
ORIGINAL RESEARCH
published: 01 March 2021

doi: 10.3389/fncom.2021.640235

Frontiers in Computational Neuroscience | www.frontiersin.org 1 March 2021 | Volume 15 | Article 640235

Edited by:

Paul Miller,

Brandeis University, United States

Reviewed by:

Michael Graupner,

New York University, United States

Maxim Volgushev,

University of Connecticut,

United States

*Correspondence:

Harel Z. Shouval

harel.shouval@uth.tmc.edu

Received: 10 December 2020

Accepted: 08 February 2021

Published: 01 March 2021

Citation:

Cone I and Shouval HZ (2021)

Behavioral Time Scale Plasticity of

Place Fields: Mathematical Analysis.

Front. Comput. Neurosci. 15:640235.

doi: 10.3389/fncom.2021.640235

Behavioral Time Scale Plasticity of
Place Fields: Mathematical Analysis
Ian Cone 1,2 and Harel Z. Shouval 1*

1Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX, United States, 2 Applied

Physics Program, Rice University, Houston, TX, United States

Traditional synaptic plasticity experiments and models depend on tight temporal

correlations between pre- and postsynaptic activity. These tight temporal correlations,

on the order of tens of milliseconds, are incompatible with significantly longer behavioral

time scales, and as such might not be able to account for plasticity induced by

behavior. Indeed, recent findings in hippocampus suggest that rapid, bidirectional

synaptic plasticity which modifies place fields in CA1 operates at behavioral time scales.

These experimental results suggest that presynaptic activity generates synaptic eligibility

traces both for potentiation and depression, which last on the order of seconds. These

traces can be converted to changes in synaptic efficacies by the activation of an

instructive signal that depends on naturally occurring or experimentally induced plateau

potentials. We have developed a simple mathematical model that is consistent with

these observations. This model can be fully analyzed to find the fixed points of induced

place fields and how these fixed points depend on system parameters such as the size

and shape of presynaptic place fields, the animal’s velocity during induction, and the

parameters of the plasticity rule. We also make predictions about the convergence time

to these fixed points, both for induced and pre-existing place fields.

Keywords: synaptic plasticity, mathematical model, place field, hippocampus, eligibility trace

1. INTRODUCTION

Experiments and models of synaptic plasticity have, for several decades, concentrated on plasticity
which depends on coincident or nearly coincident activation of pre- and postsynaptic cells.
This is most clearly exemplified by spike timing dependent plasticity (STDP), in which timing
differences between pre- and postsynaptic spikes, on the order of tens of milliseconds, significantly
impact the sign and magnitude of synaptic plasticity (Markram et al., 1997; Bi and Poo, 1998;
Shouval, 2010), while co-activation of pre- and postsynaptic activity at larger intervals produces no
synaptic plasticity. Such correlations between pre- and postsynaptic activity are possible biological
implementations of unsupervised learning (Kempter et al., 1999; Song et al., 2000). However, many
aspects of behavioral plasticity depend on a supervising signal, or a reward, which can occur with
delays that range from hundreds of milliseconds to seconds or more.

Recent plasticity experiments in hippocampus in vivo (Bittner et al., 2015, 2017; Milstein et al.,
2020) have shown place-field plasticity that occurs rapidly in response to either naturally occurring
or artificially induced dendritic calcium spikes, also known as “plateau potentials.” These protocols
have shown both an increase and a decrease in synaptic efficacies occurring in synapses that were
active seconds before or after the plateau potentials. This plasticity, coined “behavioral timescale
synaptic plasticity” (BTSP), is therefore unable to be reconciled with forms of synaptic plasticity
that depend on tight correlations between pre and postsynaptic activity.
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The difficulty in associating events (such as stimulus and
reward) at larger time scales is called the temporal credit
assignment problem (Sutton and Barto, 2018). Various methods
to solve the temporal credit assignment problem have been
proposed, none of which solely depend on coincidences on the
range of tens of milliseconds. One possible solution depends
on synaptic eligibility traces, which can last for several seconds
following neural activity, and which can be converted into
changes in synaptic efficacies if they are followed by a reward or
an instructive signal (Izhikevich, 2007; Gerstner et al., 2018). This
is similar to synaptic tagging (Frey and Morris, 1997), but the
dynamics of eligibility traces are on the order of seconds rather
than hours, and seconds are the time scale relevant for place
field plasticity. Recent evidence in several systems has provided
experimental support for the existence of synaptic eligibility
traces. It has been shown that a neuromodulator applied seconds
after a pre before post pairing protocol can induce long-
term potentiation (LTP), and that the magnitude of plasticity
depends on the delay between the stimulus and application of
neuromodulator (Yagishita et al., 2014; He et al., 2015; Fisher
et al., 2017; Shindou et al., 2019). It has also been shown that after
a post before pre pairing protocol, a different neuromodulator
can induce long-term depression (LTD) (He et al., 2015). These
results suggest that pairing of pre- and postsynaptic activities can
generate some currently undetermined biochemical processes,
which last for several seconds, and are the substrates of the
synaptic eligibility traces for LTP and LTD. If a neuromodulator
is applied while the trace is sufficiently active, either LTP or LTD
is induced, depending on the details of the pairing protocol.
Note that in these experiments, the traces induced depend on
both pre- and postsynaptic activity, while the conversion of
these traces into efficacy changes depends on a third factor, a
neuromodulatory signal. These examples are therefore examples
of three-factor learning (Gerstner et al., 2018). Theoretical
models consistent with these experimental observations have
been shown to be useful in accounting for learning in model
networks (Gavornik et al., 2009; He et al., 2015; Huertas et al.,
2016).

The phenomenon of BTSP may also depend on synaptic
eligibility traces, both for LTP and LTD. A recent paper has shown
that for BTSP, these traces likely depend only on presynaptic
activity and the magnitude of the existing synaptic efficacy, and
that change in synaptic efficacies can depend on the overlap
between these traces and an instructive signal that is activated
by the plateau potential(Milstein et al., 2020). The data therefore
supports a two-factor model in which the two factors are
presynaptic activity and an instructive signal.

The model for BTSP we present and analyze here extends
these previous results. We show that the place fields produced
by a two-factor eligibility trace model have fixed points, and
that these fixed points can be defined and calculated. Our model
additionally predicts the convergence rate to these fixed points.
In some simple cases these fixed points can be fully solved
analytically. Using these solutions, we show how these fixed
points depend on the system’s parameters such as the shape of
the presynaptic place fields and the animal’s velocity. We show
explicitly that the place fields become broader if the animal has a

higher velocity during induction, and predict that LTD far away
from the instructive signal has a slow convergence time to the
fixed point. These results agree with, and extend upon, existing
experiments on BTSP (Bittner et al., 2015, 2017; Milstein et al.,
2020) and are achieved by a simple and analytically tractable
mathematical model.

2. METHODS AND RESULTS

2.1. Model Setup
The general framework for themodel emulates the setup of recent
experiments in hippocampus (Bittner et al., 2015, 2017; Milstein
et al., 2020). A mouse runs along a treadmill of length L at
velocity v. Experimenters record from a postsynaptic CA1 place
cell which receives inputs from N presynaptic CA3 inputs. As the
animal runs along the track, a dendritic calcium spike (“plateau
potential”) is artificially triggered in the CA1 cell, at the same
location each lap, in order to induce learning. The CA3 inputs
are themselves place fields which tile the length L of the running
track (Figure 1). The firing rate Ri of each CA3 input i is modeled
as a Gaussian function of position:

Ri(x) = αe−(
x−x0

σ
)2 (1)

Where x0 is the center of the given input receptive field. The CA1
output has a ramp potential (i.e., the membrane potential relative
to rest, low-pass filtered to eliminate spikes, see (Milstein et al.,
2020) determined by the sum of its synaptic input:

V(x) = β

N
∑

i=1

WiRi(x) (2)

Each synapse in our model produces two traces, one for LTP and
one for LTD, upon presynaptic firing Ri. The equation for each
trace (Tk

i ) has the form:

dTk
i

dt
=

[

−(Tk
i − Tk

0)+ ηkRi(v · t)(T
k
max − Tk

i )
]

/τ k (3)

where Tk
i is a trace for synapse i, k indicates either LTP or LTD, T

k
0

is the basal value of the trace for that synapse,Tk
max is themaximal

value of the trace, τ k the time constant, and ηk, an activation rate
constant. By a simple change of variables Ti → (Ti + T0), and
Tmax → Tmax + T0, one gets the slightly simpler equation:

dTk
i

dt
=

[

−Tk
i + ηkRi(v · t)(T

k
max − Tk

i )
]

/τ k. (4)

These traces act as transient markers of the presynaptic firing
history, allowing the network to bridge events that occur within
the temporal scale of the trace (τ k). The ODE dictating the traces
has two terms, the first of which is a decay term—in the absence of
presynaptic firing, this term causes the traces return to their basal
level at a rate determined by the time constant τ k. The second
term is an activation term, wherein presynaptic firing causes the
traces to approach their saturation value Tk

max. The shape of the
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FIGURE 1 | Running track and model network. (A) A mouse runs at velocity v along a running track with locations marked by unique features. Inside the mouse

hippocampus, N CA3 place cells have activity peaks at different locations along the track, and synapse onto a single postsynaptic CA1 cell. (B) The CA3 place cells

considered here are modeled as simple Gaussians centered at evenly spaced locations along the running track.

FIGURE 2 | Weight dynamics. (A) An illustration of the synaptic plasticity traces and the instructive signal. (B) A simple dynamical model of synaptic plasticity, where

both LTP and LTD require an overlap between a trace variable Tk and an instructive signal P. W is the active synaptic weight, and Win are internalized resources, the

total synaptic weight is conserved. (C) The overlap Ik between the traces and the instructive signal, as a function of D, where D = tP − t0 is the displacement between

the start of the instructive signal and the center of the presynaptic place field in units of time.

trace depends on the trace parameters and on the shape and
location of the place field of the presynaptic neuron to synapse
i. Some examples of such traces can be found in Figure 2A.

For a specific functional shape of an input place field R(x), the
place field in time has the form R(v · t − x0) = R

(

v · (t − t0)
)

where x0 indicates the place field center in space. Therefore,
traces too can be written as Tk

i (t − t0). The traces interact with
an “instructive signal” P(t) which is triggered by the induced
plateau potential:

P(t − tP) =

{

0 : t < tP

γ e
−

t−tP
τI : t ≥ tP

(5)

Where tP marks the time of induction of the plateau potential.
This instructive signal is global, acting across all synapses in
tandem with the synapse specific traces.

Our learning rule is a very simple induction model, which
depends on above described synaptic traces Tk

i , instructive signal
P(t), and assumes a conserved resource that can become synaptic

efficacy (see Figure 2B). These assumptions produce a simple
ODE for the dynamics of synaptic plasticity:

dWi

dt
= (1−Wi) · T

p
i (t − t0)P(t − tP)

−Wi · T
d
i (t − t0)P(t − tP) (6)

Where again we denote the start time of the instructive signal as
tP and the temporal center of the presynaptic place field as t0.
Here we set Wtotal from Figure 2B to 1, such that Win is then
equal to 1−W. Note that the assumption of a conserved quantity
results in a plasticity rule that is weight dependent (Milstein et al.,
2020). By changing variables such that t → t + t0 we get:

dWi

dt
= (1−Wi) · T

p
i (t)P(t − D)−Wi · T

d
i (t)P(t − D) (7)

where D = tP − t0 is the displacement between the start of the
instructive signal and the center of the presynaptic place field in
units of time. These presynaptic place fields are tiled along the
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length L of the running track, therefore for each synapse i, D
is different, but simply linearly shifted. If the set of presynaptic
neurons have centers that are equally and linearly spaced with a
spacing 1x, starting at x0 then t0(i) = tP − (x0(i) + i · 1x)/v),
where t0(i) is the center in time or the presynaptic receptive field
of synapse i. Similarly one could write D = D(i), where each
version of D has he same order but is simply shifted.

2.2. General Solution and Fixed Point
To find the fixed point solution of our learning rule, we can
integrate over a single trial and assume that during that trial,
W does not change significantly, so it can be taken out of
the integral. This approximation is appropriate even during
fast learning when W reaches a fixed-point. The dynamics will
therefore depend on the integral of the overlap between the traces
and the instructive signal (Figure 2C):

Iki (D) =

∫ ttrial

0
Tk
i (t)P(t − D)dt (8)

where k ∈ (p, d). The fixed point of Equation (6) is therefore:

(1−Wi) · I
p
i (D) = Wi · I

d
i (D) (9)

This implies that the fixed point ofWi is simply:

Wi(D) =
I
p
i (D)

I
p
i (D)+ Idi (D)

(10)

Practically speaking, this fixed point Wi(D) gives us the final
weights of all the synapses in response to an instructive signal
presented at time tP as a function of their temporal distance
to this instructive signal, D = tP − t0. This fixed point can
be calculated numerically in the general case, but can also
be calculated analytically under certain conditions (see section
2). The fixed point can also be described in terms of spatial
dependence, the units for which can be obtained in the case of
constant velocity simply bymultiplyingD by the animal’s velocity
v. The fixed point weights can be converted to the fixed point
ramp amplitudes through Equation (2).

Equation (10) implies that with linear induction of traces, as
assumed in this section, the parameters of the two traces must be
different if we want the weights to depend on the displacement
between the place field center and the instructive signal. If the
traces are identical for all D, Wi(D) = 0.5 for all D. If they have
the same functional form, but a different scale such that Ip = k·Id

thenWi(D) = k/(1+k) for everyD. For the formulation of traces
in Equation (3), this would occur, for example, if the parameters
ηd = ηp and τd = τp but T

p
max 6= Td

max. In order for the weights
to produce place fields that are selective for a certain range of D,
the overlap Id should generally be broader and shallower than
the overlap Ip. This can be implemented directly by choosing
appropriately different trace parameters for LTD and LTP, and/or
by including a basal level of LTD Td

0 .
We can find a closed form solution for the traces by directly

integrating Equation (3), which is a non-homogeneous linear

first order ODE and therefore can be solved using an integration
factor U(t). Where:

U(t) = e
1
τ

∫ t
−∞(1+ηRi(v·t

′))dt′ (11)

The solution for Equation (3) then has the form:

Ti(t) =
Tmax

τ

[

∫ t
−∞

dt′ηRi(v · t
′)U(t′)+ C

]

U(t)
(12)

Given Ri(v · t′), one can use Equation (12) to solve for Ti(t),
and therefore Iki , and therefore Wi. Some choices of Ri(v · t′)
are more analytically tractable than others, hence the choice of
rectangular presynaptic place fields (Equation 18) for our full
analysis (see section 2.8 andAppendix), as they allow for a closed
form solution to this equation.

2.3. Linear Track
To investigate the evolution of the weights and their convergence
to fixed points, we first consider the case of a linear track. For
a linear track, we assume after each lap the animal “restarts,”
such that for a single trial, previous traversals of the track do not
interfere. By calculating Equation (10) for a set input receptive
field shape R and an instructive signal P, we can numerically solve
for the fixed points. The resulting steady state place field shapes
depend on the different parameters of the LTP and LTD traces.

In Figure 3, we show different place field fixed points, with
the same presynaptic place field and the same velocity, but
with different trace parameters, as indicated above each subplot.
One can observe that the width, selectivity, symmetry and
overall shape of the place fields significantly depends on these
parameters. From experiments (Bittner et al., 2015, 2017;Milstein
et al., 2020) we know that the shape of the fixed point should
be such that it is maximal near D = 0 and gets smaller,
approximately symmetrically as D deviates from zero. For a large
enough |D|,Wi should be close to zero. Given these experimental
observations, one can infer different trace and instructive signal
parameters that are consistent with experiments.

These numerical calculations can then be verified by
performing simulations where Wi is explicitly updated at every
time-step using Equation (7). For the following simulations, we
use the same parameters as in Figure 3C. We examine here two
different cases. In the first case, initial weights are set to zero,
and so the weights smoothly converge to their unimodal fixed
point as the mouse repeats laps along the track. Figure 4A shows
the fixed point CA1 output ramp amplitude (Equation 2) that
results from this case. Notice that the shape of the fixed point
ramp amplitude (Figure 4A) is very similar to the shape of the
fixed point weights (Figure 3C), owing to the fact that the inputs
Ri(x) in Equation (2) are themselves Gaussian. The emergence
of a place field is an example of effective one-shot learning in
this case, as it emerges and is well-defined after the first lap. The
subsequent laps asymptotically converge that place field to its
final fixed point.

In the second case (Figure 4B), the weights are initialized
such that there is a preexisting place field in the CA1 output.
Over the course of learning, interaction between the traces and
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FIGURE 3 | Fixed point place field structure. (A–C) Fixed point weights as a function of D for different sets of parameters. The velocity in all these subplots is identical

(v = 0.116 m/s, chosen to match the velocity in Milstein et al., 2020), and the same presynaptic Gaussian place field is used, with a SD width of 0.21 m. All other

parameters are indicated above each subplot.

FIGURE 4 | Place field plasticity on a linear track. (A,B) Simulated evolution of ramp amplitude over laps (dashed lines) and the numerically calculated fixed point ramp

amplitude (solid lines) as a function of D. For (A), initial weights are set to zero. For (B), weights are initialized such that there is a preexisting place field at D = 7.0 s.

(C) Change in ramp amplitude as a function of D and the initial ramp amplitude, for 10 different simulations. To replicate experiment, each simulation has a random

selection of initial place field strength, plateau potential strength, and plateau potential location. These response curves replicate the results of Figure 1J of Milstein

et al. (2020), with the caveat that our response curves are smoother and more uniform since we are assuming a uniform velocity.

the instructive signal cause the new place field (centered at the
location of the instructive signal, D = 0) to potentiate and the
preexisting place field to depress. The further away the initial
place field is from the new place field, the longer it will take
the initial place field to depress, owing to a smaller overlap (Ik)
between the traces and the instructive signal. However, the fixed
point of the weights are irrespective of the initial place field, so
given enough laps, the initial place field will always disappear, and
the solution will become unimodal.

Note that in both of these cases, and despite the assumptions
made in deriving the fixed point solution of Equation (10),
the simulated results (dashed lines in Figure 4) converge to the
numerical results (solid lines in Figure 4).

Running multiple simulations, each with their own
random initial place field amplitudes and instructive signal
locations/amplitudes, one can plot the change in place field ramp
amplitude as a function of initial place field ramp amplitude

and the time relative to plateau onset. These resulting response
curves (each one representing a different simulation and
different instantiation of these random parameters) predict
the change in ramp amplitude following the induction of
a plateau potential, in a given location and with a given
initial ramp voltage (Figure 4C). These curves replicate the
results of Figure 1J of Milstein et al. (2020), although our use
of a fixed velocity makes our curves appear smoother and
more uniform.

2.4. Circular Track
A similar exercise can be performed assuming a circular track

with continuous running, where the instructive signal/traces can
span across laps and place fields are periodic. We can think of
each cycle as another iteration in which the final value of traces
on the previous run is their initial value of the current run. In
this case it is more complicated to calculate the numerical fixed
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FIGURE 5 | Place field plasticity on a circular track. (A) Traces and instructive signal for a lap >> 1 on the circular track, as a function of time. The presynaptic traces

plotted are from a CA3 input centered at location of the instructive signal. (B) Ip and Id on circular track. (C) Fixed point for weights on the circular track, compared to

fixed point weights for the linear track. Notice also that (A) is plotted in absolute time, where as (B,C) are plotted in terms of D (time relative to instructive signal onset).

The solution in the circular track is nearly symmetric around D = 0, while the linear solution contains goes to zero for D < −0.5s due to its lack of periodic

boundary conditions.

point, but one way to do so is to consider an infinite number of
iterations, and use the convergence of the infinite series.

For a circular track, we must account for the wraparound of
both the traces and the instructive signal in our calculations. If
we define as tmax as the time it takes to do one cycle, then the
total time up to time t can be rewritten as t = n · tmax + q,
where n is the number of fully completed cycles. On the n + 1
run, the initial condition denoted by Cn is Ti(n·tmax). Using these
definitions, and the periodicity of the place cell with a period tmax,
the solution for Equation (12) is:

T̃k
i (t) =

Tk
max

τ

[∫ n·tmax+q

n·tmax

dq′ηkRi(v · q
′)Uk(q)

]

/Uk(q)

+Ti(n · tmax)/U
k(q) (13)

where the index k is p or d for LTP and LTD traces, respectively.
The first part on the right is the same for q in each period, and
independent of Tmax. The second part iteratively forms a series

such that: T̃k
i (n · tmax) = Tk

i (tmax)
∑n−1

j=0

(

Uk(tmax)
)−j

which

in the infinite limit converges to: Ti(tmax)/(1 − U(tmax)
−1) This

implies that the solution for the circular track converges to:

T̃k
i (q) =

Tk
max

τ

[∫ q

0
dq′Ri(v · q

′)Uk(q′)

]

/Uk(q)

+Ti(tmax)/(1− U(tmax)
−1) (14)

and Tk
i (tmax) =

Tmax
τ

[

∫ tmax

0 dqRi(v · q)U
k(q)

]

/Uk(tmax)

In order to illustrate this graphically, we show in Figure 5A

the traces for a lap >> 1, where due to the periodicity of the
track, the traces’ (and the instructive signal’s) values at the end of
the track are equal to those at the beginning of the track (periodic
boundary conditions). In the linear case, both the traces and
instructive signal are reset to zero at the beginning of the track.
For the example in Figure 5, we place the instructive signal near
the edge of the track, so as to accentuate the difference between

the circular and linear case. The traces in Figure 5A are also
chosen from a presynaptic cell centered at the location of the
instructive signal. The overlaps Ik (Figure 5B) between the traces
and the instructive signal are then used to calculate the fixed
point. Figure 5C compares the fixed point weights in both the
linear and circular case, using the same parameters and inputs.
Notice that, due to the lack of periodic boundary conditions, the
linear track fixed point is 0 for D < −0.5s (since the instructive
signal and presynaptic place fields do not have PBC, there are
no presynaptic place fields whose centers are more than 0.5 s
ahead of the instructive signal), while the circular track produces
near symmetrical solutions. It must be noted that for many
cases and a wide range of parameters, the circular track solution
closely matches the linear track solution. In particular, if the time
constant of the traces is shorter than the remaining time of track
traversal, the traces will decay before the track ends, meaning
that the traces will be at or near zero at the start of the next
lap in both the linear and circular case. As a result, the biggest
differences between the circular and linear track fixed points
occur for traces/instructive signals near the boundaries of the
track, and/or when the trace time constants are long relative to
the traversal time of the track.

2.5. Non-linear Trace Activation
A furthermodification can bemade to the circular trackmodel by
assuming a non-linear response of the traces to presynaptic firing.
The assumption of non-linear activation is used in the model
of Milstein et al. (2020), but is not necessary to model BTSP.
Our model forgoes the need for this non-linearity, allowing for
simpler equations and improved analytical tractability. Still, here
we present an example of our model with the assumption of non-
linear traces to show such an assumption is also compatible. Here
we assume that instead of the presynaptic firing rate R, directly
activating the traces, this activation is non-linearly filtered though
a function Fk(R) where the index k can take the values p or d
indicating a possibly different non-linearity for LTP and LTD
traces. Thus the trace activation equation now takes the form:
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FIGURE 6 | Place fields with non-linear traces. (A) In an example non-linear case, the effective presynaptic activity profiles that drive LTP and LTD traces are different.

Here the LTD traces are driven by the linear RF as above (black) but LTP traces are driven by a non-linear modification of the RF (dashed-red). (B) LTP (blue) and LTD

(orange) traces in the non-linear case. The instructive signal in dashed green. (C) The resulting fixed point of the weight vector. Results here are for V = 0.15 m/s.

dTk
i

dt
=

[

−(Tk
i − Tk

0)+ ηkFk
(

Ri(v · t)
)

(Tk
max − Tk

i )
]

/τ k. (15)

For simplicity we have chosen a thresholded linear form: Fk(x) =
Ck[x − θk]+. Practically it implies that the LTP and LTD traces
see different effective presynaptic receptive fields, and aside from
that, all the previous analysis still holds. Solutions with non-linear
traces on a circular track are shown in Figure 6. In Figure 6A, we
show the effective receptive fields for the LTP trace (dashed red)
and LTD trace (black) respectively. Apart from the non-linearity,
in this example, the parameters of the LTP and LTD traces
are identical. The narrower LTP effective place field generates
a narrower LTP trace, which allows for a selective receptive
field (Figure 6C), despite the parameters of both traces being
the same.

2.6. Velocity Dependence
Until now, we have only shown results for one fixed running
speed, but the shape of the resulting place fields depends on the
velocity of the animal on the track during the induction phase.
Figure 7A shows how the shape and selectivity of place fields
depends on velocity, for a given set of parameters on a circular
track. We also demonstrate the velocity dependence for a linear
track in Figure 7B. In Figure 7C we show that for a circular
track, the width of the place field monotonically increases, within
a large velocity range, as the velocity of the animal increases.
These results are consistent with experimental results, which
show that as the velocity increases, the width of the resulting
place field increases and its selectivity decreases (Bittner et al.,
2017). However, our model also predicts that the amplitude
of the learned place fields decreases as a function of velocity.
Qualitatively similar results are obtained for other parameter
sets, and for non-linear traces. After induction, in the absence
of an instructive signal, the place fields retain their size and are
independent of velocity.

Note that the fixed point of W here is plotted against Dx =

v(tp − t0), (which is simply D multiplied by the velocity), so that
we can compare the resulting place fields at the same positions.

While at every velocity there is a single fixed point curve,
experimentally we might not reach the fixed points because the
convergence time might be large.

2.7. Convergence Time
The fixed point of the learning rule produces a single place
field centered at the location of the induced plateau potential,
regardless of pre-existing place fields before learning. However,
our model predicts that the rate at which learning converges
depends on D—the larger absolute value of D, the longer the
convergence time. This effect is present for both the potentiation
of new place fields and the depression of old place fields.
Figure 8A shows the simulated convergence of the weights
toward their fixed points as a function of trial number and D,
given zero initial weights.

To predict the convergence time analytically, we use the
approximation that W does not change significantly during a
single trial, and take the integral over a single trial as in Equation
(8) in order to rewrite the dynamics of Equation (6) over trials as:

δW = Ip −W(Ip + Id) (16)

where Ip and Id are defined as in Equation (8), and the notation
δ is used instead of the temporal derivative to indicate that this is
the change over the whole trial.

Explicitly, the solution to Equation (16) is:

W(t) =
Ip

Ip + Id
(1− e−(Ip+Id)t) (17)

Though the assumption made in order to reach this equation
(that W does not change much within each trial) is not
guaranteed to be a good approximation in all cases, the weights
do change slowly within each trial (a) when they are close to their
fixed point, and (b), when they are far from D = 0. Therefore,
in these cases Equation (17) is a reasonable estimate of the
weight dynamics, and τw = 1

Ip+Id
is a good approximation of

a convergence time constant.
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FIGURE 7 | The dependence of place field shape on velocity during induction. (A) Fixed points of the ramp amplitude as a function of Dx for differing movement

velocities, circular track. Inset: velocities during induction, in m/s. (B) Same as (A), but for a linear track. The lack of periodic boundary conditions introduces some

asymmetry in the fixed point ramp amplitudes. (C) The dependence of the half width of the weights at fixed-point on the travel velocity during induction along a circular

track. The green and orange symbols are for left and right widths, respectively.

FIGURE 8 | Convergence to solutions. (A) The relative distance to the fixed point (Wfixed−W
Wfixed

) as a function of D and trial number, shown as logarithmic heatmap. (B)

The convergence time, τw (blue), and the number of simulated trials to reach Wfixed

e
away from the fixed point (orange) as a function of D (in seconds). Notably, in both

cases the convergence time rises steeply beyond a certain value of D. Both cases start from the initial condition Wi = 0.

Simulations show that the analytically predicted convergence
time is closely related to the number of trials it actually takes for
the simulated weights to reach 1

e away from the fixed point value

of
Ip

Ip+Id
(Figure 8B) when starting from zero initial weights.

Notably, the convergence time steeply rises for large absolute D,
such that it takes around 3–5 times as many trials to converge for
|D = 8| s as it does forD = 0 s. For even larger D, τw can become
prohibitively long—we predict that the output could effectively
maintain two place fields for long periods of time, provided they
are far enough apart from each other, as the old place field will
depress incredibly slowly.

2.8. Analytical Solution for Rectangular
Place Fields
The numerical integrals needed to find the traces Tk

i , and

their overlaps with the instructive signals, Iki can in some cases

be solved analytically. A simple example is when presynaptic
receptive fields are rectangular. We examine that case here,
assuming that the input place fields start at t1 and end at t2, with
an amplitude of α. In terms of the position variable these start at
vt1 and end at vt2. Formally the place field has the form:

R(t) =







0 : t ≤ t1
α : t1 < t < t2
0 : t ≥ t2

(18)

Using this simple form of R(t), we can explicitly solve Tk
i and

therefore Iki (D) (Equation 8), in the case of the linear track. By
performing these calculations (see Appendix), we arrive at the

fixed point Wi =
I
p
i

I
p
i +Idi

. The final analytical form of the fixed

point depends on the activation rate (η), saturation values (Tk
max)

and time constants (τ k) of the traces, the location (t1 and t2)
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FIGURE 9 | Analytical solutions for a rectangular receptive field. (A) Ip, Id , and (B) Wfixed as a function of D. Here, the LTD trace has a basal level Td0 , which creates an

additional overlap γTd0 τI (1− e
tP−tt rial

τI ) (see Appendix). The resulting fixed point is nearly symmetrical around D = 0, and its properties can be modified via the model

parameters. The track is linear, and the parameters used for the figure are as follows: τp = 500 ms, τd = 1,500 ms, ηp = 0.25, ηd = 200, T
p
max = 2.2, Tdmax = 2.0, T

p
0

= 0, Td0 = 1.5.

and amplitude (α) of the receptive field, location (t0) and time
constant (τp) of the instructive signal, and on the duration of
the lap ttrial. We also include in this analysis a basal level of LTD
(Td

0 ), which smooths over some of the artifacts of the rectangular
input place field, and makes the solution more similar to the
solutions with Gaussian input place fields demonstrated above.
Figure 9 shows the results of the analytical solution. The fixed
points found analytically match those found via simulations (and
those found via numerical methods), given the same input PF and
same parameters are used in both cases (Figure 9B).

3. DISCUSSION

Synaptic plasticity that operates on behavioral time scales has
been shown to determine place field plasticity in CA1 neurons.
The underlying structure of such plasticity is significantly
different than the commonly studied Hebbian forms of plasticity
that assume near temporal coincidence of pre- and postsynaptic
activity. Experimental results in CA1 using both in vivo and slice
preparations strongly suggest that presynaptic activity generates
synaptic eligibility traces for both LTP and LTD (Bittner et al.,
2017;McKenzie et al., 2019). Prior modeling work (Milstein et al.,
2020) shows, using simulations, that these two opposing traces,
combined with a weight dependence can account for the place
field plasticity observed in vivo.

Here we proposed a simple formulation for two-factor
plasticity (Frrémaux and Gerstner, 2016) that depends on
eligibility traces for both LTP and LTD, an instructive signal
and weight dependence. We have shown that this rule can
be mathematically analyzed to yield a simple expression for
the fixed points of these place fields. These results show that
place fields can have spatial selectivity only if the traces have
essentially different temporal dynamics, or if they are induced
non-linearly, and with different non-linearities. Such results are
general, beyond the specific shapes of presynaptic place fields
and the model’s parameters. The general rule in both cases is

that for obtaining selective place fields, the overlap between
the LTD trace and the instructive signal should have a broader
shape than the overlap between the LTP trace and the instructive
signal; the more pronounced this difference, the sharper the
place field. By assuming specific shapes of presynaptic activity
and of the instructive signal, we can calculate exactly the shape
of the learned postsynaptic place fields at steady state and can
estimate the local convergence rate to these shapes. We also used
simulation to validate the analytical results, and predicted that the
convergence of place fields is rapid for small D, and slower for
larger D. The dependence of the convergence rate on the value
of D is also consistent with the analytical results. In the case of
a rectangular presynaptic place field a fully analytical solution
is obtained.

The shape of the postsynaptic place field at steady state
depends on many of the system parameters and assumptions,
such as the shape of the presynaptic place field and the parameters
that determine the dynamics of the traces or the instructive
signal. One additional parameter that significantly affects the
shape of the place field is the animal’s velocity during induction.
If the animal moves through space slowly, place fields are more
local and selective, while a fast velocity results in non-local
and broad place fields. However, after induction, when there
is no instructive signal, velocity does not effect the size of the
place field. The velocity dependence of place field width is a
general phenomenon, that does not depend on a narrow set
of parameters, and is in agreement with experimental results
(Bittner et al., 2017). Our model additionally predicts that place
field amplitude will decrease as a function of velocity during
induction laps.

We have also predicted that the weakening of prior place fields
in old locations will be significantly slower than the strengthening
of the previously weak efficacies in the new location. The
determining factor for this rate of change is the overlap between
both eligibility traces and the instructive signal. Locations near
the peak of the instructive signal are the ones that get enhanced,
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as in such locations there is a maximal overlap between the traces
and the instructive signal, and therefore a fast convergence rate.
This potentiation convergence rate is effectively one- or two-
shot learning (Figure 4A). On the other hand, locations which
might have strong initial weights but are far from the instructive
signal get weakened. For such signals the overlap between the
instructive signal and both traces is much smaller and therefore
the convergence to the fixed point is also much slower. This slow
depression enables the existence of multimodal place fields for
a small number of intermediate trials, which can be observed in
Milstein et al. (2020) (see their Figures 1A,G). We predict that
such multimodal place fields will be more prevalent, and last for
more trials for large |D|.

In this formulation we have assumed that the synaptic efficacy
dynamics are weight dependent. Such weight dependence can
arise from an assumption of a conserved quantity, for example a
conserved number of receptors in the membrane and an internal
synaptic store. This assumption is also motivated by a previous
weight dependent model, that compares well with experimental
results (Milstein et al., 2020). The existence of fixed points in our
model, and their shape critically depends on this assumption.

In our solution we assume that the animal’s velocity is constant
throughout, though in a real environment this is not the case.
Animals change their running speed as they traverse the track,
speeding up and slowing down and even sometimes stopping
to eat. Such varying velocity implies that there is no true
fixed point with this model, and that the place fields fluctuate
around some mean fixed point. For a changing velocity, one
can perform simulations using experimentally obtained velocity
profiles instead of an analytical solution (Bittner et al., 2017).
Such results are more biologically realistic but are much more
complex and offer less intuition. It is feasible that using the
animal’s velocity statistics, the mean around which the place
fields fluctuate, the variance with which they fluctuate, etc. can
be estimated.

The inclusion of eligibility traces in our learning rule is
essential, as it allows the model to associate activity with
temporally distal instructive signals and thereby solve the
temporal credit assignment problem. Traditional models of
learning such as Hebbian plasticity or STDP are insufficient
to describe plasticity which occurs on behavioral time scales,
as they are restricted to learning tight temporal correlations
of activity. Modifications to STDP which attempt to learn
associations between stimuli that are seconds apart rely on other
factors to bridge this temporal gap, such as having the stimuli
themselves decay with a seconds long time constant (Drew and
Abbott, 2006). Previous characterizations of eligibility traces have

generally depended on both pre- and postsynaptic activity, where
the conversion of traces to actual synaptic efficacies depended
on a third factor such as a reward signal (Gavornik et al.,

2009; Gavornik and Shouval, 2011; Yagishita et al., 2014; He
et al., 2015; Frrémaux and Gerstner, 2016; Huertas et al., 2016).
In contrast, the model presented here is essentially a two-
factor rule, in which traces depend only on presynaptic activity,
and weight changes depend on both traces and the instructive
signal. Indeed, previous work has shown that experimentally
observed behavioral timescale synaptic plasticity in CA1 is
in fact inconsistent with three-factor rules which depend on
synchronous pre- and postsynaptic activity (Milstein et al., 2020).
The observation that place field plasticity in CA1 neurons can be
described by a two-factor rule actually makes its analysis simpler,
enabling the detailed results found here. In other systems,
such as sensory systems (for which previous eligibility trace
theories were developed), the aim is to alter the dynamics of a
recurrent network, so for such models three-factor might indeed
be necessary (Gavornik et al., 2009; He et al., 2015; Huertas
et al., 2016). Regardless, both two- and three-factor eligibility
trace models provide a simple and mathematically tractable
explanation for learning that occurs on behavioral time scales.
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