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Simple Summary: To maintain the uniqueness of conserved chicken populations of local and
imported breeds is of great importance. In this study, we genotyped small populations belonging to
14 breeds and 7 crossbreds using an Illumina Chicken 60K SNP (Single Nucleotide Polymorphisms)
BeadChip and looked for appropriate methods to characterize their purity/variability. It was not
straightforward to identify crossbred individuals, and the best approach was based on calculating
the length and number of homozygous regions, or runs of homozygosity (ROH), in the populations
studied. The latter enabled most accurate identification of crossbreds and can be served as an effective
tool in testing genome-wide purity of chicken breeds.

Abstract: Preserving breed uniqueness and purity is vitally important in developing conservation/breeding
programs for a germplasm collection of rare and endangered chicken breeds. The present study
was aimed at analyzing SNP genetic variability of 21 small local and imported purebred and F1

crossbred populations and identifying crossbreeding events via whole-genome evaluation of runs
of homozygosity (ROH). The admixture models more efficiently reflected population structure,
pinpointing crossbreeding events in the presence of ancestral populations but not in their absence.
Multidimensional scaling and FST-based analyses did not discriminate properly between purebred
populations and F1 crossbreds, especially when comparing related breeds. When applying the
ROH-based approach, more and longer ROHs were revealed in purebred individuals/populations,
suggesting this as an effective implement in genome-wide analysis of germplasm breed purity.

Keywords: chicken breeds; germplasm conservation; SNPs; runs of homozygosity; linkage disequilibrium

1. Introduction

Assessment of the genome-wide diversity plays a significant role in conserving local and imported
genetic resources and maintaining an effective program for breeding commercial populations (e.g., [1–3]).
Previously, in the framework of a poultry germplasm conservation and utilization research project,
we assessed a broad spectrum of the world’s chicken germplasm populations for genetic variation at
economically important loci [4,5] and multiple single nucleotide polymorphisms (SNP) loci [6–9].

A comparative genetic evaluation of livestock populations of different origin, population history,
and size is an important source of information for genetic changes in their genome, including degree
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of homozygosity across genome-wide regions [2,3,10]. This is especially desirable when breeding
small conserved groups and evaluating crossbreeding/inbreeding effects [11,12]. Lengths of runs of
homozygosity (ROH) in the genome of a particular animal eventually depend on selection, gene drift,
and herd size in original population [12], and are useful for assessing information about the degree of
inbreeding. Long ROHs are typical for inbred individuals, as haplotypes inherited from a common
ancestor do not shorten during recombination. In contrast, short ROHs can inform studies of less
pronounced inbreeding intrinsic to heterogeneous animals [13–16].

Since relevant ROH studies in small closed populations kept in a germplasm collection of
local, rare, and endangered chicken breeds are missing, the goal of our study was a genome-wide
evaluation of SNP genetic diversity in these populations, and a search for criteria to identify occasional
hybridization events in population history in order to control breed purity. Herewith we investigated
ROHs and linkage disequilibrium (LD) and hypothesized that, when monitoring intra-breed genetic
structure, small purebred populations would have more and longer ROHs compared to F1 crossbreds,
which could be served as a marker to detect potential occasional hybridization events.

2. Materials and Methods

For this study, SNP genotypes of 673 birds were obtained for the following 21 small populations
of local and imported breeds that represent a broad sample of the world’s chicken germplasm and are
maintained at the RRIFAGB Collective Use Centre ‘Genetic Collection of Rare and Endangered Chicken
Breeds’. These included 14 purebred populations: Amroks Cuckoo (A), Brahma Buff (BB), Brahma
Light (BL), Bantam Mille Fleur (or Russian Korolyok) (BMF), White Cornish (C; two-way hybrid C1
bred inter se), Frizzle (F), Hamburg Silver Spangled Dwarf (HSSD), Leghorn Light Brown (or Italian
Partridge) (LLB), Pushkin (P), Russian White (two populations, RW1 and RW2), Sussex Light (SL),
Tsarskoye Selo (or Tsarskoselkaya) (TC), Uzbek Game (UG); and 7 groups of F1 crossbred progeny:
Brahma Light × Sussex Light (BL × SL), Sussex Light × Amroks Cuckoo (SL × A), Tsarskoye Selo ×
Sussex Light (TC × SL), Uzbek Game × Amroks Cuckoo (UG × A), White Cornish × (Brahma Light ×
Sussex) (C × BL × SL), White Cornish × (Sussex × Amroks Cuckoo) (C × SL × A), and Tsarskoye Selo ×
(Sussex Light × Amroks Cuckoo) (TC × SL × A) as shown in Table 1.

In each population, both hens and cocks were genotyped using Illumina Chicken 60K SNP
BeadChip (Illumina, USA) as performed with the assistance of the Geneseek/Neogen Corporation.
SNPs were filtered and removed from the further analysis if they met the following criteria:
minor allele frequency ≤0.05, Hardy–Weinberg equilibrium probability ≤1 × 10−4, and call rate ≤95%.
After completing the quality control procedures, 44,230 SNP markers from 28 autosomes were available
for further analysis.

LD (or r2) coefficients were calculated using the following formula in PLINK 1.9 software [17]:

r2 =
( f11 f22 − f12 f21)

2

f A1 f A2 f B1 f B2
(1)

where A and B are two loci each containing two alleles A1 and A2, and B1 and B2; f 11, f 12, f 21 and f 22

are the frequencies of haplotypes A1B1, A1B2, A2B1 and A2B2, respectively; and f A1, f A2, f B1 and f B2

are the frequencies of alleles A1, A2, B1 and B2, respectively.
Search for homozygous regions was carried out using the PLINK 1.9 program according to the

following algorithm: ROHs containing at least 100 SNPs and a total length of ≥1000 Kb were taken
into account, each ROH having had at least one SNP per 50 Kb. The scan window contained 50 SNPs
and no more than 1 heterozygous genotype.
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Table 1. Runs of homozygosity (ROH)-based metrics and linkage disequilibrium (LD) values in the 21 purebred and F1 crossbred chicken populations studied.

Population Abbreviation
Code

Origin Type Sample
Size

Number of ROHs per Individual Length of ROH, Kb
FROH

1 LD
Mean Minimum Maximum Mean Minimum Maximum

Pure breeds
Amroks Cuckoo A USA dual purpose 20 18.9 ± 1.5 3 31 4057.2 ± 198.8 2308.9 5998.3 0.105 ± 0.009 0.187 ± 0.001

Brahma Buff BB India, USA fancy, meat 20 36.6 ± 2.1 24 56 4508.4 ± 194.7 3116.2 6347.6 0.167 ± 0.015 0.283 ± 0.001
Brahma Light BL “ 2 “ 20 37.4 ± 3.0 10 56 5259.3 ± 193.4 3772.7 6916.0 0.203 ± 0.017 0.286 ± 0.001

Bantam Mille Fleur
(or Russian Korolyok) BMF Russia fancy 20 61.2 ± 2.1 31 78 5259.0 ± 234.0 4043.3 8082.3 0.291 ± 0.015 0.374 ± 0.001

White Cornish (two-way
hybrid C1 bred inter se) C England meat 20 40.4 ± 1.1 33 52 3609.8 ± 80.7 3105.0 4494.0 0.055 ± 0.007 0.155 ± 0.001

Frizzle F Asia, Europe fancy 20 5.9 ± 0.1 1 20 3149.0 ± 234.1 1394.6 6322.4 0.023 ± 0.005 0.171 ± 0.0003
Hamburg Silver Spangled

Dwarf HSSD Holland “ 20 63.9 ± 1.5 42 76 5735.0 ± 164.2 4672.2 7311.6 0.324 ± 0.011 0.438 ± 0.001

Light Brown Leghorn
(or Italian Partridge) LLB Italy egg 19 47.5 ± 2.3 26 62 3903.8 ± 137.7 2949.8 5033.0 0.167 ± 0.011 0.288 ± 0.001

Pushkin P Pushkin,
USSR/Russia dual purpose 20 23.8 ± 1.3 15 36 3889.4 ± 209.7 2449.5 5569.3 0.112 ± 0.009 0.232 ± 0.001

Russian White RW1 Pushkin, Russia egg 6 68.3 ± 2.0 62 76 5121.9 ± 278.3 4279.8 5850.7 0.307 ± 0.014 0.518 ± 0.001
Russian White RW2 “ “ 170 25.9 ± 1.1 16 36 3749.6 ± 111.3 2431.3 4737.0 0.083 ± 0.006 0.218 ± 0.001
Sussex Light SL England dual purpose 20 23.1 ± 1.5 11 35 4075.4 ± 155.8 3030.5 5773.5 0.127 ± 0.003 0.263 ± 0.001
Tsarskoe Selo

(Tsarskoselskaya) TC Pushkin, Russia “ 20 18.6 ± 1.2 8 30 4098.5 ± 193.1 2765.8 6303.2 0.102 ± 0.009 0.201 ± 0.001

Uzbek Game UG Uzbekistan game 19 9.0 ± 1.3 0 21 3838.4 ± 349.5 0 6215.3 0.095 ± 0.007 0.178 ± 0.001

F1 crossbreds
Brahma Light × Sussex Light BL × SL Pushkin, Russia meat 12 4.3 ± 0.5 1 7 3602.2 ± 378.5 2347.8 7266.8 0.051 ± 0.008 0.215 ± 0.001

Sussex Light × Amroks
Cuckoo SL × A “ “ 14 2.2 ± 0.3 0 5 2905.1 ± 291.9 0 5126.7 0.033 ± 0.008 0.188 ± 0.001

Tsarskoye Selo × Sussex Light TC × SL “ “ 14 6.0 ± 0.7 3 10 3032.8 ± 188.2 2050.0 4181.1 0.040 ± 0.009 0.215 ± 0.001
Uzbek Game × Amroks

Cuckoo UG × A “ “ 14 4.9 ± 0.4 3 8 3023.5 ± 170.8 2062.4 4098.3 0.039 ± 0.008 0.206 ± 0.001

White Cornish × (Brahma
Light × Sussex Light) C × BL × SL “ “ 14 0.9 ± 0.3 0 3 1622.8 ± 457.5 0 4427.7 0.024 ± 0.008 0.206 ± 0.001

White Cornish × (Sussex Light
× Amroks Cuckoo) C × SL × A “ “ 14 1.4 ± 0.4 0 4 1840.6 ± 425.2 0 4641.6 0.033 ± 0.008 0.193 ± 0.001

Tsarskoye Selo × (Sussex Light
× Amroks Cuckoo) TC × SL × A “ “ 14 3.8 ± 0.6 0 8 2715.2 ± 383.2 0 5410.2 0.046 ± 0.008 0.195 ± 0.001

1 FROH, ROH-based inbreeding coefficient; 2 As above.
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Values of ROH-based inbreeding coefficients (FROH) were found using the following formula [18]:

FROH =

∑
k length(ROHk)

L
(2)

where k is the number of ROHs, length (ROHk) is an individual ROH region length, and L is autosomal
genome size covered by SNPs.

Population variability of SNP markers in purebred and F1 crossbred populations was estimated in
the admixture 1.3.0 program [19]. To compute the maximum likelihood estimates, the most probable
number of ancestral populations (K) was selected using genotype data from 44,230 SNPs. For this
purpose, a cross-validation procedure was performed. The lowest cross-validation error was found at
K = 10, and charts were plotted using the function barplot() in R [20].

Multidimensional scaling (MDS) was performed in Plink 1.9 software [21] using a matrix of
identity by state (IBS) distances between samples. To eliminate the effect of individual’s sex on IBS
distances, SNP markers located on the sex chromosomes were excluded from the MDS analysis and,
therefore, genotype data from 44,230 autosomal SNPs were employed.

Additionally, to assess between population diversity, Wright’s [22] fixation index (FST) values
were computed using eigensoft 6.1.4 software [23]. Phylogeny tree was plotted using Neighbor Joining
algorithm in PHYLIP (PHYLogeny Inference Package) [24] and Interactive Tree Of Life (iTOL v4) [25].

3. Results and Discussion

Using whole-genome SNP genotyping, we found that the examined populations of local and
imported chicken breeds significantly differed from each other in genetic architecture and total length
of ROHs (Figure 1). Most conserved purebred populations had greater numbers of ROHs and longer
ROHs as well as higher ROH-based inbreeding coefficients (FROH) than F1 inter-breed crossbreds
produced by crossing two or three breeds (Table 1). For example, HSSD, an old Dutch breed that
underwent a strict intra-breed type of breeding, was characterized by a greater number of ROHs
(63.9 ± 1.5 vs. 32.0 ± 5.2 averaged across other 13 breed populations) and a greater length of ROH
(5735.0 ± 164.2 Kb vs. an average of 4193.8 ± 182.7 Kb), with the inbreeding coefficient FROH being the
highest one (0.324 ± 0.011 vs. an average of 0.141 ± 0.023; Table 1). All this suggests that this breed and
its particular small population were affected by inbreeding both in earlier times and more recently.
The presence of SNPs with higher rates of LD (0.438 ± 0.001; Table 1) also testifies to inbreeding effects
in this population.

There were other small closed purebred populations with a higher content of ROHs in their
genome, e.g., BB (FROH = 0.167 ± 0.015), BMF (FROH = 0.291 ± 0.015), etc. (Table 1). Among these,
we found an exception with FROH = 0.023 ± 0.005 in the decorative F breed known in Europe since
1676 and characterized by a specific structure of feathers due to the F (frizzling) gene. A lower content
of ROHs in this breed population can be associated with a targeted introgression of genes of the other
breeds to reduce the effect of feather fragility as reflected by the admixture analysis (Figure 2).

The original Russian White population (RW1) existed from 1953–2003, had one founder and
underwent intensive selection for chick tolerance to cold [7,26]. In 2005, in order to maintain genetic
diversity in a small population of this breed, a single introductory crossing with White Leghorns
resulted in producing the present population RW2. Accordingly, we observed a higher FROH in RW1
(0.307 ± 0.014) and a lower one in RW2 (0.083 ± 0.006; p < 0.0001; Table 1). Also, these two populations
differed in LD, with a lower value being in RW2 as compared to RW1 (p < 0.0001; Table 1). Despite a
relatively small size (~200 animals), RW2 is not expected to raise homozygosity because of the previous
crossing with White Leghorns that was likely to significantly increase its genetic diversity.

In two-breed F1 crossbreds, we revealed a decrease in ROH metrics, while three-breed F1 crossbreds
appeared to show a further lowering in their genomic content of ROH (Table 1).
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Number of ROHs could reflect the type of breeding program. Small local and imported conserved
populations bred inter se had a greater (>20) number of ROHs (e.g., BMF, BB, BL, RW1 and C), meaning a
reduced genetic diversity similar to what was shown in small livestock populations kept by individual
breeders or in local breeds [2,27–31]. In contrast, the genomes of two- and three-breed F1 crossbred
progenies contained a lesser (<6) number of ROHs (Table 1; Figure 1), which was consistent with lower
ROH metrics observed in other studies on crossbred animals (e.g., [3,32]).

Characterization of genetic differentiation in conserved populations of local and imported breeds
and monitoring of their purity/variability are an important component of breeding/conservation
programs [1,2]. In the presence of ancestral purebred populations, use of the admixture program
effectively detects F1 crossbred progenies (Figure 2). However, in the absence of ancestral populations,
it is difficult to determine whether it is an F1 crossbred progeny or a purebred population (data not
shown). If data on the origin are not taken into account, F1 crossbred progenies are difficult to identify.
In contrast, when conventional MDS and FST-based analyses (Figure 3a,b) are performed, one cannot
always describe properly the population structure, differentiation, and gene flow due to crossbreeding,
especially when comparing related breeds.
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Figure 3. Distribution of the 21 chicken populations studied on the basis of genotype data from
44,230 SNPs and values of (a) identity by state (IBS) matrix (Multidimensional scaling (MDS) plot using
the first two principal components, c1 and c2) and (b) FST matrix (Neighbor Joining tree) that did not
clearly discriminate between purebred and F1 crossbred populations. Abbreviations of all populations
are given in Materials and Methods. There are many chicken breeds/populations in the world that
could be similar in phenotype, but different in origin. This may cause a problem of identification and
discrimination between breeds/populations, which can be solved with a high accuracy by comparing
them against the available global database of SNP genotypes. The differentiation of individuals and their
affiliation to a certain population or populations can be assessed using the MDS method. The accuracy of
this analysis is significantly affected by the genetic background of populations selected for comparison,
the breeding history of populations, and their effective population size. Therefore, there may be a bias
in the assessment or false conclusions. For example, the distribution of F1 crossbreds in Figure 3a
does not directly reflect their origin. The tree topology based on FST analysis (Figure 3b) also does not
clearly suggest the original breeds used for producing F1 crossbreds.
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4. Conclusions

Exploration of the length and number of ROHs can be helpful in discriminating between purebred
and F1 crossbred animals, and this approach can be used as a tool in selecting purebred individuals for
conserved propagation of local and imported breeds. ROH-based characterization in individuals and
in the whole population can be used in adjusting germplasm breeding/conservation programs and
identifying events of inter-breed gene transfer.
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