
ORIGINAL RESEARCH
published: 07 December 2017
doi: 10.3389/fnins.2017.00691

Frontiers in Neuroscience | www.frontiersin.org 1 December 2017 | Volume 11 | Article 691

Edited by:

Alberto Priori,

Università degli Studi di Milano, Italy

Reviewed by:

Makii Muthalib,

Université de Montpellier, France

Danny J. J. Wang,

University of Southern California,

United States

*Correspondence:

Bin He

binhe@umn.edu

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 08 July 2017

Accepted: 23 November 2017

Published: 07 December 2017

Citation:

Baxter BS, Edelman BJ,

Sohrabpour A and He B (2017) Anodal

Transcranial Direct Current Stimulation

Increases Bilateral Directed Brain

Connectivity during Motor-Imagery

Based Brain-Computer Interface

Control. Front. Neurosci. 11:691.

doi: 10.3389/fnins.2017.00691

Anodal Transcranial Direct Current
Stimulation Increases Bilateral
Directed Brain Connectivity during
Motor-Imagery Based
Brain-Computer Interface Control
Bryan S. Baxter 1, Bradley J. Edelman 1, Abbas Sohrabpour 1 and Bin He 1, 2*

1Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States, 2 Institute for Engineering

in Medicine, University of Minnesota, Minneapolis, MN, United States

Transcranial direct current stimulation (tDCS) has been shown to affect motor and

cognitive task performance and learning when applied to brain areas involved in the

task. Targeted stimulation has also been found to alter connectivity within the stimulated

hemisphere during rest. However, the connectivity effect of the interaction of endogenous

task specific activity and targeted stimulation is unclear. This study examined the

aftereffects of concurrent anodal high-definition tDCS over the left sensorimotor cortex

with motor network connectivity during a one-dimensional EEG based sensorimotor

rhythm brain-computer interface (SMR-BCI) task. Directed connectivity following anodal

tDCS illustrates altered connections bilaterally between frontal and parietal regions, and

these alterations occur in a task specific manner; connections between similar cortical

regions are altered differentially during left and right imagination trials. During right-hand

imagination following anodal tDCS, there was an increase in outflow from the left

premotor cortex (PMC) to multiple regions bilaterally in the motor network and increased

inflow to the stimulated sensorimotor cortex from the ipsilateral PMC and contralateral

sensorimotor cortex. During left-hand imagination following anodal tDCS, there was

increased outflow from the stimulated sensorimotor cortex to regions across the motor

network. Significant correlations between connectivity and the behavioral measures of

total correct trials and time-to-hit (TTH) correct trials were also found, specifically that

the input to the left PMC correlated with decreased right hand imagination performance

and that flow from the ipsilateral posterior parietal cortex (PPC) to midline sensorimotor

cortex correlated with improved performance for both right and left hand imagination.

These results indicate that tDCS interacts with task-specific endogenous activity to alter

directed connectivity during SMR-BCI. In order to predict and maximize the targeted

effect of tDCS, the interaction of stimulation with the dynamics of endogenous activity

needs to be examined comprehensively and understood.
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INTRODUCTION

Transcranial Direct Current Stimulation
Transcranial direct current stimulation (tDCS) of the human
brain has been increasingly investigated with the resurgence
of research into the effects of noninvasive electrical brain
stimulation in the early 2000s (Nitsche and Paulus, 2000; Johnson
et al., 2013; Paulus and Opitz, 2013; Bestmann et al., 2015). tDCS
consists of injecting a low level of current (generally<2mA) into
the head of a subject through multiple electrodes located on the
scalp or extracephalically. Modeling studies using both standard
two-electrode and multi-electrode configurations have found
that current reaches the cortex, and depending on electrode
configuration, deeper brain structures, with levels that have been
shown in vitro to affect the potential of spontaneous neuronal
firing (Bikson et al., 2004; Sadleir et al., 2010; Kabakov et al.,
2012; Kuo et al., 2013; Opitz et al., 2016). These neuronal effects
most likely stem from a variety of sources including membrane
depolarization and hyperpolarization of the dendrites and axons
of pyramidal cells as well as secondary effects on membrane
resistance (Stagg and Nitsche, 2011; Paulus and Rothwell, 2016).
Behaviorally, the effects of tDCS on the motor system have
been found to affect motor performance and learning when
the motor network is stimulated (Reis et al., 2009; Reis and
Fritsch, 2011; Buch et al., 2017). A variety of electrophysiological,
hemodynamic, and spectroscopic methods have been used to
investigate alterations of neural activity from tDCS including
increases in the BOLD signal and alterations in excitatory and
inhibitory neurotransmitter balance (Jang et al., 2009; Stagg et al.,
2009; Antal et al., 2011; Zaehle et al., 2011; Jog et al., 2016;
Muthalib et al., 2017). The in vivo effects of tDCS on endogenous
resting and task specific brain oscillations is less well-understood,
and has only recently begun to be investigated with EEG, MEG,
and invasive recordings (Soekadar et al., 2013, 2014; Notturno
et al., 2014; Roy et al., 2014; Bergmann et al., 2016; Opitz et al.,
2016; Krause et al., 2017).

An emerging hypothesis relating the effect of noninvasive
neuromodulation to brain activity utilizes a long-term
potentiation rationale for targeting brain areas that are
specifically active during a task or rest (Bikson and Rahman,
2013). Fox et al. examined the effects of transcranial magnetic
stimulation (TMS) targeting and found specifically that
if the areas targeted overlapped with correlated or anti-
correlated resting state networks, as determined by fMRI,
there was an effect on neurological symptoms in patients
(Fox et al., 2014). Further work using a similar approach
for targeting resting state activity in the motor network
with tDCS found an increase in excitability with anodal
stimulation of correlated areas as compared to anodal-cathodal
stimulation of anti-correlated areas (Fisher et al., 2017).
Concurrent stimulation of involved areas during motor
performance and learning has specifically led to improvements
in performance compared to stimulation prior to, or after,
task performance (Buch et al., 2017). Our group recently
found a decrease in time to hit and an increase in EEG alpha
and beta band power following simultaneous tDCS over
the sensorimotor cortex during motor imagery based EEG

brain-computer interface (BCI) performance (Baxter et al.,
2016).

The Motor System and Noninvasive
Brain-Computer Interfaces
The development of noninvasive BCI has allowed individuals
with motor dysfunctions to control computers and devices in
the lab (Wolpaw et al., 1991; Mak and Wolpaw, 2009; Millán
et al., 2010; He et al., 2013, 2015; Scherer and Pfurtscheller, 2013;
Yuan and He, 2014) and in the home (Sellers et al., 2009) in
real-time using self-modulated brain rhythms or external stimuli.
A predominant paradigm for continuous control of an output
device is using motor imagination (MI) with sensorimotor
rhythm modulation. In order to voluntarily modulate their
sensorimotor rhythms, subjects kinesthetically imagine moving
a body part without executing the movement. This imagination
engages similar networks to motor execution (ME) and generates
an event related desynchronization in alpha (8–13Hz) or beta
(15–30Hz) frequencies, corresponding to a local decrease in
power (Pfurtscheller and Lopes da Silva, 1999; Lotze and
Halsband, 2006), in the sensorimotor cortical areas responsible
for controlling the body part. An event-related synchronization
also may occur in contralateral sensorimotor regions. A recent
meta-analysis of fMRI studies found premotor (PMC) and
somatosensory (S1) regions predominantly active during MI as
well as more distributed areas in the frontal and parietal cortices,
including the inferior frontal gyrus, supplementary motor area
(SMA), primary motor cortex (M1), and superior parietal cortex
(PC) (Hétu et al., 2013). While fMRI yields precise localization of
an indirect measure of neuronal activity, the temporal resolution
is on the order of seconds which does not allow an examination
of most oscillatory dynamics.

Regions of the motor network are thought to be responsible
for similar tasks during both ME and MI, though there are
some known differences in network activity between these two
cognitive actions. The PMC is involved in both execution and
imagination though different sub-domains are active in each.
The PMC is left hemisphere lateralized and is used for motor
planning and selection, including selecting the hand to perform
a unimanual task (Rushworth et al., 2003). The dorsal PMC
also bilaterally increases in activation for contralateral hand
execution. For MI, the dorsal and ventral PMC are specifically
active (Lotze and Halsband, 2006). The pre- and post-SMA
is involved in motor movement preparation, initiation, and
execution (Lotze and Halsband, 2006). For MI, the posterior
regions of the SMA are specifically active. The sensorimotor
cortex (SMC) is involved in bothME and kinesthetic imagination
but the degree of activation may depend on the complexity
of the imagery movement (Lotze and Halsband, 2006). The
contralateral primary motor cortex is active during ME with the
contralateral S1 cortex activated with sensory feedback, such as
the feeling of pressure on the hand when closing your fingers into
a fist. In addition to this activation, there is inhibition from the
activated hemisphere to motor cortex ipsilateral to the executed
hand movement. The PC, and specifically the PPC is involved
in motor preparation and attention as well as visual motor
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transformation and performing visuo-motor tasks (Andersen
and Buneo, 2002; Rushworth et al., 2003). Duringmotor imagery,
orienting visual attention with or without arm movements leads
to BOLD increase in differing areas of the PC; these areas may
be somewhat lateralized to the left hemisphere (Rushworth et al.,
2001). During BCI performance, subjects likely direct visual
attention and eye movement to the target and to the cursor
during the feedback phase, though this may not be the case when
subjects are solely performing MI. In addition to these cortical
areas, the cerebellum and subcortical regions are also involved in
both ME and MI (Lotze et al., 1999; Lotze and Halsband, 2006).

Source Imaging and BCIs
The temporal resolution of EEG is on the order of milliseconds
but standard analysis of EEG data on the sensor level does not
allow for high spatial resolution. Source imaging, which involves
solving the inverse problem of mapping EEG sensor activity to
the brain using Maxwell’s equations and the physical properties
of head tissues, has been developed over the last few decades (He
et al., 1987, 2011b; Hämäläinen and Sarvas, 1989). Based on the
specific algorithm for performing this transformation, modeling
and event-related potential studies have found localization errors
of 7mm or less (Michel et al., 2004; Im et al., 2007). Source
imaging analysis of MI both without and with feedback has been
demonstrated to have higher signal-to-noise ratio than sensor
data, which can lead to improved MI classification (Qin et al.,
2004; Kamousi et al., 2005, 2007; Cincotti et al., 2008; Yuan et al.,
2008; Edelman et al., 2016). While source based analysis allows
us to examine how brain areas are active over time, more explicit
analysis of the interaction of different brain areas are needed
to functionally understand how information flows within the
network.

Connectivity
There are multiple families of methods that have been used to
examine undirected and directed connectivity during cognitive
tasks following tDCS using both direct electrophysiological and
indirect hemodynamic measurements (Meinzer et al., 2012; Luft
et al., 2014). The two activity based classes of connectivity are
directed connectivity and functional connectivity; the former is
measured via causal directional relationships between two time
series, while the latter is measured as a correlation or anti-
correlation between two time series (Kaminski and Blinowska,
1991; Baccalá and Sameshima, 2001; Babiloni et al., 2005; Astolfi
et al., 2007; He et al., 2011a; Friston et al., 2013).

Connectivity in the Motor System
The connectivity of networks underlying ME and MI has been
studied extensively. The unilateral left and right hand ME
and motor imagery networks have been compared by applying
directed connectivity to fMRI data (Gao et al., 2011). Gao and
colleagues reported stronger connectivity amongst the motor
network inME thanMI. They found significant intrahemispheric
connections within the contralateral hemisphere and between the
contralateral and ipsilateral PMC and PPC. Anwar and colleagues
used multimodal imaging to examine effective and functional
connectivity across the motor network during right-hand finger

movement task performance while recording with multiple
modalities including fMRI, fNIRS, sensor-based EEG, and
source-based EEG and found bidirectional connections between
the right dorsolateral prefrontal cortex (DLPFC), right PMC and
right SMC (Anwar et al., 2016). Importantly, they found source-
based EEG analysis to have the greatest unidirectional flow from
SMC to PMC, SMC to DLPFC, and PMC to DLPFC. Other
studies have found that PPC is connected to the posterior SMA
and PMC (Rizzolatti et al., 1998; Lotze and Halsband, 2006;
Davare et al., 2010). Frequency specific connectivity during MI
have also been evaluated, though these analyses have generally
been confined to the SMC (Kuś et al., 2006; Hamedi et al., 2016).
These works examined time and frequency based measures
such as Granger causality and coherence metrics and found
connections both unilaterally and bilaterally between the SMC
and frontal areas during MI. Specific to the BCI context, Billinger
and colleagues investigated single trial offline task classification
using sensor and source based connectivity measures and found
no improvement over power and frequency based features
for either sensor or source based analysis (Billinger et al.,
2013).

The functionality of these connections has also been
investigated through a variety of modalities. The PMC is
directly connected to the primary motor cortex; using TMS, the
PMC has been found to influence the primary motor cortex
during ME depending on parameters of the task, including
force delivered and precision of movements, and that this
connection is inhibitory during rest (Grafton, 2010; Davare
et al., 2011). Connections from the SMA to SMC and PMC
inhibit movement execution during MI (Kasess et al., 2008).
The function of interhemispheric connections across the corpus
callosum between bilateral regions, either inhibitory, excitatory,
or both, is an ongoing debate in literature (van der Knaap and
van der Ham, 2011).

Connectivity and tDCS
Connectivity analysis using EEG following transcranial current
stimulation was initially performed by Polania et al. who found
that after the application of anodal tDCS during rest there was
an increase in undirected intrahemispheric connectivity in the
alpha, beta and high gamma frequencies near the stimulating
electrode, and decreased interhemispheric connectivity in the
alpha and beta bands, both during motor task performance
(Polanía et al., 2011). Further studies examining effects on the
motor network also found brain state dependent effects following
stimulation. Feurra and colleagues found an increase in TMS
MEP amplitude during MI following resting state anodal tDCS
of the right PC, whereas this effect was not present during motor
action observation (Feurra et al., 2011). Notturno and colleagues
examined EEG functional connectivity using coherence and
found no difference between anodal and sham stimulation of
the motor cortex during motor movement, but altered coherence
during rest (Notturno et al., 2014). Polania et al. also examined
cortical-subcortical connections with fMRI and found increased
functional connectivity between the left primary motor cortex
(M1) and the ipsilateral thalamus and caudate nucleus following
anodal stimulation (Polanía et al., 2012). Sehm et al. found

Frontiers in Neuroscience | www.frontiersin.org 3 December 2017 | Volume 11 | Article 691

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Baxter et al. tDCS Increases Connectivity during BCI

functional connectivity effects on the resting state network
during and after anodal stimulation of unilateral and bilateral
primary S1 (Sehm et al., 2012). Holland et al. examined effective
connectivity during a visual object naming task within the
left frontal cortex using DCM on concurrent tDCS-fMRI of
the inferior frontal cortex. They found a stronger negative
backward connection from inferior frontal sulcus to ventral
PMC during anodal stimulation compared to sham indicating
stronger inhibition from IFS to vPMC, and behaviorally found
improved reaction time. Further work examining both task
specific (Meinzer et al., 2012) and resting state has shown
similar effects due to anodal stimulation (Keeser et al., 2011;
Peña-Gómez et al., 2012; Amadi et al., 2014). Combined, these
results suggest anodal stimulation increases connectivity near
the stimulation electrode as well as to more distant sites intra-
and interhemispherically, though the specific effects and regions
affected are dependent on the task being performed, the networks
involved in the task, and the regions connected to the stimulated
area.

Motivation
Sensorimotor rhythm-based BCI is a useful experimental
technology to evaluate the interaction of stimulation and
endogenous event-related oscillations as unilateral hand
imaginations yield different bilateral signals generated by
the sensorimotor cortex. Previously we reported changes in
performance and localized alpha and beta band power following
anodal stimulation (Baxter et al., 2016). The aims of this study
were two-fold: (1) to determine connectivity changes during
sensorimotor rhythm-based BCI control following simultaneous
anodal high-definition (HD)-tDCS of the sensorimotor cortex,
and (2) to examine correlations between behavioral metrics and
connectivity patterns within the motor imagery network. We
utilize HD-tDCS as, based on theory and simulation studies, the
current is confined to a smaller region of the brain compared to
conventional tDCS, allowing for more precise localization of the
effect of stimulation (Dmochowski et al., 2011; Kuo et al., 2013).
This improved localization allows us to better understand the
effect of local stimulation on both nearby and remote areas, as
well as the interconnections of these areas.

We analyzed data recorded during sensorimotor rhythm
BCI performance while subjects controlled a moving cursor
on the screen prior to and following anodal stimulation of
the left sensorimotor cortex. We used a data-driven approach
to determine regions-of-interest during BCI control across the
cortex, calculated the connectivity between these regions, and
determined the changes that resulted from the tDCS. We
found alterations in the connectivity of the network based on
the laterality of the hand imagination, with a greater number
of changes in connectivity during right hand imagination. In
addition, we examined the relationship between performance
and connectivity measures and found both significant positive
and negative correlations between specific connections and
performance measures. By combining analyses of connectivity
changes after stimulation and the correlations of connectivity
values with performance, we aim to inform the functional
targeting of networks of interest to maximize stimulation effects

and develop multifocal closed loop-noninvasive stimulation on a
subject specific level.

MATERIALS AND METHODS

Experimental Setup
Twelve right-handed healthy subjects (8 female) naive to motor
imagery (MI) BCI control participated in these experiments
(Age: 19–39 years; Mean: 23.58 years; SD: 4.97 years). Subjects
were randomly assigned to either Anode or Sham stimulation
groups. Included subjects had >62.5% mean accuracy and were
considered to have competent control of the BCI (Anode: 72 ±

2% and Sham: 69 ± 2%; mean ± standard error). All procedures
and protocols were approved by the University of Minnesota
Institutional Review Board.

A 64-channel Biosemi EEG cap with active electrodes and
an ActiveTwo amplifier were used to record the EEG signal at
1024Hz (BioSemi, Amsterdam, Netherlands). A tDCS device
with a high-definition (4 × 1) tDCS adapter was used in a
Laplacian configuration to deliver 2mA of current to the center
electrode with four return electrodes (Soterix Medical, NY, USA).
Conductive gel (Signa Gel, Cortech Solutions) was applied to
reduce electrode offsets to below 30mV for EEG electrodes
and impedances under 1 k� for tDCS electrodes. The EEG
cap was adapted to fit HD-tDCS electrodes adjacent to EEG
electrodes arranged according to the international 10/20 system.
The center electrode (anode) was placed between C3/CP3 and
surround electrodes (cathodes) were placed between CP3/P3,
C1/FC1, C5/FC5, and C3/FC3 at a radius of 3.5 cm from the
center electrode. For the Anodal group, stimulation consisted
of 20min of 2mA stimulation with a 30 s ramp up at the
start of stimulation and a 30 s ramp down at the end. For the
Sham group, for stimulation, the tDCS device ramped up and
down over approximately 45 s at the beginning and end of the
20min.

Subjects were seated in a chair 90 cm from an LCD
monitor where experimental stimuli were displayed. Subjects
were instructed to remain still during the experimental trials.
BCI2000 software was used to present experimental stimuli and
record EEG data. Subjects were instructed to kinesthetically
imagine opening and closing their respective hand unilaterally
based on the target location. The trial structure consisted of
a baseline rest period (3 s), planning phase (3 s), and online
performance (6 s maximum). Subjects performed 72 trials of the
left/right BCI task before stimulation (Prestim); the first 18 trials
were removed as at the start of each session the normalizer,
embedded in the software, needed to adjust for the subject and
session. Following this, the tDCS system was turned on and
stimulation was started. During stimulation, subjects performed
90–108 trials depending on individual resting time between runs.
The tDCS device was then turned off and the subject immediately
performed 72 trials (Post0), followed by a visual oddball task for
13min to engage the subject in a controlled task, while allowing
a rest from the BCI task. Finally, subjects performed 72 trials
during the delayed time period from approximately 25 to 37min
post stimulation (Post25). Subjects participated in three sessions
with the time between sessions at least 48 h.
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The control system used the autoregressive filter implemented
in BCI2000 (Schalk et al., 2004) to estimate the 11–13Hz power at
the C3/C4 electrodes before and after stimulation to control the
cursor during the BCI task. During stimulation, C3 was usually
affected by stimulation artifacts and was removed on a session
by session basis; in these circumstances a surrounding electrode
that was not affected by stimulation artifacts was used instead
(see Figure 2 for example EEG traces of control electrodes). The
control signal was calculated based on a linear classifier with
inputs composed of the positively weighted power in C4 and the
negatively weighted power in C3. A normalizer was used with the
classifier to reduce any directional bias in the cursor movement
due to a subject’s difference in relative power between C3 and C4.
After each trial, the normalizer removed the offset by subtracting
the mean and scaling the classifier output to unit variance based
on the weighted sum of C3 and C4 during the online period of
the preceding 30 s. For further details see (Baxter et al., 2016).

Behavioral Measures
The time-to-hit (TTH) behavioral metric is the time from the
beginning of the feedback period of a trial to the time the cursor
hits the target; subjects had a maximum of 6 s to hit the target.
The total correct behavioral metric is the total number of correct
trials in each block. Both metrics were divided into right and left
hand trials due to previous results suggesting there are directional
effects of stimulation (Baxter et al., 2016).

Signal Processing
Raw data was high pass filtered within hardware at 1Hz
and notch filtered at 60Hz. Offline processing was performed
using custom scripts utilizing the EEGLAB toolbox (Delorme
and Makeig, 2004) in Matlab (The Mathworks, Inc., MA,
USA). Data was low pass filtered at 110Hz and the mean of
each channel was removed. Electrodes were referenced to the
common average and downsampled to 250Hz. Independent
Component Analysis (fast-ICA) (Hyvarinen, 1999) was run on
concatenated data from all non-stimulation blocks for each
session. Components corresponding to eye movement, eye blink,
and muscle artifact were removed (Jung et al., 2000). We visually
examined the EEG time course data and removed electrodes
that displayed a drift from their mean over time and spherically
interpolated their activity (Delorme and Makeig, 2004); these
were primarily prefrontal or temporal electrodes. Those trials
that were contaminated with artifacts during baseline or task
performance, respectively, not removed by ICA were discarded.
Following removal and interpolation of bad channels, and
removal of trials with significant artifactual activity, channels
were rereferened to the common average and channel means
were removed.

For the mean baseline values used to characterize the noise
for source imaging, we included all clean trials remaining
after artifact rejection and preprocessing. The 1 s prior to the
appearance of the target, during the inter-trial interval, was used
as the baseline. For analysis, we removed the first 500ms of the
trial, as there was frequently an ERP artifact due to the cursor
appearance, as well as the final 250ms of the trial, as there was
frequently an additional artifact. The data within the 500ms time

window that contained the largest power difference was then
used for the analysis of the online data. The time courses were
detrended and standardized prior to model fitting and further
analysis.

Source Analysis
The BEM forward model was calculated using OPENMEEG
(Gramfort et al., 2010) with relative conductivity values of
Skin/Skull/Brain: (1/0.0125/1) using a quasistatic approximation
mapping 64 electrodes to 15,002 dipoles covering the entire
cortical surface. A common head model based on the Colin27
head was used for all source analysis with electrodes located in
the Biosemi 64 channel EEG configuration. M = GD, with M
indicating the EEG sensor measured values, G indicating the
gain matrix from the forward problem mapping of noiseless data
from the dipole sources to the sensors, and D indicating the
dipole current source density. As this is an underdetermined
problem, we employed Tikhonov regularization with the
weighted minimum norm approach to estimate the dipole
current density distribution using Brainstorm (Lawson and
Hanson, 1987; Hämäläinen and Ilmoniemi, 1994; Tadel et al.,
2011). The weighted minimum norm solution is given by

D̂ =

(
WTW

)−1
GT

(
G
(
WTW

)−1
GT

+ λI

)−1

M

where D̂ is the estimated dipole cortical current density (CCD),
W is the weight matrix, λ is the regularization parameter, and I is
the identity matrix (Grech et al., 2008). Where W = � ⊗ I with
⊗ denoting the Kronecker product and � being the norm of the
columns of G.

The alpha power during the trial and baseline period was
computed using 1Hz resolution Morlet wavelets. The real and
imaginary components were separately used to calculate the
inverse for each set of values for each trial. To calculate the noise
covariance matrix for the inverse calculation, the baseline data
from 1 s prior to the start of the trial was mean subtracted on a
trial by trail basis. The noise covariance was calculated for each
trial and the final matrix was the mean of all artifact free trial
matrices for each specific block. To increase the robustness of the
solution, we assumed covariance between channels was zero and
used the diagonal of the matrix. The orientation of dipoles on
the cortical surface were constrained perpendicular to the surface
under the assumption that the primary source of the EEG is
coherent postsynaptic potentials across populations of pyramidal
neurons that are arranged perpendicular to the cortical surface
(Buzsáki et al., 2012).

ROI Selection
Our ROI selection method utilized a pipeline similar to our
previous work (Yuan et al., 2008). The time course of each
electrode was transformed into its time-frequency representation
using a 1Hz band Morlet wavelet and the power in each time
window and frequency band (from 1 to 50Hz) was computed
(Qin and He, 2005). Mean amplitude at each sensor in the alpha
band (8–13Hz) was calculated with the real and imaginary parts.
Source imaging was then performed with the real and imaginary
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parts separately to obtain the corresponding CCD amplitudes
which were then combined to compute a total frequency-specific
CCD.

Group level ROI selection was performed iteratively based on
the mean CCD across all subjects for all sessions. First, all dipoles
were assigned an alpha-band score based on the mean CCD
across subjects and sessions which was calculated at each dipole
over the entire control period for each trial. The dipole with the
largest alpha-band score was taken as the center of the first ROI.
The extent of the ROI was taken as other dipoles within a 2 cm
radius that had an alpha-band score of at least one-quarter of the
center dipole. The alpha-band score of all dipoles within a 3 cm
radius were then set to zero, and the largest alpha-band score of
those remaining was selected and this proceeded iteratively until
the top 10 ROIs were determined. ROIs to analyze further for
connectivity were selected from the aforementioned set based on
knowledge of active areas during MI and BCI task performance
(Lotze and Halsband, 2006; Hétu et al., 2013) and were limited to
the frontal and parietal cortices. ROI were determined separately
for left and right hand imagination (Figure 1). For both left and
right hand imagination the center of the ROIs were located in 1.
Right sensorimotor cortex (SMC), encompassing sections of the
premotor, primarymotor, and S1 cortices; 2. Left premotor cortex
(PMC); 3 SMA, encompassing sections of the SMA bilaterally; 4.
Left SMC, encompassing sections of the premotor, motor, and
S1 cortex; 5. Bilateral midline SMC. In addition, for left hand
imagination, the left PPC was included whereas for right hand
imagination the right PPC was included.

Subject specific ROIs on a session by session basis were
determined by calculating the highest alpha-band scores across
cortical dipoles for each subject within each session, within each
of the global ROIs. The ROI activity time course was calculated
by taking the mean of the dipoles within a 5mm radius around
the peak dipole. These time courses were used as a source-
based virtual channels for analysis. These virtual channels were
utilized for fitting the multivariate autoregressive model (MVAR)
followed by analysis using the directed transfer function. An
overview of the processing pipeline is illustrated in Figure 2A.

Connectivity Analysis
The multivariate autoregressive model is defined by

X (t) +

P∑

j=1

A
(
j
)
X
(
t − j

)
= E(t)

Where X (t) = [X1 (t) ,X2 (t) , . . .Xk (t)]T are the k time series
at time t and E (t) = [E1 (t) ,E2 (t) , . . .Ek (t)]T are the k white

noise values at time t, and A
(
j
)
=

(
A11

(
j
)
. . . A1k

(
j
)

Ak1

(
j
)
. . . Akk

(
j
)
)
for j =

1,. . . ,p are model parameters derived from the data.
E(t) is the uncorrelated white noise input driving the system

with zero mean. The number of channels, k, was determined
based on the number of ROIs chosen for connectivity. Model
order, P, was determined using the AIC with the ARfit toolbox
(Schneider and Neumaier, 2001) with each trial in each block
being independently fit, then themean of all trials per block taken

as the order for all trials in that block, and each trial refit using
the specified model order for that block. For most trials, cross
and autocorrelation across 20 time lags exceeded the 2/sqrt(Nt)
threshold, where Nt indicates the number of time points in the
analysis window, which is a measure of the goodness of fit of the
MVAR model, <10% of the time (Ding et al., 2000).

The directed transfer function calculates the connectivity
between regions of interest for each frequency of interest. The
directed transfer function evaluates the directed influence from
one channel to another based on MVAR model fit to the data
(Kaminski and Blinowska, 1991; Kaminski et al., 2001).

X
(
f
)
= H

(
f
)
E(f )

Where H is the transfer matrix defined in the frequency domain
as [where A(0) is the identity matrix].

H
(
f
)
=

( p∑

m=0

A(m)e−2πimf1t

)−1

This can then be normalized to the total inflow to each channel
yielding the normalized directed transfer function.

γ 2
ij

(
f
)
=

∣∣Hij(f )
∣∣2

∑k
m=1

∣∣Him(f )
∣∣2

Statistical Analysis
All statistics were performed in R. In order to evaluate changes
in connectivity following stimulation, we subtracted the pre-
stimulation connectivity values from the Post0 and Post25
connectivity values to calculate mean difference values. We
applied a general linear model using the nlme package with
fixed effects of condition (anode or sham), and random effects of
session nested within each subject. The Shapiro test was used to
evaluate the Gaussianity of connectivity values and the residuals
of the model fit, if Gaussianity was significantly rejected for
both of these measures (p < 0.05) non-parametric statistical
tests (Wilcoxon rank sum test) were used to compare subject
mean post-stimulation values across conditions; two sample for
between groups and one sample for change from baseline. All
values reported in text are mean ± standard error. p-values are
uncorrected unless otherwise indicated. Cohen’s d effect sizes
were computed between conditions on normally distributed data
using the compute.es package.

A generalized linear model with the fixed effects of each
connectivity value and random effect of subject with levels
by session and block was used to examine the relationship
between behavioral measures and connectivity across all subjects
regardless of condition. A Poisson link function was used when
analyzing the number of correct trials; for time to hit, a Gamma
link function was used as this empirically fit the data well.
p-values are uncorrected unless otherwise indicated.

RESULTS

Composite inflow and outflow characterize the sum influence
to and from each ROI (Figure 3). For left hand imagination
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FIGURE 1 | Group level regions of interest for left and right hand imagination. Black sphere indicates the center of the ROI. SMC, Sensorimotor Cortex; SMA,

supplementary motor area; PMC, premotor cortex; PPC, posterior parietal cortex.

inflow to the left PMC is largest, while outflow from the left
SMC is largest. The difference between inflow and outflow is
most positive in the right SMC and left PMC, while the left
SMC and midline SMC have the most negative difference. For
right hand imagination the greatest inflow is to the left PMC,
which also has the largest difference between inflow and outflow.
Within each target direction and condition, only a single ROI
showed a significant difference in inflow or outflow between
post-stimulation time points (Wilcoxon rank sum, p < 0.05
uncorrected) therefore the mean of these time points on a subject
by subject basis was taken for further analyses. In general, there
was a trend toward higher inflow and outflow at the Post25 time
point compared to the Post0 time point. Total inflow to and
outflow from ROIs in the alpha and beta bands changed based
on laterality of hand imagination and stimulation condition
as measured by the normalized DTF (Figure 4). For left-hand
imagination there was a difference in total outflow from the left
sensorimotor cortex between groups (p = 00048; d = 2.93), with
a significant increase from pre-stimulation in the anodal group
(0.19± 0.05; p= 0.016).

For right-hand imagination there was a significant difference
in outflow from left PMC between groups (p = 0.0084; d =

1.89). There were significant increases in connectivity values
in the anodal group across multiple areas of interest including
inflow to SMA (0.06 ± 0.015; p = 0.003), midline SMC (0.068
± 0.018; p = 0.006), and right PPC (0.062 ± 0.019; p = 0.020)
and outflow from left SMC (0.063 ± 0.034; p = 0.031), left PM
(0.082 ± 0.017; p = 0.011), and right SMC (0.097 ± 0.030; p =

0.028) and in the sham group in SMA inflow (0.054 ± 0.016;
p= 0.02).

In the beta band there were similar changes from pre-
stimulation as there were in the alpha band. There were
significant differences in beta frequency band connectivity within
and between conditions (Figure 5). For left-hand imagination
there was a difference between conditions of outflow from the
left PPC (p = 0.048; d = 1.30). There was a significant increase

in inflow to the left SMC following anodal stimulation (046 ±

0.015; p = 0.025), and a significant increase to the midline SMC
in the sham group (0.045 ± 0.015; p = 0.043). For right-hand
imagination there was a significant difference in inflow to the
right PPC between groups (p = 0.0097; d = 1.83) and outflow
from the right SMC (p = 0.0075; d = 1.93) and left PMC (p =

0.0023; d = 2.34). There was an increase in SMA (0.032 ± 0.012;
p = 0.044), midline SMC (0.042 ± 0.009; p = 0.0023), and right
PPC (0.050 ± 0.016; p = 0.028) inflow and right SMC (0.087
± 0.018; p = 0.0016) and left PMC (0.076 ± 0.017; p = 0.013)
outflow following anodal stimulation.

Directed connections between the ROIs in the alpha
band display further differences due to HD-tDCS based on
the laterality of hand imagination (Figure 6). For left-hand
imagination there were significant differences between groups for
output from the left SMC to right SMC (p = 0.011; d = 1.81),
left PMC (p = 0.031; d =1.45), midline SMC (p = 0.048; d =

1.30), and left PPC (p= 0.0037; d = 2.17), with the anodal group
having a greater increase than the sham group. The anodal group
had increased flow from right SMC to SMA (0.0086± 0.0030; p=
0.010) and left SMC to right PMC (0.070± 0.017; p= 0.0084) and
SMA (0.029 ± 0.009; p = 0.028). The sham group had increased
connectivity from SMA to right PPC (0.015± 0.0065; p= 0.043)
and midline SMC to right SMC (−0.029± 0.013; p= 0.036).

For right-hand imagination there were differences between
groups from left PMC to left SMC (p= 0.037; d = 1.64), midline
SMC (p = 0.033; d = 1.42), and right PPC (p = 0.002; d = 2.37)
with higher changes in connectivity in the anodal group. For the
anodal group there was increased connectivity from right SMC to
left PMC (0.023± 0.007; p= 0.021) and left SMC (0.021± 0.009;
p = 0.043), from left PMC to right PMC (0.011 ± 0.005; p =

0.03), left SMC (0.038 ± 0.017; p = 0.037), and right PPC (0.016
± 0.005; p = 0.0039), and from midline SMC to SMA (0.009 ±

0.004; p = 0.043). For the sham group increased connectivity
from left SMC to right PPC (0.027 ± 0.007; p = 0.023), and
midline SMC to SMA (0.026± 0.010; p= 0.021).
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FIGURE 2 | Processing pipeline and EEG data. (A) Data analysis processing pipeline. The starting point is the task visualization which is controlled by the EEG data.

The included time-frequency transform is an example of a correct trial of right hand imagination, the white bar indicates when online feedback began. The sensor level

topograph illustrates alpha band activity during an example trial. The source imaging distribution illustrates the mean alpha power distribution across all subjects for

right hand imagination. ROI selection is performed based on the identification of the ROIs described within the text. The peak ROIs are found for each subject each

session and the trial specific time courses are extracted and fit with a multivariate autoregressive model to which the directed transfer function is applied. (B) Example

EEG time course from before, during, and after stimulation. Red trace is C3; Black is C4. Light blue line represents when the trial ended; purple line indicates when the

feedback period began.

In order to examine the relationship between alpha band
connectivity values and behavioral performance metrics we
utilized a generalized linear model with each normalized
connectivity value as a fixed effect within the same model.
Behavioral metrics across all subjects were: Mean time to hit
correct targets for right-hand trials (RH) was 3.511 ± 0.337 s
and left-hand trials (LH) was 3.718 ± 198.64 s. Mean correct
targets per block were RH: 7.88 ± 1.75 trials and LH: 8.52 ±

2.09 trials. Overall, specific normalized connectivity values were
correlated with behavioral outcome measures (Figure 7). For
right-hand imagination trials, multiple connections correlated
with decreased performance, in particular, total inflow to right
PMC was significantly correlated with an increased time to hit (β

= 7910, p = 0.039). Flow from right SMC to left PMC correlated
with a decreased total correct (β = −6.24, p = 0.003, p < 0.048
FDR corrected). Flow from right PPC to left PMC correlated
with an increased time to hit (β = 1729, p < 0.018). However,
other connections correlated with improvements in behavioral
measures. Flow from left SMC to right SMC correlated with a
decreased time to hit (β = −2478, p < 0.027). Flow from left
SMC to SMA correlated with an increased total correct (β =

3.22, p= 0.022). Flow from right PPC to midline SMC correlated
with an increased total correct (β = 2.96, p = 0.031). For left-
hand imagination trials we found correlations between directed
connections and improved behavioral metrics. Flow from left
PMC to right SMC correlated with an increased total correct (β=
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FIGURE 3 | Mean total inflow and outflow across all subjects. Inset represents the difference between inflow and outflow for each ROI. For left hand imagination (Left)

inflow to the left PMC is largest, while outflow from the left SMC is largest. The difference between inflow and outflow is most positive in the right SMC and left PMC,

while the left SMC and midline SMC have the most negative difference. For right hand imagination (Right) the greatest inflow is to the left PMC, which also has the

largest difference between inflow and outflow.

4.78, p < 0.023). Flow from left PPC to midline SMC correlated
with a decreased time to hit (β = −2,955, p = 0.007). Flow
from midline SMC to left PPC correlated with an increased total
correct (β = 2.33, p= 0.019).

DISCUSSION

Unilateral high-definition anodal tDCS during motor imagery-
based brain computer interface performance has bilateral
connectivity effects. Stimulation aftereffects differ based on
the laterality of hand imagination, with an increased effect
on connectivity when performing right-hand imagination,
contralateral to the stimulated hemisphere. These results suggest
that tDCS interacts with ongoing task-specific endogenous
oscillations and affects communication between brain areas
involved in task performance. To the best of our knowledge,
this is the first study examining connectivity changes following
tDCS and correlating connectivity to behavioral performance to
examine how planned targeting of the network with stimulation
could be used to improve performance.

Motor Network Connectivity
During right-hand imagination, the left sensorimotor cortex
desynchronizes (and vice versa for left-hand imagination), which
is characterized by a relative decrease in power in the alpha

band. This decrease in power is due to networks within
the sensorimotor cortex altering their firing patterns when
activated by the MI task, this is referred to as event-related
desynchronization (ERD) (Pfurtscheller and Lopes da Silva,
1999). The directed connectivity of MI during BCI varies based
on the laterality of imagination and there is a large degree
of interconnectivity within the sensorimotor cortex bilaterally,
including the premotor, motor, and parietal cortices (Gao et al.,
2011). These differences and connectivity patterns are likely due
to event related synchronization and desynchronization across
the motor cortex and the interactions with the rest of the motor
imagery network through cortico-cortical connections both
intrahemispherically and across the corpus callosum between
the two hemispheres connecting the motor and parietal cortices.
Gao et al. directly compared directed network activity during
ME and MI and found similar connections in both, with ME
having multiple significantly stronger connections (Gao et al.,
2011). For right-hand imagination, we found greater inflow than
outflow in the left PMC and right SMC, with greater outflow
than inflow in the SMA and left SMC, and similar inflow and
outflow in the right PPC. For left-hand imagination, we found
greater inflow than outflow in the right SMC and left PMC, with
greater outflow than inflow in the left SMC and midline SMC.
Our results differ in relative connectivity when examining the
normalized inflow and outflow compared to the work of Gao and
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FIGURE 4 | Alpha band normalized DTF total flow for each ROI. (A) Change in total connectivity from the pre-stimulation time point mapped onto the peak dipole of

each ROI for anode and sham conditions. Color indicates the direction of change and sphere size indicates the absolute change value. (B) Mean post-stimulation

change in total connectivity between conditions. For left hand imagination (Left) there was a difference in total outflow from the left sensorimotor cortex between

groups, with a significant increase from pre-stimulation in the anodal group. For right hand imagination (Right) there was a significant difference in outflow from left

PMC between groups. There were significant increases in the inflow to SMA, midline SMC, and right PPC; outflow from left SMC, left PMC, and right SMC in the

anodal group and SMA inflow in the sham group. Total inflow to the ROI (top) and total outflow from the ROI (bottom). Bar color indicates the condition: anode (blue)

and sham (red). Values are mean across subject; error bars are standard error across subjects. **p < 0.05 between conditions. *p < 0.05 change from

pre-stimulation. ∧Wilcoxon rank sum change from pre-stimulation. d is Cohen’s d effect size.
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FIGURE 5 | Beta band normalized DTF total flow for each ROI. Mean post-stimulation change in total connectivity between conditions. For left hand imagination (Left)

there was a difference between conditions of outflow from the left PPC. There was a significant increase in inflow to the left SMC following anodal stimulation, and a

significant increase to the midline SMC in the sham group. For right hand imagination (Right) there was a significant difference in inflow to the right PPC between

groups and outflow from the right SMC and left PMC. There was an increase in SMA, midline SMC, and left PPC inflow and right SMC and left PM outflow following

anodal stimulation. Total inflow to the ROI (top) and total outflow from the ROI (bottom). Bar color indicates the condition: anode (blue) and sham (red). Values are mean

across subjects; error bars are standard error across subjects. **p < 0.05 between conditions. *p < 0.05 change from pre-stimulation. d is Cohen’s d effect size.

colleagues. A reason for this may be based on the composition of
the network, where Gao examine more regions across the cortex,
which may offset this balance of inflow and outflow. In addition,
we report frequency specific connectivity where previous work
examined non-frequency specific BOLD activity.

Specific directed connections have also been investigated
during MI and execution. Athanasiou et al. examined
connectivity in the alpha band during MI and found information
flow from contralateral to ipsilateral M1 and SMA to ipsilateral
M1 (Athanasiou et al., 2012). We report connectivity in
these directions, though they are not the connections of
greatest strength. Anwar et al found a high degree of effective
connectivity from SMC to PMC as well as bidirectional
SMC–PMC connectivity during ME task performance in the
hemisphere contralateral to the hand movement. We find a
similarly high connectivity during right hand imagination, from
SMC to PMC in the contralateral hemisphere. An important
difference in the experimental design of this study was the
examination of connectivity as subjects received feedback during
imagination through the BCI task. This may account for the
differences within the motor network as well as there is constant
evaluation of performance and movement which is not present
or examined in these previous studies.

Effect of tDCS on Motor Network Activity
Polania et al examined undirected connectivity at the EEG
sensor level using graph theory measures and found increased
connectivity in the alpha band within the left hemisphere during
a right handmotor task following anodal stimulation over the left
primary motor cortex (Polanía et al., 2011). During right hand
imagination we found increased directed connectivity within
the left hemisphere, specifically from the PMC to SMC, which
suggests that the undirected connections found by Polania are
specific to this direction. In addition, Polania and colleagues
found no change or decreased interhemispheric connectivity
based on specific electrodes in the alpha band following
stimulation, whereas we report an increase in connectivity from
the left PMC to the right SMC and right PPC as well as from the
right SMC to the left PMC and left PMC. Polania and colleagues
used resting state fMRI to examine cortico-thalamic connectivity
following anodal tDCS and found increased connectivity between
the stimulated left primary motor cortex, and subcortical
structures of the ipsilateral thalamus and caudate nucleus
(Polanía et al., 2012). As the thalamus has widespread cortico-
cortico connections, this is a possible pathway through which the
intrahemispheric changes we report occur, though the use of EEG
precludes the analysis of connectivity including deep thalamic
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FIGURE 6 | Alpha band normalized DTF flow between each ROI pair. (A) Alpha band changes in connectivity after stimulation for right and left hand imagination in the

anode and sham stimulation groups. Red indicates and increase in connectivity, blue indicates a decrease in connectivity. Values are mean across subjects across

blocks. All included connections had p < 0.05 from pre-stimulation baseline. (B) Mean post-stimulation change in directed connectivity between conditions. For left

hand imagination (Left) there were significant differences between groups for output from the left SMC to right SMC, left PMC, midline SMC, and left PPC, with the

anodal group having a greater increase than the sham group. The anodal group had increased flow from right PMC to SMA, left SMC to left PMC and SMA. The sham

group had increased connectivity from SMA to right PPC and midline SMC to right SMC. For right hand imagination (Right) there were differences between groups

from left PM to left SMC, midline SMC, and right PPC with higher changes in connectivity in the anodal group. For the anodal group there was increased connectivity

from right SMC to left PM and left SMC, from left PM to right PMC, left PMC, and right PPC, from midline SMC to SMA. For the sham group increased connectivity

from left SMC to right PPC and midline SMC to SMA. Values are mean across subjects; error bars are standard error. **p <0.05 between conditions. *p < 0.05

change from pre-stimulation. d is Cohen’s d effect size.

sources and interhemispheric corpus callosum pathways which
in reality may contribute to these changes.

Notturno and colleagues examined functional connectivity
using EEG during ME following tDCS with the anodal electrode
over the left SMC and found no effect on coherence, an
undirected measure, during motor movement between C3 and
any other electrode following anodal or cathodal stimulation,
though they did not look at pairwise coherence between
other electrodes (Notturno et al., 2014). Our results suggest

significantly different effects of stimulation in a directed
manner. An explanation for the previously found lack of
effect by Notturno and colleagues may be the relationship
between the timing of stimulation and task performance. These
previous studies applied stimulation during rest whereas we
had subjects perform the task concurrent with stimulation.
During sensorimotor rhythm modulation for controlling a
BCI, the control signal is generated from both hemispheres
whereby there may be increased interaction between the two
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FIGURE 7 | Connectivity Value–Behavioral Correlations. For both right and left hand imaginations, flow from the ipsilateral PPC to midline SMC correlated with

improved performance. For right hand imagination, inflow to left PMC, in particular from right SMC and PPC correlates with reduced performance through reduced

total correct and increased time to hit. Flow from left SMC to right SMC and SMA correlates with improved performance through an increased total correct and

decreased time to hit. For left hand imagination, flow from left PMC to right SMC and flow from midline SMC to left PPC correlated with improved performance. Color

indicates the beta coefficient value p < 0.05 for all displayed connections.

during task performance. Combining task performance with
stimulation may then increase both ipsilateral and contralateral
connectivity due to task specific activity. These differences
highlight the importance of context with stimulation, whereby
differing activity during stimulation leads to differing aftereffects
of the stimulation on task specific activity, as has been previously
suggested (Buch et al., 2017). These differences may also be
partially explained by the fact that subjects performed ME in this
previous study, even though the motor network connectivity is
quite similar between these two activities, as described previously.

A limitation of the current study is that although we
instructed subjects to perform kinesthetic imagination of the left
and right hand, subjects may have adapted their imagination
to improve performance, by using a more complex MI that
experimentally allowed them better control of the cursor; for
example, throwing a ball or opening a door handle. In order
to improve our understanding of the relationship between
connectivity and performance, analyses of the connectivity over
the time-course of individual trials is needed. Another limitation
of this work is the number of subjects used for the analysis.
As this was an initial exploratory analysis of the effects of
stimulation on connectivity, the number of subjects, and the
number of directed connectivity measures, are small and we
did not correct our statistics for multiple comparisons. Further
studies could utilize more subjects to examine the reproducibility
of these analyses and examine specific directional connections
based on a priori hypotheses to reduce the number of
comparisons.

Connectivity–Behavior Relationship
We found specific connectivity features that correlated with the
changes in performance as measured by the number of correct
trials and the time to hit correct targets. We do not attempt
to predict performance based on these connectivity measures
but rather use these correlations to examine how the network
interacts during BCI performance. For both right- and left-
hand imagination, flow from the ipsilateral PPC to midline SMC
correlated with improved performance. The PPC is connected to
the SMC and directs attention and visuomotor planning during
ME and imagination (Lotze and Halsband, 2006). Generally,
there is a slight increase in alpha power in the midline SMC
during either right- or left-hand imagination as it is involved
in lower limb movement rather than hand movement. This
planning input from the ipsilateral PPC may effect this increase
in alpha power, which in turn could lead to improved unilateral
hand imagination through inhibition of midline SMC.

Right- and left-hand imagination also had differential
connections correlated with performance. For right-hand
imagination inflow to left PMC, in particular from right SMC
and PPC correlated with reduced performance through reduced
total correct and increased time to hit. As the left PMC is used
in planning of both left and right hand movements, input from
the right motor cortex may impair the planning functionality.
In addition, the right motor cortex synchronizes during right-
hand imagination whereby output may result in an inhibition of
relevant information transfer from PMC to downstream regions.
There were also connections that correlated with improved
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performance for right- and left-hand imagination. Flow from
left SMC to right SMC and SMA correlates with improved
performance through an increased total correct and decreased
time to hit. During right-hand execution and imagination left
SMC is desynchronized and is active in directing the movement
or imagination. This output to the contralateral SMC may be
an inhibitory signal via the corpus callosum, a known direct
interhemispheric pathway (van der Knaap and van der Ham,
2011). During left hand imagination, flow from left PMC to right
SMC correlated with improved performance. As the left PMC
directs bilateral motor planning and as the right PMC is primarily
active during left MI, increased information flow in this direction
may improve performance. Our findings suggest that increases in
the performance of behavioral measures are positively correlated
with connections from planning regions, such as PPC and PMC,
to sensorimotor cortex whereas a decreases in performance of
behavioral measures correlate with connections from the SMC to
planning regions.

To the best of our knowledge, there are no comparative works
examining the correlation between connectivity and performance
of BCI tasks. Though Billinger et al. (2013) examined offline
classification performance of EEG source and sensor activity and
connectivity features, they did not report specific connectivity
features used for classification so we are unable to make
comparisons with the current study. In addition, they did not
relate connectivity to any online performance metrics but rather
examined if connectivity based classifiers can be used to improve
classification accuracy.

CONCLUSION

Our results support the hypothesis that tDCS interacts with
ongoing endogenous brain oscillations in an activity and task-
specific manner. During motor imagery there is a decrease in
alpha power in the contralateral sensorimotor cortex due to
a desynchronization in the underlying networks, with areas
involved in the imagination decoupling from surrounding
areas. Based on unilateral sensorimotor stimulation, we see
differing interactions of the stimulation aftereffect on network
connectivity based on the laterality of hand imagination. We also
show both positive and negative correlations between specific
directed connection strengths and behavioral metrics, with

connections from ipsilateral PPC to midline SMC correlating
with behavioral improvements for both right and left hand
imagination. However, HD-tDCS over the left SMC did not
alter any of these connections that correlate with behavior. The
effects of targeting network connections and the most efficacious
methodology to alter networks using TCS is still unclear. Future
work should examine targeting regions of interest with anodal
stimulation to increase excitation and therefore increase the
probability of correlating the firing in these areas, however
the timing of the firing also needs to be considered as the
directional effect of plasticity varies based on these correlations
(Müller-Dahlhaus and Ziemann, 2015). Additional work using
adaptive or short time directed transfer function, connectivity,

and behavioral output to examine how these networks develop
across time, will be vital for developing adaptive stimulation.
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