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Structure of a bacterial type III secretion system
in contact with a host membrane in situ
Andrea Nans1,*, Mikhail Kudryashev2,3,*,w, Helen R. Saibil1 & Richard D. Hayward4

Many bacterial pathogens of animals and plants use a conserved type III secretion system

(T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host

functions. Contact with host membranes is critical for T3SS activation, yet little is known

about T3SS architecture in this state or the conformational changes that drive effector

translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive

the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence

of host membrane contact. Comparison of the averaged structures demonstrates a marked

compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell

membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform–

ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human

pathogen engaged with a eukaryotic host, and reveal striking ‘pump-action’ conformational

changes that underpin effector injection.
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B
acterial type III secretion systems (T3SSs) are central to the
virulence of a wide spectrum of medically important
pathogens. T3SSs are conserved membrane-embedded

nanomachines that deliver virulence effector proteins directly
from the bacterial cytosol into the host cell1,2. Cryo-electron
microscopy and X-ray crystallography studies of isolated T3SS
core complexes and their components have characterized the
basal body that spans the bacterial envelope3–11. This is formed of
membrane-embedded oligomeric rings that are connected by a
trans-periplasmic rod to a hollow needle through which unfolded
effectors are secreted. Recent in situ studies using bacterial
minicells identified an additional associated complex in the
bacterial cytoplasm comprising a sorting platform and export
ATPase12,13.

Chlamydia trachomatis is an obligate intracellular pathogen
and the major bacterial cause of sexually transmitted disease
worldwide14. Ocular infections cause blinding trachoma, which is
recognized as a neglected tropical disease by the World Health
Organization. The structure of the chlamydial T3SS complex has
never been elucidated, but it is among the nearest phylogenetic
relatives to the bacterial flagellum, suggesting that Chlamydiae
harbour a primordial virulence-associated T3SS (refs 15–17).
Unlike other Gram-negative bacteria where contiguous T3SS
operons are located on a virulence plasmid or in distinct
chromosomal pathogenicity islands, chlamydial genes encoding
T3SS components are located in four distinct clusters dispersed
across the entire genome. In addition, despite being immotile
bacteria, Chlamydiae apparently harbour genes for flagellar

components, encoding homologues of the inner membrane ring
(fliF), a major component of the export apparatus (flhA), the
ATPase (fliI) and a component of the sorting platform (fliH),
although the function of these orphan proteins remain
unknown15–17.

Wild-type chlamydial elementary bodies have dimensions
favourable for cryo-electron tomography18 (300–400 nm
diameter), which eliminates the requirement to genetically
derive artificial minicells or the use of osmotic shock for in situ
imaging. To investigate the structural changes that accompany
host membrane contact and T3SS effector translocation, we have
performed whole cell cryo-electron tomography19 and sub-
tomogram averaging of the C. trachomatis T3SS in the presence
or absence of host membrane contact. Sub-tomogram averages
show a striking compaction of the basal body and structural
stabilization of the sorting platform-ATPase complex upon T3SS
needle contact with a host membrane. These data provide insights
into the physiologically relevant conformational changes in the
T3SS in situ following host membrane contact and subsequent
activation of secretion.

Results
In situ structure of the host-free C. trachomatis T3SS. Initially,
we imaged intact C. trachomatis elementary bodies by
cryo-electron tomography in the absence of host cells (Fig. 1a).
Elementary bodies are inherently polarized and one bacterial
hemisphere is characterized by a pronounced widening of the
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Figure 1 | In situ sub-tomogram averages of host-free Chlamydia and Salmonella T3SS. Central slices (10 nm thick) from denoised cryo-electron

tomograms of plunge-frozen C. trachomatis LGV2 elementary bodies (a) and S. enterica minicells (c). Outer (OM) and inner membranes (IM),

peptidoglycan layer (PG) and type III secretion systems (white arrowheads and magnified in the lower-left corner) are indicated. Central slices through sub-

tomogram averages of the host-free T3SS from C. trachomatis (b) and S. enterica (d). Individual components are labelled in the corresponding three-

dimensional surface rendering (right). Novel ring that surrounds the Chlamydia needle is highlighted (white arrow). Scale bars, (a,c) 200 nm; (b,d) 15 nm.
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periplasmic space that accommodates a semi-ordered array of
T3SS complexes18. Of 906 T3SS complexes initially selected, we
conducted sub-tomogram averaging using a subset of 515
to generate an in situ structure at a resolution up to 3.3 nm
(Fig. 1b and Supplementary Fig. 1a). The overall architecture of
the chlamydial T3SS is distinct from every other T3SS observed
to date either in the bacterial envelope in situ by tomography
or in isolation by single-particle analysis (Supplementary
Fig. 1b)3–5,12,20,21. The C. trachomatis basal body is more
elongated with a pronounced convex curvature, a length of
34 nm and a diameter that ranges from 14 to 20 nm. Nevertheless,
densities corresponding to the core T3SS components, the outer
membrane secretin (CdsC) and inner membrane oligomeric rings
(CdsD and CdsJ) are discernible. A novel ring surrounds the
needle on the face of the outer membrane, which likely
corresponds to an additional secretin domain, as no pilotin or
additional predicted outer membrane proteins are present within
the operons encoding C. trachomatis T3SS components. Indeed,
phylogenetics shows that CdsC is atypical as it clusters with type
II secretins of filamentous phage15. At 921 residues it is
significantly larger than all other T3SS secretins (for example,
Shigella MxiD and Yersinia YscC at 566 and 607 residues,
respectively). The additional residues include a unique
N-terminal 250-residue hydrophilic domain and type II
secretin-specific insertions within the N-domains and secretin
homology domain (Supplementary Fig. 2)15. There is precedent
for type II secretins to extend beyond the confines of the outer
membrane, supporting the unusual structure of CdsC among
T3SS secretins22.

The chamber within the basal body is well resolved, with a clear
view of the cup and socket that anchor to the inner rod
proteins23. No peptidoglycan was observed, in agreement with
labelling studies24. The inner membrane exhibits a concave
deformation at the point of basal body integration, while the rigid
outer membrane remains undistorted. A density characteristic of
the cytoplasmic domain of the export apparatus (CdsV) is present
on the cytoplasmic face of the inner membrane proximal to the
basal body10. As recently visualized in Shigella flexneri12, the
cytoplasmic sorting platform (CdsQ)–ATPase (CdsN) complex is
also evident, although this is less distinct in comparison to the
remainder of the structure, suggesting an increased disorder. At
the outer membrane, a hollow needle 28 nm in length with a well-
resolved needle-tip complex extends from the basal body
(Fig. 1b). Given the striking differences in the architecture of
the C. trachomatis needle, the basal body and the envelope at the
site of integration, we verified the in situ structure of the
archetypal SPI-1 T3SS from Salmonella enterica using minicells.
The architectural differences between the Salmonella and
Chlamydia T3SSs are clear even from the raw tomogram slices
(Fig. 1c), and sub-tomogram averaging of the Salmonella T3SS
using an identical image-processing protocol recapitulated a
complex with expected features at 4.5 nm resolution, including
the peptidoglycan layer (Fig. 1d and Supplementary Fig. 1a).
Interestingly, the chlamydial needle is only half the length of that
in Salmonella (B60 nm), reflective of the unusual outer
membrane structure in Chlamydia. The short needle length is
entirely consistent with the presence of shorter, deep-rough
chlamydial lipopolysaccharide, which contains only lipid A and
three terminal Kdo residues25,26. Needle length is tightly
regulated and linearly correlates with the size of the tape
measure protein (SctP)27. Accordingly, the 283-residue CdsP
from Chlamydia spp. is shorter than Salmonella InvJ (336
residues; Supplementary Fig. 3). These data illustrate that while
sharing the major hallmarks of other systems, the architecture of
the primordial chlamydial T3SS differs significantly from those
studied previously.

In situ structure of the host-contact C. trachomatis T3SS.
Chlamydia T3SSs can frequently be captured in contact with host
membranes at the cell periphery during internalization and early
vacuole development18. To derive the in situ structure of the
chlamydial T3SS in contact with host membranes, we visualized
C. trachomatis elementary bodies early during entry into cultured
cells by cryo-electron tomography, either in association with the
host plasma membrane (Fig. 2a) or within early vacuoles
(Fig. 2b). In both states, multiple T3SS–host membrane
contacts were present with an average spacing between the
bacterial outer membrane and host membrane of 33±4.0 nm
(Supplementary Fig. 4a). In contrast, the average distance at
nonspecific bacteria–host cell adhesion sites was 20±3.0 nm,
illustrating that T3SS-mediated contacts are defined junctions
determined by the length of the needle. The number and spacing
of the Chlamydia T3SS within the polarized array remained
unchanged on host cell contact (57±13 nm host free, n¼ 58
versus 54±9 nm host contact, n¼ 60), unlike Yersinia that forms
clusters of T3SSs incorporating new assemblies on activation28.

Of 279 T3SS–host complexes initially selected, we conducted
sub-tomogram averaging using a subset of 196 to generate an
in situ structure of the T3SS in contact with the host cell, up to
3.8 nm resolution (Fig. 2c,d and Supplementary Fig. 1a). We
observed several significant differences between host-free and
host-contact structures. Strikingly, the length of the basal body in
the host-contact state is B4–5 nm shorter than that in the host-
free T3SS (29 versus 34 nm). This compaction is accompanied by
a subtle widening in the density corresponding to the cytosolic
domains of the export apparatus, although the outer diameters
and the overall architecture of the complex remain similar
(Fig. 2c,d and Supplementary Fig. 4b). The length reduction
occurs uniformly throughout the densities corresponding to the
inner membrane ring (CdsD) and the secretin (CdsC), suggesting
that the interacting periplasmic domains of these components are
involved in basal body contraction. This is consistent with the
basal bodies of the Y. enterocolitica T3SS that also exhibit
inherent flexibility in the host-free state, whereby the periplasmic
N-terminal secretin domains confer this plasticity20,29. Similarly,
the C-terminal periplasmic domains of Yersinia YscD, the major
component of the inner membrane ring, adopt extended or
compact conformations in isolation20. In contrast to the Shigella
and Salmonella inner membrane ring proteins9,12, CdsD is likely
fully extended. The CdsD cytoplasmic domain is considerably
larger than its homologues, as it contains an additional FHA
domain (Supplementary Fig. 5). This is consistent with the CdsD
N-terminus protruding further into the cytosol than in other
characterized T3SSs.

In addition to this contact-associated compression of the basal
body, the densities of the cytoplasmic sorting platform and the
ATPase are considerably more pronounced, despite the lower
resolution of the average structure (Fig. 2d and Supplementary
Movie 1). Similar to the S. flexneri T3SS (ref. 12), the sorting
platform exhibits six-fold symmetry, but the resolution of our
sub-tomogram average is too low to unequivocally determine the
symmetry of the basal body (Supplementary Fig. 6). Our data
suggest that the host-free sorting platform–ATPase complex is
either transiently associated with the basal body or adopts
variable orientations, thus causing it to be poorly resolved in the
averaged structure. Contact with a host membrane and
subsequent activation of type III secretion leads to a structural
stabilization in the C-ring sorting platform, yielding sharper and
better-defined features in the structure. However, the dimensions
of the sorting platform–ATPase complex are similar in the two
states, suggesting there is no compaction of the sorting platform
components during host membrane contact (Supplementary
Fig. 4b).
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Consistent with the constant distance between the bacterial
outer membrane and the host membrane at T3SS-mediated
contacts (Supplementary Fig. 4a), the host cell membrane is also
resolved in the sub-tomogram average despite being excluded
from the alignment mask (Fig. 2d). A pore-like density proximal
to the needle tip was evident in the host cell membrane, implying
the assembly of a continuum between the bacterial cytosol,
T3SS complex and the host cytosol. However, although
inherently suited to cryo-electron tomography, Chlamydiae
remain genetically intractable. Therefore, this intriguing struc-
ture cannot unequivocally be assigned as the T3SS translocon
in the absence of bacterial mutants lacking the predicted
CopB/CopD components30–32. While the inner membrane
deformation is apparently retained during stabilization of the
sorting platform–ATPase complex, the outer membrane adopts
an increased curvature, indicating that even the highly rigid
elementary body surface undergoes local adjustments on
needle–host contact. Indeed, the novel ring that surrounds the
emergent needle on the bacterial surface might facilitate such
flexibility (Supplementary Movie 1).

Structural heterogeneity of the C. trachomatis T3SS. While the
host-free and host-contact Chlamydia T3SS are structurally dis-
tinct, the individual complexes do not describe potential inter-
mediate states involved in T3SS activation. Therefore, to quantify
the extent of structural heterogeneity within the sub-tomograms,
we classified the chlamydial T3SS data set into five or ten classes
by multi-reference alignment (MRA). Alignment for MRA was
conducted using a bottle-shaped mask that included the basal
body, inner membrane and sorting platform–ATPase complex.
As would be expected due to the limited number of sub-tomo-
grams per class, the resulting class averages have a lower reso-
lution when compared with the structures of host-free and host-
contact T3SS that were generated from the respective complete
data sets. Nevertheless, the resulting class averages still revealed a
continuum of basal body lengths, ranging from 29 to 34 nm with
differing sorting platform–ATPase complex structures (Fig. 3 and
Supplementary Fig. 7). MRA classification was not biased by the
missing wedge of information, as there is no correlation between
particle orientation and class assignment (Supplementary Fig. 7).
Analysis of the class occupancy showed that the majority of host-
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Figure 2 | In situ structure of host-contact Chlamydia T3SS. (a,b) Central slices (10 nm thick) through denoised cryo-electron tomograms of an

elementary body bound to a HeLa cell plasma membrane via a type III secretion system (a) and within a vacuole of a U2OS cell (b). Magnified views and

the corresponding three-dimensional (3D) surface renderings are shown on the right. Outer (OM, green), inner (IM, cyan) and host membranes (HCM,

yellow) are indicated along with type III secretion systems (white arrowheads). Actin filaments (orange) and intracellular vesicles (brown) are present in

the host cell cytosol. (c) Central slice through the sub-tomogram average of the host-free (left) and host-contact (middle) C. trachomatis T3SS. In the

corresponding 3D surface rendering (right), secretin (orange), inner membrane ring (blue), sorting platform, export apparatus and ATPase (red) are

highlighted. Host cell membrane (light blue) is also visualized. (d) Side-by-side split-view comparison of host-free and host-contact Chlamydia T3SSs and

the corresponding surface renderings. Scale bars, (a,b) 200 nm (left) and 50 nm (right) and (c,d) 15 nm.
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contact T3SSs partitioned into classes with the shorter basal
bodies, whereas host-free T3SSs distributed into the classes
exhibiting longer basal bodies with a minority classifying as the
short form. Extracellular T3SSs attached to the plasma membrane
and T3SSs within a vacuole equally contributed to the classes with
short basal bodies, illustrating that there is no structural
distinction between these two host-contact sub-states and that
basal body compaction is likely not the result of physical con-
straints imposed by the vacuole. The structure of the cytosolic
sorting platform–ATPase complex had a varied appearance
across the classes containing longer basal bodies (heights from 32
to 34 nm). However, the associated density was significantly more
pronounced in the two classes with the shorter basal bodies
(heights from 29 to 31 nm), corresponding to the host-contact
state and appearing clearest in a single class (29 nm) (Fig. 3). This
suggests that active T3SSs may adopt different states on host
membrane contact with defined basal body lengths and different
sorting platform stabilities.

Discussion
We have resolved the first in situ structure of a bacterial T3SS in
contact with a eukaryotic host, revealing coordinated changes in
the needle, basal body and cytoplasmic sorting–ATPase complex
that accompany activation. Our data demonstrate that the T3SS
truly behaves as a ‘molecular syringe’, which contracts by
compressing the periplasmic domains of the basal body
components. Concomitantly, the sorting platform–ATPase

complex becomes stabilized, primed to engage effector substrates
for export (Fig. 4). The precise sequence of events underlying
secretion activation has not been completely established, but
current models suggest that the process is initiated when the
needle tip complex senses the host33,34. The tip complex may
then also function as an assembly template for the insertion
of the translocon into the host membrane35–37. Subsequent
conformational changes in the needle tip and the needle itself
presumably allow signals to be transmitted distally to the bacterial
cytosol38–40. Effectors destined for secretion are recruited to the
sorting platform and unfolded before transfer through a channel
within the basal body, the needle and finally across the host
plasma membrane13,41.

We suggest that on host membrane contact the basal body
favours the compact form and the sorting platform–ATPase
complex adopts a more consistent orientation. These changes are
accompanied by a subtle widening of the cytosolic aperture of the
export apparatus. Thus, this may reflect a superstructural state
that enables effector translocation across three membranes. Our
sub-tomogram classification reveals a continuum of T3SS forms
that favour extended or compact basal bodies in the cell-free and
cell-contact states, respectively. Chlamydial elementary bodies
present a polarized array of T3SSs to the host, but it is unlikely
that all the individual needles on the bacterial surface are
optimally positioned to actively engage the host cell surface, or
are necessarily simultaneously activated, resulting in a mixed but
morphologically biased population. Similarly, a proportion of the
host-free T3SSs cohort exhibits compact basal bodies (o30%),
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Figure 3 | Structural variability of Chlamydia T3SS sub-tomograms by multi-reference alignment. (a) Central slices through five class averages of

Chlamydia T3SSs generated by non-biased multi-reference alignment in Dynamo. The class averages are sorted by basal body height (h), which varies from

34 to 29 nm. (b) Distribution of host-free and host-contact Chlamydia T3SSs across the five classes depicted in a, sorted by basal body height. Host-contact

T3SSs were mainly present in classes with short basal bodies with defined sorting platform–ATPase complexes (classes 4 and 5). Scale bar, 15 nm.
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reminiscent of the contact state. This could be attributed to the
presence of artificial inducers such as serum- or cholesterol-
containing membrane fragments in the culture medium, which
can trigger type III secretion in chlamydial elementary bodies42.
Indeed, analysis of Yersinia T3SSs in the host-free state revealed a
similar distribution of extended and compact basal body
conformations under Ca2þ -depleted conditions, when secretion
is activated in the absence of host cells20. Such dynamic temporal
associations within the T3SS are further supported by recent
quantitative fluorescence approaches showing that YscQ, a major
component of the Yersinia sorting platform, exists both in stable
association with the T3SS and dissociated in a cytosolic pool43.
Interestingly, increased YscQ subunit exchange between the T3SS
and cytosolic pool was observed when secretion was induced
artificially, supporting the view that structural rearrangements
may occur in the sorting platform on activation. By contrast, the
analogous platform in related flagellar motors (FliG/M/N) is
constitutively associated with the basal body as it is essential for
transferring the torque to rotate the motor44. In virulence
systems, the sorting platform–ATPase complex may be involved
in activity-associated basal body contraction rather than
continuous rotation.

In addition to providing important general insights into the
structural transitions that accompany T3SS interaction with the
host membrane and effector translocation, our analyses have
revealed key structural distinctions between the chlamydial T3SS
and those already extensively studied in other pathogens. In
particular, while sharing distinguishing characteristics, the basal
body architecture is surprisingly divergent from canonical
examples, and the needle is associated with an additional ring-
like structure on the outer membrane surface. Further studies of
this system, expedited by emerging genetic techniques45,46, will
enable the precise assignment of chlamydial T3SS components
and advance the understanding of the evolution of virulence-
associated T3SSs.

Methods
Reagents, cell culture and Chlamydia propagation. All cell culture reagents were
purchased from Invitrogen. HeLa and U2OS cells were cultured in Dulbecco’s
modified eagle medium (high glucose with Glutamax) containing 10% fetal calf
serum and penicillin–streptomycin. C. trachomatis LGV2 serovars were propagated
in HeLa cells and stored at � 80 �C in sucrose–phosphate–glutamate buffer47.

Sample preparation. For preparation of Chlamydia-infected cells for cryo-electron
tomography, HeLa or U2OS cells were seeded into well plates and infected with
C. trachomatis LGV2 (MOI 5)18. The following day adherent cells were seeded
onto 200 mesh gold grids (R3.5/1; Quantifoil Micro Tools, Jena, Germany) at a
density of one or two cells per grid square. At B48 h post infection, EM grids with
or without host cells were introduced to the tissue culture dish and incubated with
the newly released elementary body progeny (15 min–1 h at 37 �C). Grids
were removed and rinsed in Hank’s buffered salt solution. Four microlitres of
BSA-coated gold (Sigma) was added to the grid before it was plunge frozen into
liquid ethane (Vitrobot Mark IV, FEI).

Salmonella enterica serovar Typhimurium strain DaraBAD1167::hilAþ
Dtar-flhD2039 DminCDE::tetRA was grown in Luria-Bertani broth (LB) overnight
at 37 �C with aeration. The following day, 50 ml of the overnight was subcultured
into 5 ml LB and supplemented with 0.1% L-arabinose and 10 mg ml� 1 tetracycline.
After 5 h, rods and cellular debris were isolated by centrifugation at 2,000g for
10 minutes at 4 �C. Minicells were isolated from the supernatant by centrifugation
at 15,300g for 10 min at 4 �C. The minicell pellet was resuspended in BSA-coated
colloidal gold (Sigma) and 4 ml of the suspension was added to Quantifoil grids
before being plunge frozen into liquid ethane.

Cryo-electron tomography. For cryo-electron tomography, single-axis tilt series
were collected with SerialEM48 on a 300-kV Tecnai Polara electron microscope
equipped with a K2 Summit direct electron detector and Quantum energy filter
(Gatan). An energy window of 20 eV was used for recording zero-loss images and
samples were maintained at liquid nitrogen temperatures. Images were recorded
over a range of � 60� to þ 45� with 3� increment at a 10-mm defocus and 5.4 Å
pixel size. Tilt images were collected as eight sub-frames in electron-counting mode
with a dose rate of six to seven electrons per pixel per second yielding a total dose
of 1.5 electrons per Å2 for each tilt image and a cumulative dose of 54 electrons per
Å2 for each tilt series. Sub-frames were aligned in Digital Micrograph before being
incorporated into the final image stack in SerialEM. Tilt images were aligned in
IMOD49 using 10-nm gold fiducials and CTF correction was applied before
tomogram reconstruction by weighted back-projection50. Nonlinear anisotropic
filtering was applied to tomograms for sub-tomogram identification and
selection51.
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Figure 4 | Model for activation of type III secretion. (Left) The Chlamydia type III secretion system basal body is composed of inner membrane rings

(CdsD and CdsJ; blue) and together with the outer membrane protein secretin (CdsC) form a multimeric channel spanning the entire periplasm. The

Chlamydia-specific N-domain (dark red), classical N-domains (yellow) and secretin homology domain (orange) of CdsC are indicated. The multiple

periplasmic domains of both the secretin and inner membrane rings are joined by linkers, which govern the flexibility and length adaption of the basal body.

In the host-free state (left), the basal body exhibits a length of 34 nm with needle 28 nm long. The major component of the export apparatus (CdsV) and

ATPase (CdsN) are present (red) but the sorting platform (CdsQ) is largely absent (red dashed lines; centre). On needle–host membrane contact, the

translocon is inserted into the plasma membrane, an event associated with conformational changes or elongation in the needle and tip complex. Following

activation (right), the basal body contracts 4 nm by compacting the periplasmic domains closer together. The sorting platform structurally stabilizes in the

cytosol, proximal to the basal body, primed for translocation of effectors.
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Image processing. Sub-tomogram positions were manually selected in IMOD and
extracted from raw tomograms using the dtcrop function in Dynamo52. Initial
alignment was performed manually with the Dynamo gallery. Further sub-
tomogram alignment and averaging was conducted in Dynamo with a modification
of splitting particles into two independent data sets for the final resolution
measurement. First, asymmetric averages were generated by aligning the outer and
the inner membranes separately. Six-fold rotational symmetry was detected in the
sorting platform by rotational correlation (Supplementary Fig. 6) and imposed for
further refinement. Twelve-fold symmetry was applied to the Chlamydia and
Salmonella basal body to increase the signal-to-noise ratio of the final structures, in
accordance with symmetry determined by single-particle analysis3. Note that
applying axial symmetry does not change interpretation of the data. After
convergence, the final structures from each data set were merged at the midpoint of
the volume and low-pass filtered to the detected resolution. Classification by multi-
reference alignment was performed by first generating 5 or 10 initial references by
adding 10% Gaussian noise to a global average (made from all B1,200 sub-
tomograms) yielding a signal-to-noise ratio of 0.9. Starting from an initial global
alignment, sub-tomograms were iteratively aligned to each reference using a bottle-
like alignment mask that encompassed the basal body, inner membrane and sorting
platform–ATPase. The maximum angular range used for searching was 6� and the
maximum shift allowed was 5 voxels. After each round of alignment, sub-
tomograms contribute once to the reference to which it had the highest correlation
coefficient. Class averages were produced after convergence when the sub-
tomograms no longer changed class memberships. Classification by principal
component analysis and k-means did not cleanly separate sub-tomograms into
groups with and without the sorting platform.

Segmentation, surface renderings and measurements. Automatic segmenta-
tion of membranes was performed with TomoSegMem53 and refined manually in
Amira (FEI Visualization Sciences Group, Massachusetts, USA). Segmentation of
actin filaments was conducted in IMOD. The EM Package for Amira was used to
map individual T3SS models into their corresponding positions in cryo-electron
tomograms54. Multiple sequence alignments were produced by ClustalW Omega55

and graphically illustrated with BOXSHADE. Distances between the bacterial outer
membrane and host membrane were measured in individual tomographic slices
where a T3SS needle contact was clearly resolved. Measurements were collected in
IMOD by drawing a line along the T3SS needle from the centre of the outer
membrane to the centre of the plasma membrane and calculating the number of
pixels the line spanned. For non-T3SS-mediated contacts, measurements were
collected from tomographic slices that depicted a constant spacing between the
non-T3SS containing bacterial hemisphere and the host plasma membrane. A line
perpendicular to the apposed membranes was drawn in IMOD and converted to
distance in pixels.
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