inhibitor
fludarabine was used. After treatment with fludarabine, Stat1 phosphorylation and Mcl-1
expression decreased (Figure 5C), which induced cleavage of caspase-3 (Figure 5D). Taken
together, the knockdown of Stat1 expression enhances cell apoptosis.
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Figure 5. Inhibition of Stat1 sensitizes lung cancer cells to cisplatin-induced apoptosis. (A) Detection
of Mcl-1 by immunoblotting in A549 cells transduced with lentiviral vectors expressing shStat1.
(B) Stat1-knockdown cells were treated with cisplatin (5 µg/mL) for 24 h. Cleavage of caspase-3
was examined by immunoblotting. (C) A549 cells were treated with the Stat1 inhibitor fludarabine
(Flu, 2.5 µg/mL) for 24 h. Detection of Mcl-1, as well as total and phospho-Stat1, by immunoblotting.
(D) Cleavage of caspase-3 was detected in Flu-treated A549 cells.
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3.4. Silencing of Stat1 Expression Ameliorates Oct4-Induced Anti-Apoptosis

As both Oct4 and Stat1 decreased cell apoptosis, we further investigated whether
Oct4-regulated Mcl-1 expression is mediated by Stat1. Mcl-1 expression decreased in
Oct4-overexpressing A549 and H1299 cells after Stat1 knockdown (Figure 6A). Cleavage
of caspase-3 also increased after treatment with cisplatin to induce apoptosis in Stat1-
knockdown cells, compared with control cells (Figure 6B). More apoptotic cells were
detected in Stat1-knockdown cells than in control cells after treatment with cisplatin, as
determined by the TUNEL assay (Figure 6C,D). Similarly, more cleaved caspase-3 was
detected in fludarabine-treated cells than in control cells (Figure 6E). Taken together,
Oct4 transactivates Stat1 expression and consequently enhances Mcl-1 expression, thus
preventing cisplatin-induced apoptosis. Furthermore, suppression of Stat1 expression can
sensitize lung cancer cells to cisplatin-induced cell death.
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lentiviral vectors expressing shStat1. Mcl-1 expression was examined by immunoblotting in the transduced cells. (B) After
treatment with cisplatin (5 µg/mL), cleavage of caspase-3 was detected in the transduced cells. (C,D) Apoptotic cells
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original magnification, ×200. (E) Oct4-overexpressing A549 cells were treated with fludarabine (Flu, 2.5 µg/mL) for 24 h
and cleaved caspase-3 was detected by immunoblotting. Data are the mean ± S.E.M. ** p < 0.01 and *** p < 0.001.

3.5. Oct4-Promoted Tumor Growth Is Attenuated by The Reduction in Stat1 Expression in Mice

To further demonstrate that Oct4 regulates Stat1 expression in vivo, tumor growth
was monitored in mice subcutaneously inoculated with Oct4-overexpressing A549 cells.
The tumor volume significantly increased in mice bearing Oct4-overexpressing tumors,
compared with those bearing tumors transduced with the control vector (Figure 7A). In the
tumor section excised at day 70 after tumor cell inoculation, Stat1 expression was higher in
A549-Oct4 tumors than in A549-vector tumors, suggesting that Oct4 regulates Stat1 expres-
sion in vivo (Figure 7B). To clarify whether Oct4 promotes tumor growth through Stat1 in
the mouse model, intratumoral injections of LV-shStat1 or LV-shLuc were administered in
mice at 21 days following subcutaneous inoculation with Oct4-overexpressing A549 cells.
The tumor volume significantly decreased in the Stat1-knockdown group, compared with



Cells 2021, 10, 2642 9 of 13

the control group (Figure 7C). Immunohistochemical staining of tumor sections clearly
revealed that lentiviral delivery of shRNA specific to Stat1 is effective in suppressing Stat1
expression (Figure 7D). Accordingly, treatment with the Stat1 inhibitor fludarabine at day
14 also inhibited tumor growth (Figure 7E) and reduced Stat1 phosphorylation (Figure 7F).
Taken together, Oct4 overexpression results in a higher tumor growth rate, which can be
attenuated by Stat1 inhibition.
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4. Discussion

Previous studies have shown that Oct4 and Stat1 are overexpressed in lung cancer;
however, their roles and underlying mechanisms are unclear [7,16]. In this study, we
show that Oct4 expression is associated with Stat1 expression. In vitro studies indicate
that Oct4 induces Stat1 expression by directly binding to the Stat1 promoter, resulting in
increased expression of Stat1 and the downstream gene Mcl-1. Furthermore, silencing of
Stat1 expression inhibits tumor cell growth and sensitizes cancer cells to drug-induced
apoptosis. Our results suggest that Oct4 acts in apoptosis through the regulation of Stat1 in
lung adenocarcinoma.

Stat1 functions as a mediator of interferon signaling and is thought to be an inducer of
cell death [13]. Stat1 overexpression has also been reported in many cancer types [15–17].
High Stat1 expression exhibits resistance to genotoxic stress following treatment with
doxorubicin and cisplatin or a combination of ionizing radiation in cancer cells [18]. In
this study, we show that Stat1 plays an anti-apoptotic role in lung adenocarcinoma. This
might suggest that inhibition of apoptosis via inducing Mcl-1 expression protects cancer
cells from stress in Stat1-overexpressing cells. Here, we propose a novel signaling pathway
of Oct4 in cell survival, in addition to Stat3/survivin signaling in murine embryonic stem
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cells and chemoresistant colorectal cancer cells [32,33]. Oct4 directly binds to the Stat1
promoter to induce Stat1 expression and further inhibits apoptosis. Activated Stat1 forms
dimers with Stat3 to regulate gene expression [34]. Therefore, the exact involvement of
Stat1 in Oct4/Stat3/survivin signaling remains to be elucidated.

In addition to anti-apoptosis, Oct4 is involved in cell migration and metastasis. Oct4
overexpression promotes migration in bladder cancer cells. Oct4 upregulates the expression
of several genes, including fibroblast growth factor-4 (FGF-4), matrix metalloproteinase-2
(MMP-2), MMP-9 and MMP-13, which are known to contribute to metastasis [6]. Whether
Stat1 participates in FGF-4 or MMP regulation needs to be further investigated. Moreover,
previous studies have shown that Stat1 is involved in metastasis. Stat1 knockdown reduces
the metastatic capacity of melanoma cells [15]. Furthermore, Stat1 directly interacts with
focal adhesion kinase (FAK), which promotes cell motility [35]. Therefore, in addition to its
anti-apoptotic properties, Stat1 might contribute to the regulation of focal adhesion and
the promotion of tumor migration in lung adenocarcinoma. Whether Oct4 regulates FAK
or is involved in focal adhesion requires further study.

Oct4 is involved in maintaining the self-renewing capacity and pluripotency of embry-
onic stem cells [3–5]. During embryonic development, microRNAs play an important role
in regulating differentiation, especially miR-145. miR-145 promotes cell differentiation by
targeting Oct4 on the 3′ untranslated region (UTR) [36,37]. Moreover, miR-145 expression is
downregulated and is associated with poor differentiation and prognosis in non-small-cell
lung cancer [38]. This provides a possible regulatory mechanism for Oct4 in lung cancer.
Furthermore, miR-145 is regulated by interferon in a Stat1-dependent manner. miR-145
expression increases in Stat1-knockdown and Stat1-inhibitor-treated cells [39]. In our study,
we found that Oct4 induces Stat1 expression and phosphorylation. Therefore, activated
Stat1 might suppress miR-145 expression and further increase Oct4 expression to form a
feedback loop in promoting tumor progression.

Fludarabine was popular in the past two decades for the treatment of chronic lympho-
cytic leukemia, before newer therapies were discovered. However, the results of clinical
trials were generally disappointing, in particular phase II trials on major tumor types.
Only in the cases of head and neck and breast cancers did a small proportion of patients
show objective remissions [40,41]. A statistical framework based on the meta-analysis
of expression profiles to identify pan-cancer markers and mechanisms of drug response
using large panels of cancer cell lines from numerous distinct lineages characterized that
the constitutive activation of several signaling pathways, including the interferon/Stat1
pathway, is implicated in resistance to the pan-histone deacetylase (HDAC) inhibitor [42].
Although phase III randomized studies do not support the use of HDAC inhibitors in
lung cancer patients in routine practice, numerous preclinical studies have shown that
HDAC inhibitors exhibit impressive antitumor activity in lung cancer cell lines [43]. In
addition, cancer cells initially characterized as sensitive to chemotherapy may acquire
resistance to chemotherapy and lead to chemotherapeutics-induced Oct4 expression, which
contributes to drug resistance and tumor recurrence [44]. In this study, we found that Oct4
regulates Stat1 expression, which leads to cell survival via enhanced Mcl-1 expression
and promotes tumor growth in a Stat1-dependent manner. In addition to being a DNA
synthesis inhibitor, fludarabine, acting as a selective Stat1 activation inhibitor [45], may be a
potential therapeutic agent in combination therapy for lung adenocarcinoma by inhibiting
the anti-apoptotic effects of Oct4.

5. Conclusions

Tumor cells usually proliferate indefinitely through their anti-apoptotic properties.
Evasion of cell death leads to ineffective therapy and poor prognosis in cancer patients.
In our study, we demonstrated that the stem cell marker Oct4 is overexpressed and,
ultimately, results in an anti-apoptosis phenotype through the Stat1/Mcl-1 axis in lung
adenocarcinoma. Oct4 promotes tumor growth, whereas silencing of Stat1 expression
reduces tumor growth in vivo. Moreover, Stat1 knockdown in Oct4-overexpressing cells
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sensitizes them to cisplatin-induced apoptosis. These results elucidate the molecular
mechanism underlying Oct4-mediated cell survival in lung adenocarcinoma and provides
broad implications for the concept and potential therapeutic applications.
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