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Abstract

MicroRNAs are considered as promising prognostic and diagnostic biomarkers of human

cancer since their profiles differ between tumor types. Most of the tumor profiling studies

were performed on rarely available fresh frozen (FF) samples. Alternatively, archived forma-

lin-fixed paraffin-embedded (FFPE) tissue samples are also well applicable to larger-scale

retrospective miRNA profiling studies. The aim of this study was to perform systematic com-

parison of the miRNA expression profiles between FF and macrodissected FFPE tonsillar

tumors using the TaqMan Low Density Array system, with the data processed by different

software programs and two types of normalization methods. We observed a marked correla-

tion between the miRNA expression profiles of paired FF and FFPE samples; however, only

27-38% of the differentially deregulated miRNAs overlapped between the two source sys-

tems. The comparison of the results with regard to the distinct modes of data normalization

revealed an overlap in 58–67% of differentially expressed miRNAs, with no influence of the

choice of software platform. Our study highlights the fact that for an accurate comparison of

the miRNA expression profiles from published studies, it is important to use the same type

of clinical material and to test and select the best-performing normalization method for data

analysis.

Introduction

MicroRNAs (miRNAs) are small non coding RNAs (~21 nucleotides) which play an important

role in post-trancriptional regulation of gene expression. Their binding with perfect or imper-

fect complementarity to the 3´ untranslated region of the target mRNA leads either to mRNA

cleavage and degradation or to inhibition of mRNA translation [1]. Of interest, Ørom et al.

also reported an association of miRNA with the 5´ untranslated region which resulted in the

activation of gene expression [2, 3]. MiRNAs are involved in many biological processes such as
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cellular development, proliferation, differentiation, survival or regulation of apoptosis. The

expression of miRNAs is deregulated in human cancer. It has been reported that they can act

as tumor suppressors or oncogenes based on their targets. The miRNA expression profiles are

specific for malignant and non-malignant tissues, and it has been shown the miRNA profiles

differ across tumor types [4]. Many studies focused on the miRNA profiling of tumor types of

different origin have been published since miRNAs are considered as promising prognostic

and diagnostic biomarkers of human cancer [5–7].

Most of the miRNA profiling studies of tumors were at first performed on the fresh frozen

samples (FF) where the RNA is well preserved. However, this type of clinical material is rarely

available. The disadvantage of formalin fixation is that it preserves the tissue by creating cross-

links between all tissue and molecular components, and these modifications can cause the

fragmentation of RNA [8]. However, contrary to mRNA, the stability of miRNAs is not influ-

enced by formalin fixation, probably due to their small size and secondary structure [8–10].

Archived material, formalin-fixed paraffin-embedded tissue samples (FFPE), has proven

usable for miRNA analyses and allows for retrospective large studies where the results can be

correlated with clinical parameters and prognosis of patients.

Numerous studies have shown the tissue specific expression profiles as well as the differ-

ences in the abundantly expressed miRNAs in different types of tumors. However, the overlap

of the lists of tumor specific miRNAs is, for most cancer types, poor. Several reasons can

explain the discrepant data. One of them can be the use of different types of clinical material or

of different methodological approaches.

In our previously published study [11], we found that the tumor homogeneity is important

for the robustness of miRNA expression studies, especially in head and neck tumors which are

very heterogeneous. Therefore, macrodissection of the FFPE samples provides benefit by

increasing the homogeneity of the analyzed samples. To evaluate our previous data on FF

HNC samples, we analyzed paired FF and macrodissected FFPE samples for the abundantly

expressed miRNAs and the level of concordance in the profiles.

Few studies comparing miRNA expression in FF and FFPE paired samples have been pub-

lished [12–14]. In the majority of microarray studies, good correlation of results was revealed

(correlation coefficient up to 0.95), but the studies were either based on small groups of sam-

ples or differed in the workflow. None of these comparative studies has been conducted in

head and neck tumors.

The aims of our study were to perform the miRNA expression profiling in a set of macro-

dissected FFPE samples, to compare the results with the miRNA profiles of paired fresh frozen

tumors, and to assess differences possibly resulting from the use of different normalization

methods and software for data analysis. Finally, from the analyses of FFPE samples, several dif-

ferentially expressed miRNAs were selected for confirmation in a larger set of macrodissected

FFPE tissues.

Materials and methods

Clinical samples

Ten cases of tonsillar tumors and five non-malignant tonsillar tissues were selected for the

comparison of the miRNA expression profiles in fresh frozen and formalin-fixed paraffin

embedded samples. All samples were obtained from patients treated at the Department of Oto-

laryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University and

Motol University Hospital in Prague. Fresh-frozen samples were already used in our recent

study [11]. The signed informed consent form was obtained from all patients enrolled in this

study. The study received official institutional and ethical approval from the Motol University

miRNA expression profiles in clinical samples
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Hospital and Institute of Hematology and Blood Transfusion. The study set was selected based

on the presence of HPV DNA and HPV E6 mRNA we defined in our previous studies [11, 15].

The sampling and tissue handling for FF samples has been described before [11, 15]. Sec-

tions of FF tumor samples were cut on a cryostat, and the number of tumor cells was deter-

mined by a pathologist. All FF samples contained more than 50% of tumor cells. FFPE samples

were macrodissected as described before [11].

Processing of samples

Total RNA from all FF tissues was isolated by the miRVana kit (Life Technologies, USA)

according to the manufacturer’s protocol. Total RNA from FFPE samples was isolated simulta-

neously with DNA from four 10-μm sections enriched for the tumor cells by macrodissection

using the Ambion RecoverAll™ Total Nucleic Acid Isolation kit for FFPE according to the

manufacturer’s protocol (Applied Biosystems, USA). RNA concentration and quality was mea-

sured by a Nanodrop™ Spectrophotometer (Thermo Scientific, USA) and Experion chip elec-

trophoresis (Bio-Rad, USA).

TaqMan Low Density Array (TLDA) analysis

The miRNA expression profiling was performed by the TaqMan1 Array Human MicroRNA A

+B Cards Set v3.0 (Life Technologies, USA) containing a total of 384 miRNA probes and con-

trols per card. Overall, we analyzed 15 FF samples and 15 FFPE samples (five HPV-positive

tumor samples, five HPV-negative tumor samples, and five non-malignant tissues of each mate-

rial). For the analysis of FF samples, 1000 ng of total RNA was used for reverse transcription. In

the case of FFPE samples, the input was 350 ng due to the smaller concentration of extracted

RNA from FFPE samples. Total RNA of each sample was reverse transcribed using the Taq-

Man1 MicroRNA Reverse Transcription Kit and Megaplex™ RT Primers specific for each card

(both Life Technologies, USA) according to the manufacturer’s protocol. The workflow without

preamplification was chosen for both types of material, FF as well as FFPE samples. The TLDA

cards were analyzed on the Applied Biosystems 7900HT Real-Time PCR System.

Data analysis

Each set of samples was evaluated separately, and the results were compared. For data process-

ing and evaluation, we used the SDS 2.4 and the ExpressionSuite v1.0.1 software (Life Technol-

ogies, USA). Ct values identified by automated thresholding were exported separately for cards

A and B, and the RQ (relative quantity) was calculated from the detected Ct values using the

2-Ct formula. Data were further processed by the GeneSpring GX v13.1 software (Agilent),

GenEx v6.1 (MultiD), and MeV v4.9 (TIGR TM4 suite) for comparison. We also applied two

types of data normalization—50th percentile shift and global normalization—to perform

within-sample normalization, globally across the data sets. For comparison of two groups in

censored analyses, the T-test in combination with Pavlidis Template Matching (PTM) algo-

rithm were used. In the comparison of differential abundance of miRNAs in the groups, the

P-value (P<0.05) and fold-change (FC>1.33) were set. Only the miRNAs differentially

expressed in at least 3/5 or 6/10 (60%) samples with measured results were considered for fur-

ther analyses. The correlation was evaluated in the GraphPad InStat 3.0 tool using the Spear-

man nonparametric correlation.

Confirmation of microarray results

Selected miRNAs which were found to be differentially expressed by the microarrays in FFPE

tonsillar tumor samples in comparison to the non-malignant tonsillar tissues were confirmed

miRNA expression profiles in clinical samples
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by the individual RT qPCR using the TaqMan1 MicroRNA Assays (Life Technologies, USA)

as described recently [11]. Total RNA from five FFPE samples of non-malignant tonsils were

used as a calibrator, and RNU48 served as the endogenous control. The data were analyzed in

the GenEx v6.1 (MultiD) software. The 2-ΔΔCt method was used for calculations of the fold

change. The cut-off fold change was set as for the arrays to +/- 1.33 (33% fold change). T-test

or Mann Whitney nonparametric test was applied depending on the data distribution. All

results were statistically significant (P-value�0.05).

Results

The quality and concentration of total RNA was analyzed by a Nanodrop™ Spectrophotometer

and Experion chip electrophoresis. The RNA integrity number (RIN) was higher than seven in

all FF samples. As documented in Fig 1, total RNA isolated from FFPE samples showed charac-

teristic profiles for degraded RNA fragments (RIN in the range 1.9–2.6), but fragments with a

length of around 200 bp were present allowing for a miRNA expression analyses.

Fig 1. Comparison of electropherogram outputs. At the top—ladder, in the middle—fresh frozen sample,

at the bottom—formalin-fixed paraffin-embedded sample. Right—lines from virtual gel.

https://doi.org/10.1371/journal.pone.0179645.g001
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As illustrated by the principal component analysis (PCA) (Fig 2), the miRNA expression

profiles of all samples differ depending on the analyzed type of material (FF vs FFPE) and char-

acteristics of the tissue, tumor vs normal tissue (TT vs NT). The correlation between the

miRNA expression profiles of paired FF and FFPE samples was evaluated using the Spearman

correlation test. The correlation of the expression level for the well characterized miRNAs

located on card A was better (correlation coefficient�0.65 in 7/10 samples (p<0.0001)) in

comparison to all analyzed miRNAs (miRNAs on cards A and B). The exact Spearman correla-

tion values of each comparison and the confidence intervals are summarized in Table 1. The

correlation of paired samples is also visualized in scatter plots (Fig 3). Our assumption that FF

samples with higher percentage of tumor cells would be more likely to give better correlation

of the expression miRNA profiles with FFPE macrodissected samples was not proven. The cor-

relation coefficient of the miRNA expression profiles of FF and FFPE samples was not influ-

enced by the number of tumor cells in the particular FF sample (Table 1).

Differentially expressed miRNAs were identified by the P-value (P<0.05) and fold-change

>1.33 with the 50th percentile shift normalization method using the GeneSpring software. In

our study, macrodissected FFPE samples revealed less differentially expressed miRNAs

(N = 58) than paired fresh frozen tumors (N = 83 miRNAs). When comparing the lists of

deregulated miRNAs between FF and FFPE samples, we detected overlaps in 27-38% (Table 2,

on the left).

To establish how the method used for normalization influences the final results, we applied,

besides the 50th percentile shift normalization, also global normalization for each group of the

analyzed samples. As illustrated in Fig 4 and Table 3, the differentially expressed miRNAs

based on each normalization method overlap in 58–67% for FF and/or FFPE samples. Using

different software and the identical normalization method, almost 90% of the deregulated

miRNAs were concordant between FF and FFPE samples (data not shown).

Fig 2. Principal component analysis plot. Visualization of the miRNA expression in fresh frozen (squares)

and formalin-fixed paraffin-embedded (triangles) samples, as well as miRNA expression separation of tumor

(blue) and non-malignant samples (red).

https://doi.org/10.1371/journal.pone.0179645.g002
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We performed additional analysis and identified 16 miRNAs commonly detected in both

type of material and using both type of normalization (Table 4). These miRNAs were screened

in database miRSearch V3.0 (Exiqon). Most of them have experimentally proved target genes

participating in signaling pathways and cellular processes including not only tumor develop-

ment. Noteworthy, target genes are transcription factors E2F, MAP kinases, members of RAS

protein family, tumor suppressor PTEN, transforming growth factors TGFs, tumor suppressor

TP53, proteins participating in cell cycle (cyclins, cyclin-dependent kinases) or regulating cell

death.

Finally, from the deregulated miRNAs in FFPE samples, we have selected 11 tumor-specific

miRNAs, also with regard to viral or non-viral etiology of the tumor. The expression of these

miRNAs was evaluated in a larger set of 64 macrodissected tumor samples by individual Taq-

Man assays (Fig 5). MiR-106b# and miR-9 were selected as specific for HPV-positive tonsillar

tumors, miR-16, miR-34a, miR-193b, miR-31, miR-221, and miR-21 as specific for HPV-nega-

tive tumors, and miR-155, miR-126, and miR-205 as specific for tonsillar tumors of any etiol-

ogy. The differential expression of six miRNAs (miR-106b#, miR-9, miR-16, miR-34a, miR-

155, and miR-126) (P<0.05; FC>1.33) was confirmed in a larger set of 64 tumor samples, the

fold change of miR-193b was equal to 1.23, but the trend of expression was also maintained.

The trend of expression of four miRNAs (miR-31, miR-221, miR-21, and miR-205) analyzed

in the large set of samples was opposite to that derived from the results revealed by arrays.

Discussion

The archives of formalin-fixed paraffin-embedded material in pathology laboratories offer the

possibility to analyze the samples retrospectively and provide the option for clinical cancer

research to extend the studies, and, moreover, to correlate the results with clinical data

Table 1. Spearman correlation values between miRNA expression profiles of FF and FFPE paired

samples.

Sample R CI tumor cells in FF (%)

FF 102 vs FFPE 58 card A 0,6982 0,6199 to 0,7628 > 50%

card A+B 0,5848 0,5088 to 0,6517

FF 116 vs FFPE 1 card A 0,5194 0,4064 to 0,6167 > 70%

card A+B 0,4642 0,3698 to 0,5491

FF 148 vs FFPE 60 card A 0,7406 0,6757 to 0,7941 > 70%

card A+B 0,6749 0,6150 to 0,7271

FF 161 vs FFPE 13 card A 0,8302 0,7829 to 0,8680 > 60%

card A+B 0,7174 0,6632 to 0,7641

FF 174 vs FFPE 49 card A 0,6378 0,5500 to 0,7117 > 50%

card A+B 0,5748 0,4999 to 0,6412

FF 183 vs FFPE 62 card A 0,6905 0,6098 to 0,7570 70%

card A+B 0,6373 0,5664 to 0,6989

FF 187 vs FFPE 30 card A 0,5879 0,4883 to 0,6724 > 70%

card A+B 0,5152 0,4289 to 0,5922

FF 191 vs FFPE 63 card A 0,7332 0,6648 to 0,7894 > 80%

card A+B 0,6593 0,5959 to 0,7145

FF 137 vs FFPE 6 card A 0,7914 0,7363 to 0,8360 90%

card A+B 0,7361 0,6828 to 0,7816

FF 224 vs FFPE 22 card A 0,7371 0,6697 to 0,7925 80%

card A+B 0,7124 0,6571 to 0,7601

https://doi.org/10.1371/journal.pone.0179645.t001
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obtained during long-term follow-up of patients. The utilization of FFPE material for RNA

based studies is still challenging, especially due to RNA fragmentation. However, the small

size of miRNAs contributes to their stability during the processing of FFPE samples [9] so

that FFPE tissues are applicable for miRNA expression analysis studies as previously shown

[16–19]. Chatterjee et al. have presented a cross comparison of miRNA detection technologies

in FFPE samples and revealed that it is possible to obtain high quality sequence reads for

miRNA profiling in FFPE samples with an RNA integrity number around 2 [20].

In our study, we performed the miRNA expression profiling by TLDA analysis in a set of

macrodissected FFPE samples and compared the results with the miRNA expression profiles

of paired fresh frozen samples. Most studies comparing the miRNA expression between FF

and FFPE samples were performed using only several selected miRNAs [21–25].

A comparison of the miRNA expression profiles in FF and FFPE samples obtained by the

microarray analysis has also been published. Romero-Cordoba et al. have performed a com-

parative analysis of paired samples of breast cancer using the TaqMan Low Density Array plat-

form, similarly to Hui et al. [12, 14]. They revealed a high correlation; however, both studies

analyzed small groups of paired samples and did not use dissected samples. Goswami et al.

have also observed a high correlation between the samples; however, their workflow differed

Fig 3. Correlation of paired samples visualized on scatterplots. Scatter plots of the normalized RQ values in pair-wise comparison from

fresh-frozen (FF) and formalin-fixed paraffin embedded (FFPE) samples.

https://doi.org/10.1371/journal.pone.0179645.g003
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Table 2. Differentially expressed miRNAs detected in tonsillar tumors versus non-malignant tonsillar tissue. The overlap between FF vs FFPE mate-

rial is highlighted in green. On the left—results using 50th percentile shift normalization for data analysis. On the right—results using global normalization for

data analysis. FC—fold change.

50th percentile shift normalization global normalization

FF FFPE FF FFPE

TTall vs NT TTall vs NT

miRNA FC miRNA FC miRNA FC miRNA FC

hsa-miR-101-002253 -2.87 hsa-miR-101-002253 -8.70 hsa-let-7g-002282 -1.85 hsa-let-7g-002282 -2.57

hsa-miR-126#-000451 -2.29 hsa-miR-126#-000451 -8.27 hsa-miR-126#-000451 -1.85 hsa-miR-126#-000451 -4.28

hsa-miR-130b-000456 1.86 hsa-miR-130b-000456 3.42 hsa-miR-140-3p-002234 -2.10 hsa-miR-140-3p-002234 -4.50

hsa-miR-140-3p-002234 -2.42 hsa-miR-140-3p-002234 -4.15 hsa-miR-141-000463 4.71 hsa-miR-141-000463 3.85

hsa-miR-141-000463 4.04 hsa-miR-141-000463 2.67 hsa-miR-143-002249 -2.14 hsa-miR-143-002249 -1.68

hsa-miR-142-3p-000464 -3.85 hsa-miR-142-3p-000464 -8.79 hsa-miR-144#-002148 -4.52 hsa-miR-144#-002148 -2.95

hsa-miR-143-002249 -2.02 hsa-miR-143-002249 -2.89 hsa-miR-184-000485 -6.15 hsa-miR-184-000485 -5.46

hsa-miR-195-000494 -1.92 hsa-miR-195-000494 -2.89 hsa-miR-196b-002215 7.00 hsa-miR-196b-002215 2.88

hsa-miR-196b-002215 8.26 hsa-miR-196b-002215 4.42 hsa-miR-200a-000502 3.52 hsa-miR-200a-000502 3.32

hsa-miR-200b-002251 3.86 hsa-miR-200b-002251 2.60 hsa-miR-200b-002251 3.04 hsa-miR-200b-002251 2.89

hsa-miR-200c-002300 3.45 hsa-miR-200c-002300 3.00 hsa-miR-200c-002300 2.83 hsa-miR-200c-002300 3.33

hsa-miR-205-000509 4.22 hsa-miR-205-000509 5.12 hsa-miR-205-000509 4.58 hsa-miR-205-000509 6.71

hsa-miR-21#-002438 2.99 hsa-miR-21#-002438 2.53 hsa-miR-210-000512 3.74 hsa-miR-210-000512 3.26

hsa-miR-210-000512 4.10 hsa-miR-210-000512 2.70 hsa-miR-224-002099 5.62 hsa-miR-224-002099 5.78

hsa-miR-221-000524 2.69 hsa-miR-221-000524 2.70 hsa-miR-27a#-002445 4.10 hsa-miR-27a#-002445 2.79

hsa-miR-224-002099 6.01 hsa-miR-224-002099 6.03 hsa-miR-27a-000408 2.19 hsa-miR-27a-000408 1.80

hsa-miR-27a#-002445 3.12 hsa-miR-27a#-002445 4.47 hsa-miR-29a-002112 -1.61 hsa-miR-29a-002112 -2.57

hsa-miR-27a-000408 1.81 hsa-miR-27a-000408 1.92 hsa-miR-429-001024 3.25 hsa-miR-429-001024 2.37

hsa-miR-29a-002112 -1.83 hsa-miR-29a-002112 -3.26 hsa-miR-452-002329 2.79 hsa-miR-452-002329 1.89

hsa-miR-452-002329 3.00 hsa-miR-452-002329 3.84 hsa-miR-484-001821 2.02 hsa-miR-484-001821 2.40

hsa-miR-486-3p-002093 -3.79 hsa-miR-486-3p-002093 -4.97 hsa-miR-886-3p-002194 3.04 hsa-miR-886-3p-002194 2.94

hsa-miR-886-3p-002194 3.00 hsa-miR-886-3p-002194 2.59 hsa-let-7i#-002172 -2.59 hsa-miR-106b-000442 1.94

hsa-miR-100-000437 -1.62 hsa-let-7b#-002404 -6.10 hsa-miR-100-000437 -1.88 hsa-miR-1253-002894 11.36

hsa-miR-1180-002847 3.95 hsa-let-7g-002282 -3.04 hsa-miR-101-002253 -2.43 hsa-miR-1260-002896 1.58

hsa-miR-1227-002769 4.37 hsa-miR-126-002228 -3.28 hsa-miR-1244-002791 2.49 hsa-miR-126-002228 -2.95

hsa-miR-125b-000449 -1.93 hsa-miR-1262-002852 -10500.89 hsa-miR-125b-000449 -2.44 hsa-miR-127-000452 3.13

hsa-miR-132-000457 1.66 hsa-miR-127-000452 2.01 hsa-miR-132-000457 1.75 hsa-miR-1282-002803 1.35

hsa-miR-135b#-002159 5.18 hsa-miR-138-002284 -3.48 hsa-miR-135b-002261 4.30 hsa-miR-130b-000456 3.51

hsa-miR-135b-002261 4.25 hsa-miR-146a-000468 -3.45 hsa-miR-138-002284 -3.48 hsa-miR-142-3p-000464 -5.87

hsa-miR-136#-002100 -3.36 hsa-miR-146b-001097 -2.48 hsa-miR-139-5p-002289 -3.48 hsa-miR-142-5p-002248 -2.40

hsa-miR-139-3p-002313 -2.80 hsa-miR-150-000473 -10.82 hsa-miR-141#-002145 2.64 hsa-miR-146a-000468 -2.75

hsa-miR-139-5p-002289 -2.97 hsa-miR-155-002623 -3.39 hsa-miR-145#-002149 -2.09 hsa-miR-146b-001097 -2.25

hsa-miR-144#-002148 -5.50 hsa-miR-15a-000389 -2.18 hsa-miR-145-002278 -2.28 hsa-miR-150-000473 -8.31

hsa-miR-145#-002149 -2.55 hsa-miR-16-000391 -2.58 hsa-miR-146b-3p-002361 1.29 hsa-miR-152-000475 2.37

hsa-miR-145-002278 -2.60 hsa-miR-188-3p-002106 -15.67 hsa-miR-151-3p-002254 1.69 hsa-miR-155-002623 -3.37

hsa-miR-181a-000480 -1.50 hsa-miR-19a-000395 -2.14 hsa-miR-151-5P-002642 -1.96 hsa-miR-16-000391 -2.23

hsa-miR-182-002334 3.36 hsa-miR-19b-000396 -2.64 hsa-miR-15b#-002173 4.90 hsa-miR-183#-002270 1.77

hsa-miR-1825-002907 8.50 hsa-miR-20a#-002437 -4.90 hsa-miR-15b-000390 1.89 hsa-miR-18a#-002423 1.84

hsa-miR-183-002269 2.77 hsa-miR-21-000397 1.49 hsa-miR-181a-000480 -1.64 hsa-miR-19b-000396 -2.58

hsa-miR-184-000485 -22.46 hsa-miR-213-000516 -4.21 hsa-miR-183-002269 2.49 hsa-miR-20a#-002437 -2.15

hsa-miR-191#-002678 4.11 hsa-miR-219-2-3p-002390 26.64 hsa-miR-195-000494 -2.33 hsa-miR-21#-002438 2.58

hsa-miR-197-000497 1.72 hsa-miR-323-3p-002227 5.88 hsa-miR-199a-3p-002304 -1.59 hsa-miR-213-000516 -3.40

hsa-miR-200a#-001011 3.42 hsa-miR-342-3p-002260 -3.35 hsa-miR-200a#-001011 4.35 hsa-miR-221-000524 2.86

(Continued )
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Table 2. (Continued)

50th percentile shift normalization global normalization

FF FFPE FF FFPE

TTall vs NT TTall vs NT

miRNA FC miRNA FC miRNA FC miRNA FC

hsa-miR-200a-000502 3.64 hsa-miR-342-5p-002147 -3.96 hsa-miR-21#-002438 3.76 hsa-miR-223#-002098 -2.63

hsa-miR-204-000508 -5.28 hsa-miR-362-001273 2.43 hsa-miR-21-000397 2.68 hsa-miR-299-5p-000600 4.75

hsa-miR-211-000514 34.58 hsa-miR-374-000563 -2.24 hsa-miR-214#-002293 -1.74 hsa-miR-320-002277 1.92

hsa-miR-222#-002097 2.09 hsa-miR-423-5p-002340 -5.05 hsa-miR-222#-002097 2.38 hsa-miR-323-3p-002227 4.17

hsa-miR-24-000402 1.59 hsa-miR-455-3p-002244 7.08 hsa-miR-222-002276 2.04 hsa-miR-342-3p-002260 -3.14

hsa-miR-26a-000405 -2.12 hsa-miR-485-3p-001277 3.99 hsa-miR-24-000402 1.73 hsa-miR-362-001273 2.07

hsa-miR-26b#-002444 -5.11 hsa-miR-490-001037 3.37 hsa-miR-26a-000405 -1.84 hsa-miR-455-3p-002244 8.08

hsa-miR-26b-000407 -2.22 hsa-miR-516-3p-001149 -12.45 hsa-miR-26b#-002444 -3.16 hsa-miR-485-3p-001277 2.33

hsa-miR-27b#-002174 1.88 hsa-miR-566-001533 -4.10 hsa-miR-26b-000407 -2.85 hsa-miR-532-001518 -2.24

hsa-miR-29a#-002447 -2.62 hsa-miR-583-001623 12.93 hsa-miR-29a#-002447 -1.98 hsa-miR-550-002410 -2.05

hsa-miR-29b-000413 -2.17 hsa-miR-590-5p-001984 -6.36 hsa-miR-29b-000413 -2.45 hsa-miR-590-5p-001984 -2.27

hsa-miR-29c-000587 -2.39 hsa-miR-640-001584 -4.53 hsa-miR-29c-000587 -2.64 hsa-miR-629-001562 -2.19

hsa-miR-302a-000529 222.12 hsa-miR-660-001515 -1.96 hsa-miR-302c-000533 18.15 hsa-miR-663B-002857 1.78

hsa-miR-30a-3p-000416 -3.27 hsa-miR-663B-002857 2.55 hsa-miR-30b-000602 -1.76 hsa-miR-888-002212 -551.31

hsa-miR-30a-5p-000417 -1.93 hsa-miR-942-002187 -3.76 hsa-miR-30d-000420 -1.95

hsa-miR-30d-000420 -1.94 hsa-miR-31-002279 6.09

hsa-miR-30e-3p-000422 -2.39 hsa-miR-32-002109 -2.47

hsa-miR-31-002279 5.72 hsa-miR-335#-002185 2.58

hsa-miR-335#-002185 2.04 hsa-miR-342-5p-002147 -7.89

hsa-miR-335-000546 2.33 hsa-miR-34b-002102 2.35

hsa-miR-34a#-002316 1.91 hsa-miR-505#-002087 -1.68

hsa-miR-378-000567 -1.87 hsa-miR-511-001111 2.16

hsa-miR-429-001024 3.66 hsa-miR-520g-001121 3.52

hsa-miR-431-001979 16.66 hsa-miR-577-002675 -3.38

hsa-miR-484-001821 2.01 hsa-miR-596-001550 -2.00

hsa-miR-486-001278 -3.26 hsa-miR-649-001602 3.05

hsa-miR-497-001043 -4.12 hsa-miR-708-002341 2.14

hsa-miR-505#-002087 -2.84 hsa-miR-944-002189 5.27

hsa-miR-511-001111 3.25 hsa-miR-9-000583 7.17

hsa-miR-517a-002402 3.23

hsa-miR-517c-001153 3.66

hsa-miR-523-002386 10.93

hsa-miR-576-3p-002351 8.52

hsa-miR-627-001560 29.22

hsa-miR-643-001594 2.71

hsa-miR-658-001513 2.12

hsa-miR-659-001514 6.10

hsa-miR-708-002341 2.26

hsa-miR-944-002189 6.72

hsa-miR-99b#-002196 -4.26

22/83 (27%) 22/58 (38%) 21/72 (29%) 21/57 (37%)

https://doi.org/10.1371/journal.pone.0179645.t002
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in several aspects (assessment of extraction method, platform optimization, etc.) [13]. Addi-

tional studies were performed using other microarray platforms [9, 26, 27] or next generation

sequencing platforms [28]. None of this comparative studies has been performed in head and

neck tumors.

Since our recent study has shown that the tumor tissue homogeneity is important for the

robustness of the miRNA profiling studies, we performed macrodissection of FFPE samples to

enrich them for tumor cells. To our knowledge, only one study dealt with the issue of FFPE

dissection. It tested the possibility of a non-satisfactory correlation of the expression of several

miRNAs between FF and dissected FFPE samples due to the enrichment of the tumor cells.

Fig 4. Comparison of differentially expressed miRNAs. Comparison of differentially expressed miRNAs

identified using 50th percentile shift normalization and global normalization for each clinical material.

https://doi.org/10.1371/journal.pone.0179645.g004
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Table 3. Differentially expressed miRNAs detected tonsillar tumors versus non-malignant tonsillar tissue. Overlap between results using 50th per-

centile shift normalization and global normalization is highlighted in green. On the left—results from FF samples, on the right—results from FFPE samples.

FC—fold change.

FF FFPE

TTall vs NT TTall vs NT

50th percentile shift

normalization

global normalization 50th percentile shift normalization global normalization

miRNA FC miRNA FC miRNA FC miRNA FC

hsa-miR-100-000437 -1.62 hsa-miR-100-000437 -1.88 hsa-let-7g-002282 -3.04 hsa-let-7g-002282 -2.57

hsa-miR-101-002253 -2.87 hsa-miR-101-002253 -2.43 hsa-miR-126#-000451 -8.27 hsa-miR-126#-000451 -4.28

hsa-miR-125b-000449 -1.93 hsa-miR-125b-000449 -2.44 hsa-miR-126-002228 -3.28 hsa-miR-126-002228 -2.95

hsa-miR-126#-000451 -2.29 hsa-miR-126#-000451 -1.85 hsa-miR-127-000452 2.01 hsa-miR-127-000452 3.13

hsa-miR-132-000457 1.66 hsa-miR-132-000457 1.75 hsa-miR-130b-000456 3.42 hsa-miR-130b-000456 3.51

hsa-miR-135b-002261 4.25 hsa-miR-135b-002261 4.30 hsa-miR-140-3p-002234 -4.15 hsa-miR-140-3p-002234 -4.50

hsa-miR-139-5p-002289 -2.97 hsa-miR-139-5p-002289 -3.48 hsa-miR-141-000463 2.67 hsa-miR-141-000463 3.85

hsa-miR-140-3p-002234 -2.42 hsa-miR-140-3p-002234 -2.10 hsa-miR-142-3p-000464 -8.79 hsa-miR-142-3p-000464 -5.87

hsa-miR-141-000463 4.04 hsa-miR-141-000463 4.71 hsa-miR-143-002249 -2.89 hsa-miR-143-002249 -1.68

hsa-miR-143-002249 -2.02 hsa-miR-143-002249 -2.14 hsa-miR-146a-000468 -3.45 hsa-miR-146a-000468 -2.75

hsa-miR-144#-002148 -5.50 hsa-miR-144#-002148 -4.52 hsa-miR-146b-001097 -2.48 hsa-miR-146b-001097 -2.25

hsa-miR-145#-002149 -2.55 hsa-miR-145#-002149 -2.09 hsa-miR-150-000473 -10.82 hsa-miR-150-000473 -8.31

hsa-miR-145-002278 -2.60 hsa-miR-145-002278 -2.28 hsa-miR-155-002623 -3.39 hsa-miR-155-002623 -3.37

hsa-miR-181a-000480 -1.50 hsa-miR-181a-000480 -1.64 hsa-miR-16-000391 -2.58 hsa-miR-16-000391 -2.23

hsa-miR-183-002269 2.77 hsa-miR-183-002269 2.49 hsa-miR-196b-002215 4.42 hsa-miR-196b-002215 2.88

hsa-miR-184-000485 -22.46 hsa-miR-184-000485 -6.15 hsa-miR-19b-000396 -2.64 hsa-miR-19b-000396 -2.58

hsa-miR-195-000494 -1.92 hsa-miR-195-000494 -2.33 hsa-miR-200b-002251 2.60 hsa-miR-200b-002251 2.89

hsa-miR-196b-002215 8.26 hsa-miR-196b-002215 7.00 hsa-miR-200c-002300 3.00 hsa-miR-200c-002300 3.33

hsa-miR-200a#-001011 3.42 hsa-miR-200a#-001011 4.35 hsa-miR-205-000509 5.12 hsa-miR-205-000509 6.71

hsa-miR-200a-000502 3.64 hsa-miR-200a-000502 3.52 hsa-miR-20a#-002437 -4.90 hsa-miR-20a#-002437 -2.15

hsa-miR-200b-002251 3.86 hsa-miR-200b-002251 3.04 hsa-miR-21#-002438 2.53 hsa-miR-21#-002438 2.58

hsa-miR-200c-002300 3.45 hsa-miR-200c-002300 2.83 hsa-miR-210-000512 2.70 hsa-miR-210-000512 3.26

hsa-miR-205-000509 4.22 hsa-miR-205-000509 4.58 hsa-miR-213-000516 -4.21 hsa-miR-213-000516 -3.40

hsa-miR-21#-002438 2.99 hsa-miR-21#-002438 3.76 hsa-miR-221-000524 2.90 hsa-miR-221-000524 2.86

hsa-miR-210-000512 4.10 hsa-miR-210-000512 3.74 hsa-miR-224-002099 6.03 hsa-miR-224-002099 5.78

hsa-miR-222#-002097 2.09 hsa-miR-222#-002097 2.38 hsa-miR-27a#-002445 4.47 hsa-miR-27a#-002445 2.79

hsa-miR-224-002099 6.01 hsa-miR-224-002099 5.62 hsa-miR-27a-000408 1.92 hsa-miR-27a-000408 1.80

hsa-miR-24-000402 1.59 hsa-miR-24-000402 1.73 hsa-miR-29a-002112 -3.26 hsa-miR-29a-002112 -2.57

hsa-miR-26a-000405 -2.12 hsa-miR-26a-000405 -1.84 hsa-miR-323-3p-002227 5.88 hsa-miR-323-3p-002227 4.17

hsa-miR-26b#-002444 -5.11 hsa-miR-26b#-002444 -3.16 hsa-miR-342-3p-002260 -3.35 hsa-miR-342-3p-002260 -3.14

hsa-miR-26b-000407 -2.22 hsa-miR-26b-000407 -2.85 hsa-miR-362-001273 2.43 hsa-miR-362-001273 2.07

hsa-miR-27a#-002445 3.12 hsa-miR-27a#-002445 4.10 hsa-miR-452-002329 3.84 hsa-miR-452-002329 1.90

hsa-miR-27a-000408 1.81 hsa-miR-27a-000408 2.19 hsa-miR-455-3p-002244 7.08 hsa-miR-455-3p-002244 8.08

hsa-miR-29a#-002447 -2.62 hsa-miR-29a#-002447 -1.98 hsa-miR-485-3p-001277 3.99 hsa-miR-485-3p-001277 2.33

hsa-miR-29a-002112 -1.83 hsa-miR-29a-002112 -1.61 hsa-miR-590-5p-001984 -6.36 hsa-miR-590-5p-001984 -2.27

hsa-miR-29b-000413 -2.17 hsa-miR-29b-000413 -2.45 hsa-miR-886-3p-002194 2.59 hsa-miR-886-3p-002194 2.94

hsa-miR-29c-000587 -2.39 hsa-miR-29c-000587 -2.64 hsa-let-7b#-002404 -6.10 hsa-miR-106b-000442 1.94

hsa-miR-30d-000420 -1.94 hsa-miR-30d-000420 -1.95 hsa-miR-101-002253 -8.70 hsa-miR-1253-002894 11.36

hsa-miR-31-002279 5.72 hsa-miR-31-002279 6.09 hsa-miR-1262-002852 -10500.89 hsa-miR-1260-002896 1.58

hsa-miR-335#-002185 2.04 hsa-miR-335#-002185 2.58 hsa-miR-138-002284 -3.48 hsa-miR-1282-002803 1.35

hsa-miR-429-001024 3.66 hsa-miR-429-001024 3.25 hsa-miR-15a-000389 -2.18 hsa-miR-142-5p-002248 -2.40

hsa-miR-452-002329 3.00 hsa-miR-452-002329 2.79 hsa-miR-188-3p-002106 -15.67 hsa-miR-144#-002148 -2.95

(Continued )
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Table 3. (Continued)

FF FFPE

TTall vs NT TTall vs NT

50th percentile shift

normalization

global normalization 50th percentile shift normalization global normalization

miRNA FC miRNA FC miRNA FC miRNA FC

hsa-miR-484-001821 2.01 hsa-miR-484-001821 2.02 hsa-miR-195-000494 -2.89 hsa-miR-152-000475 2.3

hsa-miR-505#-002087 -2.84 hsa-miR-505#-002087 -1.68 hsa-miR-19a-000395 -2.14 hsa-miR-183#-002270 1.77

hsa-miR-511-001111 3.25 hsa-miR-511-001111 2.16 hsa-miR-21-000397 1.49 hsa-miR-184-000485 -5.46

hsa-miR-708-002341 2.26 hsa-miR-708-002341 2.14 hsa-miR-219-2-3p-002390 26.64 hsa-miR-18a#-002423 1.84

hsa-miR-886-3p-002194 3.00 hsa-miR-886-3p-002194 3.04 hsa-miR-342-5p-002147 -3.96 hsa-miR-200a-000502 3.32

hsa-miR-944-002189 6.72 hsa-miR-944-002189 7.17 hsa-miR-374-000563 -2.24 hsa-miR-223#-002098 -2.63

hsa-miR-1180-002847 3.95 hsa-let-7g-002282 -1.85 hsa-miR-423-5p-002340 -5.05 hsa-miR-299-5p-000600 4.75

hsa-miR-1227-002769 4.37 hsa-let-7i#-002172 -2.59 hsa-miR-486-3p-002093 -4.97 hsa-miR-320-002277 1.92

hsa-miR-130b-000456 1.86 hsa-miR-1244-002791 2.49 hsa-miR-490-001037 3.37 hsa-miR-429-001024 2.37

hsa-miR-135b#-002159 5.18 hsa-miR-138-002284 -3.48 hsa-miR-516-3p-001149 -12.45 hsa-miR-484-001821 2.40

hsa-miR-136#-002100 -3.36 hsa-miR-141#-002145 2.64 hsa-miR-566-001533 -4.10 hsa-miR-532-001518 -2.24

hsa-miR-139-3p-002313 -2.80 hsa-miR-146b-3p-002361 1.29 hsa-miR-583-001623 12.93 hsa-miR-550-002410 -2.05

hsa-miR-142-3p-000464 -3.85 hsa-miR-151-3p-002254 1.69 hsa-miR-640-001584 -4.53 hsa-miR-629-001562 -2.19

hsa-miR-182-002334 3.36 hsa-miR-151-5P-002642 -1.96 hsa-miR-660-001515 -1.96 hsa-miR-663B-002857 1.78

hsa-miR-1825-002907 8.50 hsa-miR-15b#-002173 4.90 hsa-miR-663B-002857 2.55 hsa-miR-888-002212 -551.31

hsa-miR-191#-002678 4.11 hsa-miR-15b-000390 1.89 hsa-miR-942-002187 -3.76

hsa-miR-197-000497 1.72 hsa-miR-199a-3p-002304 -1.59

hsa-miR-204-000508 -5.28 hsa-miR-21-000397 2.68

hsa-miR-211-000514 34.58 hsa-miR-214#-002293 -1.74

hsa-miR-221-000524 2.69 hsa-miR-222-002276 2.04

hsa-miR-27b#-002174 1.88 hsa-miR-302c-000533 18.15

hsa-miR-302a-000529 222.12 hsa-miR-30b-000602 -1.76

hsa-miR-30a-3p-000416 -3.27 hsa-miR-32-002109 -2.47

hsa-miR-30a-5p-000417 -1.93 hsa-miR-342-5p-002147 -7.89

hsa-miR-30e-3p-000422 -2.39 hsa-miR-34b-002102 2.35

hsa-miR-335-000546 2.33 hsa-miR-520g-001121 3.52

hsa-miR-34a#-002316 1.91 hsa-miR-577-002675 -3.38

hsa-miR-378-000567 -1.87 hsa-miR-596-001550 -2.00

hsa-miR-431-001979 16.66 hsa-miR-649-001602 3.05

hsa-miR-486-001278 -3.26 hsa-miR-9-000583 5.27

hsa-miR-486-3p-002093 -3.79

hsa-miR-497-001043 -4.12

hsa-miR-517a-002402 3.23

hsa-miR-517c-001153 3.66

hsa-miR-523-002386 10.93

hsa-miR-576-3p-002351 8.52

hsa-miR-627-001560 29.22

hsa-miR-643-001594 2.71

hsa-miR-658-001513 2.12

hsa-miR-659-001514 6.10

hsa-miR-99b#-002196 -4.26

https://doi.org/10.1371/journal.pone.0179645.t003
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However, the improvement in the correlation when using non-dissected FFPE samples was

due to a low number of samples which was not convincing [25]. In our analysis, we compared

FF tumor samples with more than 50% of tumor cells and macrodissected FFPE tumor cells.

Although, based on the PCA, the miRNA expression profiles differ between FF and FFPE, we

performed the Spearman correlation test which showed a good correlation (Spearman correla-

tion coefficient in the range from 0.65 to 0.84) in 70% of samples. Based on the study of de

Biase et al. [25] who have pointed to the fact that dissection can influence the expression results

which is necessary to take into account if the miRNA analysis is performed with or without

dissection, we evaluated the correlation of the differentially expressed miRNAs in FF and

FFPE based on the number of tumor cells in FF samples. However, no relationship between

the number of tumor cells and correlation level was observed.

We revealed higher numbers of differentially regulated miRNAs in FF tonsillar tissues com-

pared to the FFPE material which we attributed to the higher amount of RNA used for the

miRNA expression analysis in FF samples. Therefore, some less expressed miRNAs could have

been missed in FFPE samples. The overlap of differentially expressed miRNAs between FF and

FFPE samples was around 30% which should be explained by the fact that unlike the tumor

samples, the control non-malignant tissues were not paired between FF and FFPE and could

influence the miRNA expression profiles more than we expected. Nevertheless, the analysis of

both groups of tested material revealed the deregulation of the known tumor associated miR-

NAs such as miR-205, miR-210, or miRNAs from the family mir-8, as has been demonstrated

in a number of solid tumors [29–32].

Further, when comparing the results obtained using two different types of data normaliza-

tion, we revealed an overlap of between 58–67%. Therefore, the comparison between studies is

obviously difficult because of the use of different methods of data analysis. In our analysis,

both tissue types and both normalization methods overlap in 16 common miRNAs. All of

these miRNAs were shown to be cancer related, nevertheless their role in head and neck cancer

has not been elucidated. The role of miR-27a was mentioned by Venkatesh et al. as it regulates

the expression of tumor suppressors in oral squamous cell carcinomas [33]. The role of miR-

126# was found in endothelial proliferation [34, 35]. For miR-140-3p it was shown that it con-

tributes to reduction of proliferation and migration of cancer cells in breast and lung cancer

[36, 37] and in spinal chordoma, in contradictory, to be a marker of poor prognosis [38]. MiR-

141 plays role in AKT signaling and inhibits prometastatic mesenchymal characteristics [39].

MiR-143 is a part of miR cluster 143/145 expressed in many tissues and regarded as tumor

suppressing [40]. It´s reduced expression was found also in cervical squamous cell carcinomas

[41] and low expression of this miRNA contributes to poor prognosis in oral squamous cell

carcinomas [42]. As recently discovered the expression of miR-196b promotes cell migration

and invasion in oral cancer [43, 44]. Members of mir-200 family, which includes miR-200b,

miR-200c and miR-205, are the major regulators of EMT pathway, primarily targeting tran-

scriptional factors ZEB1 and SP1 [45], and play a prognostic role in various malignancies [46].

Deregulated expression of hypoxia-induced miR-210 was found in various tumors and influ-

ences cancer cell proliferation, apoptosis, angiogenesis and other cellular processes involved in

Table 4. Differentially expressed miRNA in both types of clinical material by using two different nor-

malization methods.

hsa-miR-126#-000451 hsa-miR-196b-002215 hsa-miR-21#-002438 hsa-miR-27a-000408

hsa-miR-140-3p-002234 hsa-miR-200b-002251 hsa-miR-210-000512 hsa-miR-29a-002112

hsa-miR-141-000463 hsa-miR-200c-002300 hsa-miR-224-002099 hsa-miR-452-002329

hsa-miR-143-002249 hsa-miR-205-000509 hsa-miR-27a#-002445 hsa-miR-886-3p-002194

https://doi.org/10.1371/journal.pone.0179645.t004
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Fig 5. Comparison on fold-change for selected miRNAs between arrays and qPCR. The treshold of FC was set

to 1.33. T-test or Mann Whitney nonparametric test was applied depending on the data distribution. All results were

statistically significant (P-value�0.05).

https://doi.org/10.1371/journal.pone.0179645.g005
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tumor development [47]. The group of Seki et al. have been interested in the functional signifi-

cance of mir-29 family, including miR-29a, in cervical cancer as well as in head and neck can-

cer. They found out that this tumor-suppressive miRNA inhibits cancer cell migration and

invasion [48, 49]. Although some studies focused on the functional impact of identified miR-

NAs in HNC have been published, more extensive research is necessary to more accurately

explain the relevance in HNC tumor development.

From the groups of deregulated miRNAs identified in FFPE tumors of either viral or non-

viral etiology, we selected 11 miRNAs based on the results and relevance in the literature, the

expression of which was evaluated in a larger set of 64 FFPE samples. From the group of miR-

NAs specific for HPV-positive tonsillar tumors, we choose upregulated miR-9 and miR-106b#

whose deregulation was previously reported in HNC [50–52]. Furthermore, miR-9 has been

shown to be activated by HPV leading to increased cell motility [53] and to be involved in the

pathways regulating metastasis [54]. Upregulated miR-31, miR-221, and miR-21 were selected

for confirmation from the group of miRNAs specific for HPV-independent tumors including

HNC as playing a role in increasing cell proliferation, invasion, and migration [55–58], partici-

pating in regulation of epithelial-mesenchymal transition (EMT), or having a prognostic

impact [59, 60]. Further choices were miR-34a, specific for HPV-negative tumors, a tumor

suppressor whose downregulation has been shown in a number of tumor types including

HNC [61, 62], as well as miR-16, the inhibition of which promotes cell proliferation, migra-

tion, invasion, and EMT and contributes to tumor progression [63]. The last miRNA selected

for confirmation from the group of HPV-negative tumors was miR-193b whose high expres-

sion in tissue was identified as an independent prognostic risk factor in patients with ovarian

cancer [64]. From the group of tonsillar specific miRNAs regardless of the virus presence, we

selected miR-205, miR-155, and miR-126 which participate in oncogenic pathways including

cell proliferation, migration, or invasion and serve as prognostic predictors of patients with

HNC [31, 65, 66].

We were able to confirm deregulated expression in the same set of samples as run on array.

In this subset, deregulated expression was confirmed for all miRNAs except miR-21 and miR-

205. However, their trend of expression was maintained and the fold change was close to the

cut-off value. In the larger set of samples, deregulated expression was confirmed in 64% of

comparisons. The fold change of miR-193b was equal to 1.23, and the trend of expression of

four additional selected miRNAs was opposite to that revealed by arrays. The results suggest

possible variability between samples and show that not all deregulated miRNAs detected in a

smaller tested cohort might be representative of a broader spectrum of samples.

In conclusion, our study compares the miRNA expression profiles in tonsillar tumors

as identified in fresh frozen and formalin-fixed paraffin-embedded samples. Although the cor-

relation between the defined groups was relatively good for all miRNAs, the overlap of the

selected differentially expressed miRNAs was rather suboptimal. We concluded that for

accurate comparison between studies, the key factors are the use of the same type of clinical

material and selection of the normalization method for data analysis. Additionally, we suggest

that combining multiple analytical methods rather than a single test alone is advisable for

more robust, reliable detection of differential abundance of miRNAs and interpretation of

results.
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