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ABSTRACT
Hesperidin, a citrus flavonoid, can exert numerous beneficial effects on human health. Interstitial
cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract. In the present study, we
investigated potential effects of hesperidin on pacemaker potential of ICC in murine small
intestine and GI motility. A whole-cell patch-clamp configuration was used to record pacemaker
potential in ICC, and GI motility was investigated in vivo by recording gastric emptying (GE) and
intestinal transit rate (ITR). Hesperidin depolarized pacemaker potentials of ICC in a dose-
dependent manner. Pre-treatment with methoctramine or 4-DAMP did not inhibit hesperidin-
induced pacemaker potential depolarization. Neither a 5-HT3 receptor antagonist (Y25130) nor a
5-HT7 receptor antagonist (SB269970) reduced the effect of hesperidin on ICC pacemaker
potential, whereas the 5-HT4 receptor antagonist RS39604 was found to inhibit this effect. In the
presence of GDP–β–S, hesperidin-induced pacemaker potential depolarization was inhibited.
Moreover, in the presence of U73122 and calphostin C, hesperidin did not depolarize pacemaker
potentials. Furthermore, hesperidin accelerated GE and ITR in vivo. These results imply that
hesperidin depolarized ICC pacemaker potential via 5-HT4 receptors, G protein, and PLC/PKC
dependent pathways and that it increased GI motility. Therefore, hesperidin may be a promising
novel drug to regulate GI motility.
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Introduction

Polyphenols occur in various plants and are important for
their defense systems; flavonoids are a group of polyphe-
nols which are particularly common in edible plants that
constitute a large part of human diet (Cho et al. 2018;
Chung et al. 2018; Stevens et al. 2019). The predominant
flavonoid in sweet fruits is hesperidin (Garg et al. 2001)
which also occurs frequently in vegetables and bev-
erages such as tea and red wine (Orallo et al. 2004;
Bock et al. 2008). Hesperidin is known to exert various
effects on humans including anti-inflammatory activity
(Garg et al. 2001). Moreover, hesperidin has been
reported to regulate gastrointestinal (GI) motility by
reducing inflammatory reactions and stimulating
calcium release (Xiong et al. 2016).

GI motility is controlled by numerous different cell
types in the GI tract, and among these, ICC plays a key
role (Huizinga et al. 1995; Sanders 1996; Kim et al.
2005). ICC can generate electrical charges (Huizinga
et al. 1995; Sanders 1996; Kim et al. 2005), and when
ICC abundance and intercellular connectivity are

reduced, GI motility also decreases (Der et al. 2000;
Wei et al. 2014). Potential effects of hesperidin on GI
motility have not yet been comprehensively investi-
gated; therefore, in the current study, we assessed the
effects of hesperidin on ICC in vitro and on GI motility
in vivo.

Materials and methods

Preparation of cell cultures

Animal experiments were conducted in compliance with
the stipulations of the animal experiment ethics commit-
tee of Pusan National University (approval no. PNU-2018-
1832). Small intestines of ICR mice were isolated, and the
mucous membrane was excised. Small-intestinal muscles
were equilibrated using Ca2+-free Hank’s solution. Cells
were enzymatically isolated using collagenase
(Worthington Biochemical, Lakewood, NJ, USA) and
were then cultured in smooth muscle growth medium
([SMGM]; Clonetics, San Diego, CA, USA) inside a CO2

incubator and at 37°C.
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Patch-clamp experiments

Na+-Tyrode solution was used in bath, and the solution
was produced using KCl 140, MgCl2 5, K2ATP 2.7,
NaGTP 0.1, creatine phosphate disodium 2.5, HEPES 5,
and EGTA 0.1. Electrophysiological analyses were con-
ducted, and results were analyzed using pClamp (Mol-
ecular Devices, Sunnyvale, CA, USA) and Origin
software (version 6.0, Microcal, USA).

Assessment of gastric emptying (GE)

Twenty minutes after administering phenol red solution,
stomachs tissue was cut into several pieces which were
placed in sodium hydroxide. Tissue preparations were
then centrifuged with NaOH at 1050 × g for 10 min,
and absorbance was measured using a spectrometer at
560 nm, according to previously published methods.

Intestinal transit rate (ITR) measurements

Mice were administered hesperidin, followed by oral
administration of Evans Blue. Thirty minutes later,
animals were euthanized, and ITR was measured accord-
ing to the distance over which Evans Blue had been
transported in the intestine (expressed as percentage
of the length of the intestine).

Drugs

5-HT receptor antagonists were obtained from Tocris
Bioscience (Bristol, United Kingdom). All other reagents
including hesperidin were purchased from Sigma-
Aldrich (St. Louis, MO, USA).

Statistical analyses

Results are shown as means ± standard error. We
employed an ANOVA to test effects of hesperidin on
the respective parameters using Prism 6.0 software
(La Jolla, CA, USA). Statistical significance is reported at
P < 0.05.

Results

Effect of hesperidin on pacemaker potentials
in ICC

Spontaneous pacemaker potentials were observed in
ICC. The membrane potential was −56.3 ± 1.7 mV, and
the amplitude was 26.6 ± 1.2 mV. Hesperidin depolarized
pacemaker potentials in a dose-dependent manner (1–
30 μM; Figure 1A–C). Values of depolarization were 1.7

± 0.5 mV at 1 μM, 13.1 ± 0.7 mV (P < 0.01) at 10 μM, and
24.8 ± 1.3 mV (P < 0.01) at 30 μM (Figure 1D), and ampli-
tude values were 24.3 ± 1.0 mV at 1 μM, 13.0 ± 0.7 mV (P
< 0.01) at 10 μM, and 2.7 ± 0.6 mV (P < 0.01) at 30 μM
(Figure 1E).

Hesperidin-induced pacemaker potential
depolarization in ICC and muscarinic receptors

Previous studies suggested that muscarinic receptors
affect excitatory nerve transmission in the GI tract (Hui-
zinga et al. 1984; Inoue and Chen 1993). Moreover, M2
and M3 subtypes of muscarinic receptors occur in cul-
tured ICC (Epperson et al. 2000). Therefore, we investi-
gated involvement of M2 and M3 subtypes in
hesperidin-induced pacemaker potential depolarization
in ICC. Neither methoctramine (an M2 receptor antagon-
ist) nor 4-DAMP (an M3 receptor antagonist) produced
an effect on hesperidin-induced pacemaker potential
depolarization (Figure 2A,B, respectively). Depolarization
values were 13.5 ± 0.7 mV with methoctramine and 13.1
± 0.8 mV with 4-DAMP (Figure 2C), and amplitude values
were 12.2 ± 0.8 mV with methoctramine and 13.4 ±
0.5 mV with 4-DAMP (Figure 2D).

Involvement of the 5-HT4 receptor in
hesperidin-induced pacemaker potential
depolarization in ICC

5-HT receptors are known to be involved in the function
of GI motility, thus we investigated the involvement of 5-
HT receptors (Gershon and Tack 2007). Previous studies
found that only 5-HT3,4,7 R were expressed (Liu et al.
2011; Shahi et al. 2011). Neither 5-HT3 receptor antagon-
ist Y25130 nor 5-HT7 receptor antagonist SB269970
showed any effect on hesperidin-induced responses
(Figure 3A,C); however, 5-HT4 receptor antagonist
RS39604 inhibited the effect of hesperidin on pacemaker
potentials of ICC (Figure 3B). In the presence of hesperi-
din and 5-HT receptor antagonists, depolarization values
were 14.0 ± 0.8 mV with Y25130, 13.4 ± 0.6 mV (P < 0.01)
with RS39604, and 13.1 ± 0.8 mV with SB269970 (Figure
3D), and mean amplitude values were 12.1 ± 1.4 mV
with Y25130, 19.5 ± 1.3 mV (P < 0.01) with RS39604, and
13.0 ± 0.7 mV with SB269970 (Figure 3E).

Involvement of G proteins in hesperidin-induced
pacemaker potential depolarization in ICC

GDP–β–S were used to inactivate G–protein (Komori
et al. 1992; Ogata et al. 1996). When GDP–β–S occurred
in the cell, hesperidin-induced pacemaker potential
depolarization was inhibited (Figure 4A). In presence of
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GDP–β–S, a depolarization value of 1.7 ± 0.5 mV was
observed (P < 0.01; Figure 4B), and the mean amplitude
value was 22.6 ± 1.1 mV (P < 0.01) (Figure 4C).

Involvement of phospholipase C (PLC), protein
kinase A (PKA), and protein kinase C (PKC) in
hesperidin-induced pacemaker potential
depolarization in ICC

To investigate the involvement of PLC, PKA, and PKC
pathways, we used U73122 (a PLC inhibitor), KT5720 (a
PKA inhibitor), and calphostin C (a PKC inhibitor).
Neither U73122 nor calphostin C produced an effect on
hesperidin-associated responses (Figure 5A,C); however,
in the presence of KT5720, hesperidin was depolarized
(Figure 5B). In the presence of U73122, KT5720, or cal-
phostin C, depolarization values were 1.3 ± 0.4 mV (P <
0.01) with U73122, 13.4 ± 1.7 mV with KT5720, and 1.1
± 0.2 mV (P < 0.01) with calphostin C (Figure 5D), and
amplitude values were 2.1 ± 0.7 mV (P < 0.01) with
U73122, 12.8 ± 1.5 mV with KT5720, and 23.7 ± 0.8 mV
(P < 0.01) with calphostin C (Figure 5E).

Effects of hesperidin on GE

Effects of hesperidin were compared with those of mosa-
pride and domperidone. Mice treated with hesperidin
(10 and 20 mg/kg) showed higher GE values than

controls (55.4 ± 1.9%). GE values in hesperidin treatments
were 58.9 ± 3.4% at 10 mg/kg and 63.9 ± 2.8% at 20 mg/
kg (P < 0.01; Figure 6A). The GE values of mosapride and
domperidone were 65.7 ± 2.0% (P < 0.01) and 63.1 ±
1.4% (P < 0.01; Figure 6A), respectively.

Effects of hesperidin on ITR

The mean ITR value in untreated mice, 10 mg/kg hesper-
idin treatment, and 20 mg/kg hesperidin treatment was
52.7 ± 2.7%, 54.1 ± 2.3%, and 62.3 ± 1.6%, respectively
(P < 0.01; Figure 6B).

Discussion

We investigated effects of hesperidin on pacemaker
potential in ICC and on GI motility. Hesperidin depolar-
ized pacemaker potentials through 5-HT4 receptors via
G protein and PLC/PKC dependent pathways but not
through muscarinic receptors, indicating that hesperidin
can modulate ICC. Furthermore, hesperidin increased GE
and ITR.

Hesperidin is commonly found in highly nutritious
fruits such as oranges, tangelos, tangerines, grapefruits,
and other citrus fruits (Suzuki et al. 2014). Hesperidin
has been shown to exert numerous biological functions
(Hou et al. 2012); therefore, hesperidin has been com-
monly used to treat various disorders including

Figure 1. Effects of hesperidin on pacemaker potentials of murine small intestine ICC. (A–C) Hesperidin depolarized pacemaker poten-
tials of ICC. (D and E) Summaries of pacemaker potential depolarization and amplitude changes due to hesperidin. Bars indicate mean
values ± SEs. **P < 0.01. CTRL: Control.

86 M. HWANG ET AL.



Figure 2. Effects of muscarinic receptor antagonists on hesperidin-induced pacemaker potential depolarization in ICC. (A) In presence
of methoctramine, hesperidin depolarized pacemaker potentials of ICC. (B) With 4-DAMP, hesperidin depolarized pacemaker potentials
of ICC. (C and D) Summaries of pacemaker potential depolarization and amplitude changes due to hesperidin with muscarinic receptor
antagonists. Bars indicate mean values ± SEs. **P < 0.01. CTRL: Control. Methoc.: Methoctramine.

Figure 3. Effects of 5-HT receptor antagonists on hesperidin-induced pacemaker potential depolarization in ICC. (A) In presence of
Y25130 (5-HT3 receptor antagonist), hesperidin depolarized pacemaker potentials of ICC. (B) In presence of RS39604 (a 5-HT4 receptor
antagonist), hesperidin did not depolarize pacemaker potential of ICC. (C) In presence of SB269970 (a 5-HT7 receptor antagonist),
hesperidin depolarized pacemaker potential of ICC. (D and E) Summaries of pacemaker potential depolarization and amplitude
changes due to hesperidin with 5-HT receptor antagonists. Bars indicate mean values ± SEs. **P < 0.01. CTRL: Control. Y.: Y25130.
RS.: RS39604. SB.: SB269970.
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neurological, psychiatric, and cardiovascular diseases (Li
and Schluesener 2017). Furthermore, hesperidin is
being used in combination with other drugs such as

rikkunshito (Li and Schluesener 2017). Rikkunshito is a
traditional herbal remedy to promote appetite and is
commonly used in Japan to treat indigestion (Arai et al.

Figure 4. Effects of GDP–β–S on hesperidin–induced pacemaker potential depolarization in ICC. (A) In presence of GDP–β–S (1 mM),
hesperidin had no effects. (B and C) Summaries of pacemaker potential depolarization and amplitude changes due to hesperidin with
GDP–β–S. Bars indicate mean values ± SEs. **P < 0.01. CTRL: Control.

Figure 5. Effects of phospholipase C (PLC), protein kinase A (PKA), and protein kinase C (PKC) inhibitors on hesperidin-induced pace-
maker potential depolarization in ICC. (A) In the presence of U73122 (a PLC inhibitor), hesperidin showed no effect. (B) In the presence
of KT5720 (a PKA inhibitor), hesperidin depolarized pacemaker potential of ICC. (C) In the presence of calphostin C (a PKC inhibitor),
hesperidin showed no effect. (D and E) Summaries of pacemaker potential depolarization and amplitude changes due to hesperidin
with PLC, PKA, or PKC inhibitors. Bars indicate mean values ± SEs. **P < 0.01. CTRL: Control.
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2012; Takiguchi et al. 2013). Hesperidin stimulates
ghrelin secretion, thus synergistic effects of mixing
hesperidin with rikkunshito produced promising good
results. In addition, hesperidin is readily available and
inexpensive, therefore it can be manufactured and com-
mercialized for therapeutic purposes as well as in the
food industry. In the present study, we found that
hesperidin modulated pacemaker potentials in ICC.
Therefore, we suggest that hesperidin may regulate GI
motility via ICC pacemaker potential.

GI motility disorders are very common and occur
throughout the GI tract, and the associated symptoms
can substantially affect the quality of life (Pare et al.
2001; El-Serag and Talley 2003; Lacy and Weiser 2006;
Lacy et al. 2018). Moreover, these disorders are of sub-
stantial economical concern (Sandler et al. 2002; Lacy
et al. 2018). ICC are important for GI motility (Huizinga
et al. 1995; Sanders 1996; Kim et al. 2005). ICC spon-
taneously generate active pacemaker potential, causing
electrical and mechanical activity of smooth muscles
(Huizinga et al. 1995; Sanders 1996; Kim et al. 2005). In
ICC, a Ca2+-activated Cl− channel and a non-selective
cation channel are required for pacemaking activity,
and the ether-a-go-go-related K+ channel is also one of
the most important K+ channels for maintaining and acti-
vating stable membrane voltage in ICC (Zhu et al. 2003;
Kim et al. 2005; Zhu et al. 2009). Further studies on the
involvement of ion channels in hesperidin-related
effects are required.

Muscarinic receptors are important receptors for reg-
ulating GI motility (Hirst et al. 2002). In the present study,
both methoctramine and 4-DAMP produced no effects
on hesperidin reactions. Thus, muscarinic receptors
were apparently not involved in hesperidin effects on
ICC (Figure 2). Furthermore, 5-HT plays a crucial role in
regulating GI motility (Baker 2005). Previous studies

suggested that 5-HT can control pacemaker activity
through 5-HT3, 5-HT4, and 5-HT7 receptors (Shahi et al.
2011). In the present study, RS39604 blocked hesperidin
effects, whereas Y25130 and SB269970 showed no
respective effect. Thus, 5-HT4 receptors were apparently
involved in hesperidin-induced effects on ICC (Figure 3).
Furthermore, G-protein and PLC/PKC pathways are
involved in hesperidin-induced effects in ICC (Figures 4
and 5). In addition, we found that hesperidin increased
GE and ITR (Figure 6).

Polyphenols occur naturally in various fruits and veg-
etables. However, potential effects of polyphenols on
human health remain to be elucidated. Our results
suggest that polyphenols such as hesperidin may be
an option for prevention and treatment of GI disorders.
Taken together, our results show that hesperidin
depolarizes pacemaker potentials of ICC via 5-HT4 recep-
tors, G protein, and PLC/PKC dependent pathways, and
increases GE and ITR.
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