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Abstract: De novo lipogenesis (DNL) is a complex and highly regulated process in which
carbohydrates from circulation are converted into fatty acids that are then used for synthesizing either
triglycerides or other lipid molecules. Dysregulation of DNL contributes to human diseases such
as obesity, type 2 diabetes, and cardiovascular diseases. Thus, the lipogenic pathway may provide
a new therapeutic opportunity for combating various pathological conditions that are associated
with dysregulated lipid metabolism. Hepatic DNL has been well documented, but lipogenesis
in adipocytes and its contribution to energy homeostasis and insulin sensitivity are less studied.
Recent reports have gained significant insights into the signaling pathways that regulate lipogenic
transcription factors and the role of DNL in adipose tissues. In this review, we will update the
current knowledge of DNL in white and brown adipose tissues with the focus on transcriptional,
post-translational, and central regulation of DNL. We will also summarize the recent findings of
adipocyte DNL as a source of some signaling molecules that critically regulate energy metabolism.
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1. Introduction

Adipose tissues (AT), particularly white adipose tissues (WAT), are the major organ for energy
storage [1]. WATs store extra energy from diets in the form of triglycerides (TG) or fat, which can be
mobilized to meet energy demand in states of fasting or exercise. Meanwhile, ATs are also important
endocrine organs. They secrete various adipokines such as leptin and adiponectin, and lipokines such
as palmitoleate and fatty acid esters of hydroxyl fatty acids (FAHFA), to regulate systemic glucose
and lipid metabolism [2–5]. Thus, AT dysfunction plays a pivotal role in the development of obesity
and its associated diseases, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD),
non-alcoholic fatty liver disease (NAFLD), and several types of cancer [6–9]. Therefore, studies on ATs
will provide opportunities to combat obesity-associated diseases [10,11].

Fat accumulation is determined by the balance between TG synthesis and breakdown.
Upon feeding, fatty acids in ATs are from two distinct origins, that is, circulating TG and
de novo lipogenesis (DNL) [12]. Circulating TGs are originally synthesized in the intestine or
liver, and packaged into chylomicrons or very low density lipoproteins (VLDL), respectively.
When those lipoproteins travel to ATs, TGs are hydrolyzed into non-esterified fatty acids (NEFA)
by insulin-stimulated action of lipoprotein lipase (LPL) within vascular endothelium in ATs [13].
Released NEFAs enter adipocytes through fatty acid transporters such as CD36 and fatty acid transport
protein-1 (FATP1) [14,15]. Meanwhile, insulin also stimulates adipocyte glucose uptake, which drives
DNL in adipocytes. Fatty acids from these two sources are esterified using glycerol 3-phosphate
derived from glucose as a backbone to form TG that is stored in lipid droplets.
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During the periods of energy demand, that is, fasting or physical exercise, adipocytes mobilize
stored fat to fulfill the energy need of other organs by lipolysis, in which each molecule of TG is broken
down into three molecules of fatty acids and one molecule of glycerol. Three lipases act sequentially.
First, adipose triglyceride lipase (ATGL) hydrolyzes TG into diacylglycerol (DAG) and the first
molecule of fatty acid. Then, hormone-sensitive lipase (HSL) cleaves DAG into monoacylglycerol
(MAG) and the second molecule of fatty acid. Ultimately, monoacylglycerol lipase (MGL) converts
MAG into glycerol and the third molecule of fatty acid. These liberated fatty acids may be oxidized in
muscle or brown adipose tissues (BAT), and glycerol may be used as a precursor for gluconeogenesis
in the liver [16].

Under normal physiological conditions, lipogenesis and lipolysis are tightly and coordinately
regulated by signals from peripheral tissues and the central nervous system, and both pathways are set
into dynamic equilibrium to maintain fat content in ATs [17]. However, under pathological conditions,
this equilibrium is disrupted. Consequently, unrestrained WAT lipolysis results in increased fatty acid
release, leading to lipotoxicity and insulin resistance [18], while impaired lipogenesis in WAT decreases
the synthesis of insulin-sensitizing fatty acid species, which also leads to insulin resistance [19].
As adipocyte lipolysis has been recently reviewed [16,20–22], here we focus on adipocyte lipogenesis
and emphasize the recent progress in this field.

2. De Novo Lipogenesis (DNL)

Carbohydrates can be converted to fatty acids through the process of DNL. When energy is
excessive in the body, most of the newly synthesized fatty acids are esterified to become TGs for
storage. As shown in Figure 1, a series of coordinated enzymatic reactions are involved in the
flow of carbons from glucose to fatty acids [23,24]. First, glucose derived from dietary carbohydrates
undergoes glycolysis and tricarboxylic acid (TCA) cycle to produce citrate in the mitochondria, which is
transported to cytosol and then releases acetyl-CoA by ATP-citrate lyase (ACLY). Second, the resulting
acetyl-CoA is converted to malonyl-CoA by acetyl-CoA carboxylases 1 (ACC1). Third, fatty acid
synthase (FASN), the key rate-limiting enzyme in DNL, converts malonyl-CoA into palmitate, which is
the first fatty acid product in DNL. Finally, palmitate undergoes the elongation and desaturation
reactions to generate the complex fatty acids, including stearic acid, palmitoleic acid, and oleic acid.

In principle, DNL takes place in all cells given the fact that fatty acids are the structural
elements of cell membranes, but it is more active in metabolic tissues, such as liver, ATs, and skeletal
muscle [25]. In rodents, liver is the major contributor to the whole-body lipogenesis, and ATs contribute
much less than that of the liver. However, studies in humans fed with a carbohydrate-rich diet
revealed that total fat synthesis in ATs significantly exceeded hepatic DNL [26], suggesting that ATs
may be the second major site for fat synthesis. In particular, recent studies show that adipocytes
generate adipocyte-specific fatty acids that act to improve systemic insulin sensitivity and decrease
inflammation [27,28]. Therefore, adipocyte DNL is an important source of endogenous fatty acids and
plays key roles in maintaining systemically metabolic homeostasis. Of note, although normally DNL
in skeletal muscle is not a major contributor of total fatty acid flux in this tissue, it is induced under
high-fat diet conditions [29]. Inhibition of DNL by skeletal muscle-specific FASN deletion improves
systemic insulin sensitivity without altering adiposity, but decreases muscle strength [29], suggesting
that DNL also plays important roles in skeletal muscle, especially in states of insulin resistance.

In addition to measuring lipogenic gene expression, several approaches have been used to trace
fatty acid synthesis. One of the earliest approaches involved the use of radiolabeled substrates
(e.g., 14C-acetate) to measure isotopic enrichment in the lipid fraction. The advantage of this approach
is that it requires minimal sample preparation and no mass spectrometry. The downside, however,
is that it is not specific to particular fatty acids, and thus does not provide information on isotope
enrichment per molecule [30]. To overcome this shortage, approaches with increased specificity have
been developed by combining stable isotope tracers with mass spectrometry analysis [31]. In this
updated approach, deuterated water (D2O) is often used in cultured cells or animals. The principle
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of this approach is that the 2H in D2O is incorporated into fatty acids during DNL and the degree
of incorporation is directly proportional to the rate of biosynthesis. Using these approaches, DNL is
directly studied.

DNL is highly controlled by hormones and nutritional status. During fasting, DNL is low,
owing to increased blood glucagon and cellular cAMP levels, which inhibit DNL through activating
AMP-activated protein kinase (AMPK) [32,33] and cAMP-dependent protein kinase (PKA) [34,35].
By contrast, after a carbohydrate-rich meal, blood glucose and insulin levels rise, which stimulate DNL
through increasing the substrate availability, lipogenic enzymes activity, and lipogenic genes expression.
It is noteworthy that food composition also has dramatic effects on DNL in ATs. For instance, fructose-
or sucrose-rich diets strongly induce DNL in both liver and ATs. In contrast, high-fat diets significantly
inhibit DNL [36,37].
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Figure 1. Transcriptional activation of de novo lipogenesis in adipocytes in response to high-sugar
or high-fat diets. After the consumption of carbohydrates, a portion of the circulating glucose is
taken by adipocytes through insulin-stimulated GLUT4, and then through glycolysis in the cytosol,
glucose is converted to pyruvate, which is transported into mitochondria for further oxidation in the
tricarboxylic acid (TCA) cycle. Citrate, an intermediate of the TCA cycle, is exported into cytosol and
used as a substrate for de novo lipogenesis. Regulation of lipogenesis is mainly at the transcriptional
level and carbohydrate response element-binding protein (ChREBP) plays a major role in adipocyte
lipogenesis. Glucose metabolites generated during glycolysis activate ChREBP-α, which, together with
Max-like protein X (MLX), binds to the carbohydrate response elements (ChoRE) in the promoters of
target genes, including those encoding ATP-citrate lyase (ACLY), acetyl-CoA carboxylases 1 (ACC1),
fatty acid synthase (FASN), stearoyl-CoA desaturase-1 (SCD1), and ChREBP-β. The induced ChREBP-β
in turn further activates its target gene expression, which ultimately promotes the synthesis of fatty
acids. Another lipogenic transcription factor sterol regulatory element-binding protein-1 (SREBP-1),
induced by insulin at multiple levels, may play a minor role in adipocyte lipogenesis. Compared with
carbohydrates, fat consumption inhibits de novo lipogenesis in adipocyte mainly through blocking the
activation of ChREBP-β. FATP—fatty acid transport protein-1; IR—insulin receptor.
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Importantly, mammals have a limited capacity to store energy in the forms of carbohydrates, but are
able to store seemingly unlimited amounts of TGs. Therefore, DNL plays a key role in the integration
of glucose and lipid homeostasis. Dysregulation of DNL contributes to many metabolic problems,
including hyperglycemia, hyperlipidemia, insulin resistance, T2DM, NAFLD, and CVD [23,38,39].

3. Transcriptional Regulation of DNL in Adipocytes

Many of the enzymes involved in DNL are regulated primarily at the transcriptional level in
a coordinated manner. Transcriptional activation of these lipogenic genes after a carbohydrate-rich
meal can be achieved through the complex mechanisms involving multiple transcription factors.
Using loss/gain-of-function approaches, sterol regulatory element-binding protein (SREBP)-1,
carbohydrate response element-binding protein (ChREBP), and liver X receptors (LXRs) are identified
as major lipogenic transcription factors in liver in response to insulin, glucose, and polyunsaturated
fatty acids, respectively. However, only ChREBP seems to be the major driver for adipocyte DNL
(Figure 1). The relevant data are also summarised in Tables 1 and 2.

3.1. SREBP-1

The SREBPs are a family of membrane-bound transcription factors that were identified as
important regulators of cholesterol and fatty acid homeostasis [40]. In mammals, there are three SREBP
isoforms (i.e., SREBP-1a, SREBP-1c, and SREBP-2) encoded by two different genes, named Srebf 1 and
Srebf 2. SREBP-1a and SREBP-1c are derived from Srebf 1 by alternative splicing of the first exon. With a
longer transactivation domain, SREBP-1a is transcriptionally more potent than SREBP-1c [41]. The third
SREBP isoform, SREBP-2, is transcribed from a different gene Srebf 2, but has a low homology with
SREBP-1a/c [42]. Functionally, SREBPs activate distinct but overlapping programs in lipid metabolism.
SREBP-1a activates both fatty acid and cholesterol synthesis, and SREBP-1c only induces fatty acid
synthesis, whereas SREBP-2 is primarily responsible for cholesterol synthesis and uptake. Of the
three SREBPs, SREBP-1c is more abundant in tissues with active DNL such as liver and ATs, and its
function is predominantly regulated by insulin at multiple regulatory steps, including transcription,
post-translation, and protein stability [43–45].

Transcriptionally, the Srebf1c mRNA is strongly induced by insulin via a mechanism involving the
LXR transcription factors, as well as SREBP-1c feed-forward activation [46,47]. However, like SREBP-2,
SREBP-1c is synthesized as an inactive membrane-bound precursor in the endoplasmic reticulum (ER).
Maturation of SREBP-1c involves transportation of the precursor by the SREBP cleavage-activating
protein (SCAP) from ER to Golgi, where the inactive precursor is cleaved sequentially by two proteases
S1P and S2P [48]. The N-terminal fragment of SREBP-1c is then translocated into the nucleus and
activates lipogenic gene expression. This is a highly regulated process, in which insulin plays a key
role primarily through the activation of canonical PI3K/AKT pathway and the mammalian target
of rapamycin complex 1 (mTORC1) [49]. A recent study shows that Per-Arnt-Sim (PAS) kinase
is also required for SREBP-1c maturation and activation [50]. The mature/nuclear/active form of
SREBP-1c is very unstable, and several factors are involved in the regulation of its protein stability.
Insulin stabilizes the mature SREBP-1c through glycogen synthase kinase-3β (GSK-3β) inhibition [51]
and Lipin1 phosphorylation [52]. Moreover, our group found that CDK8, a subunit of the conserved
Mediator complex that is down-regulated by insulin in the liver, negatively regulates the mature
SREBP-1c protein stability by enhancing SREBP-1c phosphorylation and thus protein degradation [53].

Accumulating evidence suggests that SREBP-1c is a major regulator of hepatic DNL as it is
both sufficient and necessary for DNL in the liver [54]. For example, pathological increase of
SREBP-1c or genetic overexpression of SREBP-1c in the liver causes fatty liver [55,56]. Conversely,
pharmacological inhibition or genetic inactivation of SREBP-1c protects from the development of
fatty liver [57,58]. However, SREBP-1c seems to be a minor player for DNL in ATs. Although
SREBP-1c is also both sufficient and necessary to promote lipogenic enzyme expression in adipocytes
in vitro [59], global SREBP-1 knockout mice displayed normal mRNA levels of lipogenic enzymes
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in WATs when fed with the normal chow [60]. Moreover, despite the amelioration of fatty liver,
loss of SREBP-1 in genetically obese ob/ob mice also did not affect the lipogenic gene expression
in WATs [57]. Interestingly, under the caloric restriction condition, SREBP-1c deficiency seemingly
inhibits caloric restriction -induced upregulation of lipogenic genes in WATs, but not in the liver [61].
These loss-of-function studies suggest that SREBP-1c in adipocytes may not be important for DNL
in vivo. One explanation is that the effect of SREBP-1 deficiency on DNL is compensated by other
factors, particularly SREBP-2 [60]. However, a key caveat of those studies is that the animal models
were global SREBP-1-deficient. To precisely define the importance of SREBP-1c in adipose tissues,
adipocyte-specific SREBP-1c-deficient mouse models, that is, SREBP-1c knockout in Adiponectin
(Adipq)-positive cells, are required in the future.

In addition, it has been reported that an increase of SREBP-1c expression in WATs by the treatment
of LXR agonist T0901317 is not accompanied by the up-regulation of lipogenic genes such as FASN,
ACC1, and stearoyl-CoA desaturase-1 (SCD1) [62]. Consistent with the gene expression, SREBP-1c was
neither recruited to the Fasn promoter nor did it induce the activity of a Fasn promoter-driven reporter
gene in adipocytes [62]. Moreover, SREBP-1c transgenic mice driven by the aP2 (Fabp4) promoter also
did not display an increase of lipogenic gene expression in WATs, although some lipogenic genes
such as Fasn, Acc1, and Scd1 were up-regulated in BAT [63]. However, it is unclear whether these
effects are direct or indirect because the transgenic mice also exhibit impaired adipocyte differentiation,
severe AT lipodystrophy, insulin resistance, and fatty liver [64]. Together, these gain-of-function
studies also argue against SREBP-1c as a major driver for adipocyte DNL. By contrast, fat-specific
overexpression of SREBP-1a, which is much lower in abundance than SREBP-1c in ATs, significantly
increased lipogenic genes expression and fatty acid synthesis in both WAT and BAT, leading to ATs
hypertrophy [63]. This result suggests that SREBP-1a and SREBP-1c have distinct roles in adipocyte
fat metabolism in vivo. Nonetheless, a caveat of those studies is that the aP2 promoter is active
not only in adipocytes, but also in macrophages [65]. As macrophages in ATs are known to play a
regulatory role in metabolism [66,67], the aP2 promoter used in these studies may have complicated
the results. Therefore, future studies using adipocyte-specific promoters to overexpress SREBP-1c may
be necessary.

3.2. ChREBP

ChREBP, also known as MLXIPL or MONDOB, is a member of basic helix–loop–helix/leucine
zipper transcription factor family that is responsible for carbohydrate-induced transcription of
glycolytic and lipogenic enzymes [68,69]. It has two isoforms, ChREBP-α and the recently
identified ChREBP-β, which is encoded by the same Mlxipl gene, but through the use of
alternative promoters [70].

ChREBP-α is constitutively expressed in metabolically-active tissues, such as liver, adipose tissues,
skeletal muscle, intestine, kidney, and pancreas [68], but during fasting or under low glucose conditions,
ChREBP-α was phosphorylated by PKA [35] and AMPK [33] at multiple sites to retain it in the cytosol.
During feeding or high glucose conditions, the intermediates of glucose metabolism, such as xylulose
5-phosphate or glucose 6-phosphate, activate ChREBP-α through multiple insulin-independent
mechanisms, including dephosphorylation, nuclear translocation, protein–protein interactions,
and release of the transactivation domain inhibition [71–73]. Upon activation, ChREBP-α forms
a heterodimer with MLX and induces the expression of genes primarily involved in glycolysis, DNL,
and fatty acid desaturation [68,74]. In contrast, ChREBP-β isoform, which lacks most of the N-terminal
low glucose-inhibitory domain, is constitutively active in stimulating target gene expression, and its
transcription is induced in a feed-forward manner by ChREBP-α and itself (Figure 1) [70]. To date,
other regulators that control the expression of ChREBP-β remain unknown.

In agreement with its function in the liver (reviewed by authors of [75]), ChREBP is also a
major determinant of fatty acid synthesis in ATs. ChREBP-α is highly expressed in both WAT
and BAT in human, mouse, and rat. It is also expressed in preadipocytes, and its level increases
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dramatically during differentiation of human and mouse preadipocytes [76,77]. Overexpression of a
constitutively active ChREBP in mouse 3T3-L1 white preadipocytes increases lipogenic gene expression
and promotes adipocyte differentiation [77]. Conversely, reducing endogenous ChREBP activity
impairs adipocytes differentiation [77]. Mechanistically, it is suggested that some unknown fatty acid
derivatives from ChREBP-mediated DNL are required for the activation of nuclear receptor peroxisome
proliferator-activated receptor (PPARγ), the master transcription factor in adipogenesis [77]. In support
of this model, supplement of the PPARγ ligand, rosiglitazone, can completely rescue the differentiation
defect caused by ChREBP deficiency, including adipogenic and lipogenic marker genes expression and
lipid accumulation [19].

Consistent with the in vitro results, overexpression of constitutively active ChREBP isoform in
adipose tissues increased the expression of genes involved both in DNL such as Fasn, Acly, Acc1, Scd1,
and Elovl6, and adipocyte differentiation such as Pparg2, Cebpa, and Fabp4 [78]. Conversely, mice with
global ChREBP deficiency displayed significant impairment of lipogenic gene expression and hepatic
DNL; these mice are intolerant to simple carbohydrates and develop insulin resistance [68]. Although
the authors did not examine DNL in fat, the weights of both WAT and BAT from ChREBP-deficient
mice were dramatically reduced [68], suggesting that adipocyte DNL is probably also impaired.
This speculation was confirmed by a recent study, in which adipocyte-specific ChREBP-mutant mice
were studied, and loss of ChREBP in fat dramatically impaired sucrose-induced lipogenic gene
expression and DNL in both WAT and BAT, but not in the liver [19]. However, compared with global
ChREBP-deficiency, adipocyte-specific ChREBP-deficiency had little effect on the weights and sizes
of adipose tissues, regardless of whether the mice were fed with the normal chow diet or high-fat
diet [19,68]. This is probably because of the compensatory effects of increased fatty acids uptake from
the circulation. Although further studies are needed, it is clear that unlike SREBP-1c, ChREBPs are
both necessary and sufficient to drive DNL in adipocytes.

Consistent with the conclusion that ChREBPs are the major lipogenic transcription factors in
ATs, the upstream lipogenic signals or other lipogenic factors in adipocyte regulate DNL directly or
indirectly through the regulation of ChREBP expression or transcriptional activity. GLUT4 (also known
as SLC2A4), the major glucose transporter in adipocytes, determines the activity and expression of
ChREBPs through the regulation of glucose uptake. Adipocyte-specific overexpression of GLUT4
increased lipogenic enzyme expression, fatty acid synthesis, lipid accumulation, and adiposity through
ChREBP-α-mediated induction of ChREBP-β expression, but not through SREBP-1c [70]. Conversely,
Adipocyte-specific knockout of GLUT4 resulted in opposite effects [70]. mTORC2 is a master regulator
of metabolism and controls DNL in both WAT [37] and BAT [79]. Conditional deletion of the essential
mTORC2 subunit RICTOR in mature adipocytes reduced ChREBP-β expression and DNL in WAT
partially through the downregulation of GLUT4-mediated glucose uptake [37]. Intriguingly, inhibiting
adipocyte lipid uptake by conditional deletion of LPL resulted in a compensatory increase of DNL in
both WAT and BAT owing to the up-regulation of the GLUT4/ChREBP-β pathway [80]. More recently,
the serine/threonine-protein kinase AKT2, an effector molecule in the insulin signaling pathway,
has been identified as a cold-induced kinase in BAT that is required for adipocyte DNL by stimulating
the ChREBP-β transcriptional activity [36]. Collectively, these studies strongly suggest that the ChREBP
transcription factors are the major activators of DNL in adipocytes.

3.3. LXRs

The oxysterol-activated nuclear receptor LXRs, that is, LXRα and LXRβ, were initially
characterized as key regulators of hepatic cholesterol and lipid metabolism [81]. LXRα and LXRβ are
encoded by two different genes, but share a considerable sequence homology [82]. LXRα is expressed
primarily in liver, ATs, intestine, and macrophages [83], whereas LXRβ is ubiquitously expressed [84].
Upon binding to ligands, LXRs undergo a conformational change that promotes interaction with
coactivators to facilitate transcription of target genes. Like other nuclear receptor family members,
LXRs are modulated by a wide range of post-translational modifications, including SUMOylation,
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phosphorylation, acetylation, ubiquitination, and O-GlcNAcylation [85]. For example, under fasting
condition, hepatic LXRα is directly phosphorylated by PKA, which impairs LXRα DNA binding
activity and inhibits the expression of its target genes such as SREBP-1c [86].

The functions of LXRs have been well studied in the liver. They stimulate hepatic DNL by direct
activation of the promoters of lipogenic genes such as Srebf1c and Fasn [47]. Activation of LXRs in
mice by oral administration of a synthetic LXR agonist T0901317 led to a marked increase in SREBP-1
and lipogenic enzyme expression, as well as TG content in the liver [46]. In agreement with this
study, another study reported that mice developed fatty liver in three weeks after the treatment with
T0901317 by intraperitoneal injection under high-fat diet conditions [87]. Furthermore, global loss of
LXRs in ob/ob mice impairs hepatic lipogenesis and reduces hepatic steatosis compared with control
because of the decreased expression of SREBP-1 and lipogenic enzymes [88].

Table 1. Summary of loss-of-function studies for major lipogenic transcription factors.

TF Loss of Function Phenotypes References

SREBP-1

Global

Decreased hepatic lipogenesis, while increased hepatic
cholesterol synthesis due to elevated SREBP-2 in liver;
No effect on adiposity and lipogenic enzymes expression
in WAT.

Shimano et al.,
1997 [60]

Adipose tissues Not available Not available

Liver

Decreased hepatic lipogenesis, abolished sucrose-induced
hypertriglyceridemia, and prevented hepatic steatosis in ob/ob
mice and HFD-fed mice, despite persistent obesity,
hyperinsulinemia, and hyperglycemia.

Moon, et al.,
2012 [58]

ChREBP

Global
Decreased hepatic lipogenesis and glycolysis; Increased
hepatic glycogen level; Reduced adiposity; Impaired insulin
sensitivity and glucose tolerance.

Iizuka et al.,
2004 [68]

Adipose tissues
Decreased sucrose-induced lipogenesis in adipose tissue but
not in the liver; Decreased PAHSAs level in serum; Impaired
insulin sensitivity and glucose tolerance.

Vijayakumar
et al., 2017 [19]

Liver

No effects on hepatic lipogenesis, but altered expression of
lipogenic genes in liver, WAT and BAT; Protected from
high-carbohydrate diet induced hepatic steatosis, but with
increased hepatic glucose production and impaired hepatic
insulin sensitivity and systemic glucose tolerance; Reduced
WAT mass and adipocyte size.

Jois et al.,
2017 [89]

LXRs

Global

Decreased hepatic lipogenesis and protected from hepatic
steatosis; Impaired β-cell expansion and glucose tolerance;
Improved insulin sensitivity due to increased WAT
lipogenesis and WAT mass.

Beaven et al.,
2013 [88]

Adipose tissues Increased adipocyte size and adiposity by decreasing WAT
lipolytic and oxidative capacities.

Dib et al.,
2014 [90]

Liver Not available Not available

Abbreviation: TF—transcription factor; SREBP—sterol regulatory element binding protein; ChREBP—carbohydrate
response element binding protein; LXRs—liver X receptors. WAT—white adipose tissues; BAT—brown adipose
tissues; HFD—high-fat diet; PAHSAs—palmitic acid ester of hydroxyl stearic acids.

However, the published data suggest that LXRs may target different pathways in adipocytes.
In contrast to those results from the liver, global loss of LXRs in ob/ob mice significantly
enhanced lipogenesis and adipogenesis in ATs, leading to enlarged fat tissues and improved insulin
sensitivity [88]. This is probably owing to the up-regulation of the PPARγ and GLUT4/ChREBP-β
pathways [88]. In agreement with this report, adipose tissue-specific LXRα knockout mice also had
severe adiposity with a concomitant increase in fat mass and adipocyte size when fed with a high-fat
diet [90]. The underlying mechanism is probably that LXRα deficiency in fat impairs adipocyte lipolysis
and fatty acid availability and oxidation [90]. Conversely, administration of LXRα agonist T0901317
in mice fed with a high-fat diet reduced fat mass, which was accompanied with increased adipocyte
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lipolysis and apoptosis, and decreased PPARγ transcriptional activity [87]. Although different mouse
models and diets may contribute to the different effects of LXRs in ATs, these studies suggest that
LXRs play a different role in adipocytes and hepatocytes. Nonetheless, it is less likely that LXRs are
major regulators of DNL in adipocytes.

Table 2. Summary of gain-of-function studies for major lipogenic transcription factors.

TF Gain of Function Phenotypes References

SREBP-1c

Adipose tissues
Impaired adipocytes differentiation, markedly reduced
adiposity; Increased fatty liver development; Impaired insulin
sensitivity and glucose tolerance.

Shimomura et al.,
1998 [64]

Liver
Increased hepatic lipogenesis and fatty liver development;
Increased visceral adipose tissue mass; Impaired insulin
sensitivity.

Knebel et al.,
2012 [56]

SREBP-1a
Adipose tissues

Increased adipose tissue lipogenesis and adipocyte
hypertrophy; Enhanced fatty acid secretion and fatty
liver development.

Horton et al.,
2003 [63]

Liver Increased hepatic lipogenesis and cholesterol synthesis,
and enhanced fatty liver development.

Shimano et al.,
1996 [91]

ChREBP

Adipose tissues
Increased adipose tissue lipogenesis; Reduced adiposity;
Protected from HFD-diet induced fatty liver; Improved
insulin sensitivity and glucose tolerance.

Nuotio-Antar
et al., 2015 [78]

Liver

Increased hepatic glycolysis and lipogenesis, enhanced fatty
liver development; Decreased visceral adipose tissue mass;
Improved hepatic insulin signaling and systemic
glucose tolerance.

Benhamed et al.,
2012 [92]

LXRs Global

Increased hepatic lipogenesis and enhanced fatty liver
development; Increased WAT lipolysis and apoptosis,
and decreased fat mass; Impaired insulin sensitivity but not
glucose tolerance. pharmacological treatment

Dong et al.,
2017 [87]

4. Post-Translational Regulation of DNL in Adipocytes

As discussed above, most enzymes involved in DNL are primarily regulated at the transcriptional
level, however, the activities or protein stability of these enzymes are also regulated at the
post-translational level. During fasting, the lipogenic enzymes are restrained at low activities.
In response to feeding, their enzymatic activities are acutely increased by post-translational
modifications, including phosphorylation and O-GlcNAcylation.

Phosphorylation is a common post-translational modification of proteins. Recently, it has
been reported that phosphorylation of ACLY, the first enzyme in DNL, is dynamically regulated
by the hepatic branched chain alpha-keto acid dehydrogenase kinase (BDK) and protein phosphatase
Mg2+/Mn2+ -dependent 1K (PPM1K) [93], which are previously known to control branched-chain
α-ketoacid dehydrogenase (BCKDH) activity and branched-chain amino acids (BCAA) levels.
Phosphorylation of ACLY on Ser454 by BDK increases the ACLY activity for the generation
of acetyl-CoA and subsequent malonyl-CoA, eventually promoting hepatic DNL. Importantly,
this modification is physiologically regulated during the fasting-feeding cycle by ChREBP-β,
which up-regulates BDK expression and concomitantly inhibits PPM1K expression during feeding [93].
Thus, after a carbohydrate-rich meal, ChREBP not only directly stimulates the Acly gene transcription,
but also enhances the activity of ACLY through modulating the ratio of BDK to PPM1K. However,
so far it is still unclear whether ACLY in adipocytes is also regulated by BDK and PPM1K.
In contrast, phosphorylation inhibits the activities of ACC1 and FASN. The serine/threonine
kinase AMP-activated protein kinase (AMPK) acts as a major energy sensor and regulator in
ATs [94]. When activated by intracellular energy depletion, nutrient deprivation, or hypoxia,
AMPK phosphorylates ACC1 at Ser79 and FASN at unknown site(s) in adipocytes, leading to direct
inhibition of the production of malonyl-CoA and palmitate, respectively. Consequently, DNL is
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inhibited by the activation of AMPK [95–97]. O-GlcNAcylation is a highly dynamic post-translational
modification, which is controlled by two antagonistic enzymes: O-Linked N-Acetylglucosamine
(O-GlcNAc) transferase (OGT), which transfers the GlcNAc group onto serine or threonine residues
of protein substrates [98]; and O-GlcNAcase (OGA), which removes the sugar moiety from
substrates [99]. A recent study reported that FASN is directly modified by O-GlcNAcylation in the
liver [100]. Elevating O-GlcNAcylation of FASN by glucose-induced activation of OGT or drug-targeted
inhibition of OGA increases the interaction between FASN and ubiquitin-specific protease-2a (USP2A),
which acts to remove ubiquitination and is known to stabilize FASN [101]. As a result, O-GlcNAcylation
of FASN leads to accumulation of this enzyme and DNL in the liver [100]. Although O-GlcNAcylation
of FASN in adipocytes has not been reported to date, given the fact that O-GlcNAc modification
is involved in development of insulin resistance and glucose-toxicity in adipocytes [102,103], it is
possible that adipocyte FASN is also regulated by O-GlcNAcylation. However, whether other lipogenic
enzymes are regulated by O-GlcNAcylation or other modifications such as acetylation is currently
unclear and deserves to be investigated in the future.

5. Central Regulation of DNL in Adipocytes

A growing number of studies have demonstrated that adipocyte DNL is not only regulated by
the peripheral signals, but also by the central nervous system [104,105]. To date, insulin and leptin are
two reported signals in medial basal hypothalamus (MBH) that play a key role in maintaining DNL
in WATs [106].

Insulin has a direct effect on adipocyte DNL through the insulin receptor, which leads to the
activation of PI3K-AKT signaling pathway and inhibition of PKA [43]. However, studies also point
to an indirect role of insulin on DNL through MBH [107]. When the insulin level is acutely raised
in the brain by infusing insulin directly into MBH of rats, the expression of lipogenic enzymes
including Fasn and DNL in WATs were increased, while the activity of HSL and adipocyte lipolysis
were suppressed [107]. Conversely, mice lacking the neuronal insulin receptor exhibit decreased
DNL and unrestrained lipolysis in WATs [107]. Mechanistically, MBH insulin signals likely inhibit
sympathetic outflow to WATs, as surgical denervation or pharmacological sympathectomy abolishes
the effects of brain insulin on WAT lipogenesis and lipolysis [107]. In contrast, leptin, an adipokine
that plays a key role in the control of body weight through regulating food intake and fuel partitioning,
was found to exert an effect opposite to insulin in MBH [108]. Acute infusion of leptin into MBH
of rats inhibits lipogenic enzyme expression and DNL, but activates lipolysis in WATs [108]. This is
probably because the MBH leptin signaling is able to reduce the endocannabinoid anandamide level
in WATs via sympathetic innervation [108]. It has been shown that anandamides can stimulate
lipogenesis by activating the cannabinoid receptors [109]. Supporting this mechanism, when the rats
were treated with the cannabinoid receptor agonist Win 55,212-2, MBH leptin failed to suppress DNL
in WATs [108]. Furthermore, surgical denervation also blocks the inhibitory effect of MBH leptin on
WAT lipogenesis [108]. Taken together, MBH insulin stimulates DNL and suppresses lipolysis in WATs,
whereas MBH leptin acts oppositely, and these effects are mediated through either stimulation or
inhibition of the sympathetic outflow to WATs [106–108].

Apart from insulin and leptin, a newly-identified neuropeptide, neurosecretory protein GL
(NPGL), is reported to be involved in adipocyte DNL [110]. NPGL infusion or overexpression in MBH
induced DNL specifically in WATs, but not in liver, and also increased the size of white adipocytes
and adiposity [110]. Conversely, administration of neutralizing antibody against NPGL decreased
white adipocyte size [110]. However, unexpectedly, NPGL mRNA expression is induced by fasting
and inhibited by insulin [110]. As both insulin and NPGL promote adipocyte DNL, insulin inhibition
of NPGL expression may constitute a negative feedback mechanism in MBH to curb adipocyte DNL in
order to avoid adipocyte hypertrophy. To date, it remains unclear whether there are other signals in
the central nervous system that can regulate adipocyte DNL.
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6. Role of Adipocyte DNL in Insulin Resistance

A number of studies indicate that DNL in ATs has both direct and indirect beneficial effects to
the body [111]. An increase in DNL promotes the conversion of excessive carbohydrates into fatty
acids for energy storage. This pathway is of physiological importance especially when the diet is rich
in carbohydrates, because hyperglycemia causes cellular damages and organ dysfunctions due to
glucotoxicity [112,113]. Therefore, DNL helps to maintain glucose homeostasis. Moreover, adipocyte
DNL is involved in the regulation of systemic glucose and lipid metabolism through the generation
of lipokines [5,27].

6.1. DNL in White Adipocytes

Different from the changes in the liver, DNL is usually decreased in fat when animals or
humans are obese or insulin resistance [114–117]. Based on the available data, such reduction
seems to be a causative factor for the development of insulin resistance. For example, a recent
study shows that adipocyte-specific reduction of DNL by ChREBP knockout causes insulin resistance
and inflammation [19]. Therefore, adipocyte DNL is important for maintaining systemic insulin
sensitivity. Interestingly, these beneficial effects of DNL in fat are found to be exerted by producing
insulin-sensitizing fatty acids, such as palmitoleate and FAHFAs (Figure 2) [118,119].Nutrients 2018, 10, x FOR PEER REVIEW  12 of 21 
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Figure 2. Systemic effects of lipokines produced by de novo lipogenesis in adipocytes. When de novo
lipogenesis is increased in adipocytes by means of increasing glucose uptake, decreasing lipid
chaperones, or others, some bioactive fatty acids such as palmitoleate and fatty acid ester of
hydroxyl fatty acids (FAHFAs) are produced. As a product of SCD1 in adipocytes, palmitoleate
functions to improve insulin sensitivity in skeletal muscle and liver, promote pancreatic β-cell
proliferation, and inhibit lipid synthesis in the liver. Although it is unclear how FAHFAs are
synthesized in adipocytes, these lipids have a function to stimulate adipocyte glucose uptake, intestinal
glucagon-like peptide-1 (GLP-1) secretion and β-cell insulin secretion, and reduce inflammation in
adipose tissues. The metabolically beneficial effects of palmitoleate and FAHFAs are probably through
G protein-coupled receptor 120 (GPR120). In addition, FASN may produce some unknown lipid
products in white adipocytes that function to inhibit white fat browning through neuronal circuit
regulation. WAT—white adipose tissues.

Palmitoleate, a 16-carbon monounsaturated fatty acid, is produced mainly in adipocytes by
FASN-mediated synthesis of palmitate, followed by SCD1-catalyzed desaturation [120]. Palmitoleate
was first described as an insulin-sensitizing lipokine when the researchers examined the mice with a
combined loss of fatty acid-binding proteins FABP4/aP2 and FABP5 [118]. Those mice were protected
from high fat diet-induced obesity and fatty liver, and displayed profound insulin sensitivity and
altered lipid profiles [118]. To determine if a specific lipid was correlated with the insulin sensitivity
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in those mice, an unbiased lipidomics approach was used to examine the lipid profiles of WAT
and identified palmitoleate (C16: 1n7), which was the most significantly elevated lipid in adipose
tissues, as well as serum. When wildtype mice were treated with palmitoleate, their muscle insulin
sensitivity was increased while hepatic DNL was suppressed, suggesting that palmitoleate functions
as a circulating lipokine and has insulin sensitizing effects [118]. Supporting the metabolic role of
palmitoleate, G protein-coupled receptor 120 (GPR120) knockout mice had a reduced SCD1 expression
in adipose tissues and lower levels of palmitoleate in plasma and adipose tissues, and those animals
displayed lower insulin sensitivity with reduced phosphorylation of the insulin receptor, insulin receptor
substrates, and protein kinase B in muscle, liver, and fat [74]. Subsequent studies in rodents further
uncovered more fascinating roles of palmitoleate in metabolism (reviewed in the works of [121,122]).

However, the data on palmitoleate in humans are mixed. One study reported that circulating
palmitoleate levels strongly and independently predict the insulin sensitivity of individuals at the
high risk for T2DM [123]. In addition, human primary adipocytes extracted from the gluteofemoral
depot showed higher production and release of palmitoleate compared with those from the abdominal
depot, which was correlated with better insulin sensitivities and higher Scd1 expression [75]. Whereas,
another study found that decreased palmitoleate in plasma and in VLDL is not associated with insulin
resistance in skeletal muscle, liver, or adipose tissues in obese people [124]. Moreover, it is reported
that palmitoleate is not related to insulin sensitivity in type 1 diabetes [125]. These discrepancies
are probably the result of the analyses of different lipid fractions from different tissues or diseases.
Nevertheless, palmitoleate represents an important link between adipocyte DNL and systemic
insulin resistance.

Fatty acid esters of hydroxy–fatty acids or FAHFAs are another molecular link between adipocyte
DNL and insulin resistance. Studies of adipocyte-specific GLUT4 transgenic (AG4OX) mice revealed
that despite being obese and having elevated circulating fatty acids, those mice were more glucose
tolerant and DNL in fat was elevated [119]. Lipidomic analysis of WATs from AG4OX mice led to
the discovery of a new class of lipids, called FAHFAs, which were elevated in WATs and serum of
AG4OX mice, and have beneficial effects in metabolism [119] (reviewed by authors of [126]). The most
abundant forms of FAHFA in serum and fat of AG4OX mice are palmitic acid ester of hydroxyl
stearic acids (PAHSA), and of which 9-PAHSA is the most abundant and biologically active isomer
in adipose tissues [119]. Treatment of obese mice with 9-PAHSA lowers blood glucose and improves
glucose tolerance, while stimulating insulin secretion in pancreas and glucagon-like peptide 1 secretion
in intestinal cells, as well as insulin-stimulated glucose transport in adipocytes [19]. Inflammatory
cytokine production from immune cells and ameliorate adipose inflammation in obesity is also
reduced by 9-FAHFA [119]. The levels of FAHFAs are dynamically regulated by physiological and
pathophysiological conditions. Fasting and high-fat diet feeding in mice alters the levels of FAHFAs in
fat and serum in a tissue-specific and/or isomer-specific manner [119]. Interestingly, serum FAHFA
levels are highly correlated with insulin sensitivity in humans [119]. Although the functions of FAHFAs
in humans are still unclear, they represent another important link between adipocyte DNL and systemic
insulin sensitivity.

The synthesis of FAHFAs in adipocytes is induced by the GLUT4/ChREBP-mediated DNL.
First, the expression of GLUT4 and ChREBP-β in ATs are also reduced in obese mice and humans,
and highly correlated with insulin sensitivity in humans [70,111]. Second, the detrimental effects
of adipocyte-specific ChREBP knockout, in which PAHSAs were reduced, on insulin sensitivity
and inflammatory responses can be completely abolished by 9-PAHSA supplementation [19].
Third, adipocyte-specific overexpression of ChREBP-β improved insulin sensitivity and reduced
inflammatory genes expression in response to a Western diet [78]. Of note, the production of
PAHSAs and palmitoleate may be regulated in different manners, as in RICTOR-knockout mice,
the GLUT4/ChREBP-mediated DNL was inhibited, but somehow palmitoleate was elevated in
WATs [37]. This is probably a compensatory response to the reduction of PAHSAs. Although
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the molecular mechanisms underlying the insulin-sensitizing effects of PAHSAs remain unclear,
GPR120 seems to be involved [119].

It is unclear whether there are other lipokines that also exert an insulin-sensitizing effect, and how
these lipokines may act and interplay in states of insulin resistance. Future studies are necessary to
address these important questions. Interestingly, the metabolic benefits of elevated DNL in adipocytes
may depend on how DNL is induced. For example, specific inhibition of fatty acids uptake in ATs by
genetic ablation of LPL, the master regulator of fatty acid uptake from triglyceride-rich lipoproteins,
caused a profound increase of DNL in both WAT and BAT, a reduction of adiposity, and an improved
profile of blood insulin and adipokines [80]. However, neither glucose tolerance nor inflammatory
markers were ameliorated in those mice [80]. One possible explanation is that loss of LPL potentially
eliminates certain essential fatty acids from diets [80]. This may counteract the beneficial effects of
increased DNL in adipocytes.

6.2. DNL in Brown Adipocytes

Although BAT has a higher rate of DNL than WAT [19], and FAHFAs are also synthesized in
BAT [118], the contribution of DNL in BAT to whole body insulin sensitivity seems to be limited.
A recent study has shown that inhibition of ChREBP-mediated DNL in BAT by AKT2 knockout
remodeled the global lipid landscapes and reduced lipid content in BAT, but glucose and insulin
tolerance as well as body mass were not affected [36]. Consistent with this study, BAT-specific
knockout of FASN also did not affect glucose tolerance under both normal chow and high-fat diet
conditions [114]. One possibility is that the BAT mass is quantitatively much less than that of WATs so
that BAT contributes only a small portion of total beneficial lipokines in the body. Another possibility
is that lipokines produced by BAT may be different from those by WATs. Recent studies identified a
BAT-specific lipokine, 2,13-diHOME, which promotes fatty acid uptake by BAT and skeletal muscle
in response to cold and exercise, respectively [127,128]. Notably, 2,13-diHOME is not synthesized
through DNL in BAT, but using linoleic acid, an essential fatty acid that can be obtained only from
diets [127,128]. Together, the published data on adipocyte DNL suggest that DNL in WAT, but not BAT,
plays an important role in the regulation of insulin sensitivity.

7. Role of Adipocyte DNL in Thermogenesis

In addition to the regulation of insulin sensitivity, emerging evidence indicates that DNL is also
involved in thermogenesis by ATs. There are at least two types of thermogenic adipocytes, that is,
brown adipocytes and cold-induced beige adipocytes, both of which are also considered to play an
important role in the control of body weight and glucose homeostasis [129–131].

7.1. DNL in Thermogenesis of BAT

It is well-known that BAT plays a critical role in cold-induced thermogenesis and maintenance
of euthermia [132,133]. Interestingly, although DNL in BAT is significantly induced by cold
conditions, it is not essential for cold-induced thermogenesis [36]. BAT-specific loss of AKT2 disrupted
ChREBP-mediated DNL in BAT, leading to impaired lipid accumulation in brown adipocytes [36].
However, those mice displayed normal heat production and the ability to maintain body temperature
in response to the acute cold challenge [36]. Consistent with this study, mice with BAT-specific FASN
deficiency also maintained euthermia and showed normal thermoregulation in response to cold
conditions [134]. In fact, BAT lipolysis is also recently reported to be non-essential for cold-induced
thermogenesis, as a result of a compensatory combustion of fuels derived from diets or lipolysis of
white fat and cardiac muscle [135,136]. Thus, it seems that both lipogenesis and lipolysis in BAT are
dispensable for acute cold-induced thermogenesis. However, under chronic cold adaptation, it has
been shown that specific impairment of lipogenesis or lipolysis in BAT results in a compensatory
response of increased WAT browning [36,136], suggesting both BAT lipogenesis and lipolysis are
required for optimizing fuel storage and thermogenesis.
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7.2. DNL in WAT Browning

The so-called WAT browning is a process in which beige adipocytes are formed in WATs in
response to cold exposure or sympathetic agonist stimulation. It has several benefits, including
reduction of body weight and improvement of insulin sensitivity. Recent studies indicate that DNL
also plays a role in WAT browning. Contrary to the beneficial effects of adipocyte DNL described
above, loss of the key lipogenic gene FASN unexpectedly stimulates the appearance of beige adipocytes
in subcutaneous WAT (iWAT) in mice. When FASN is constitutively depleted in adipocytes, the mice
displayed an increase in energy expenditure and cold resistance correlated with the increase of beige
adipocytes in iWAT [137]. Moreover, fat-specific FASN knockout mice were protected from high-fat
diet-induced obesity and exhibited an improvement of glucose tolerance and insulin sensitivity [137].
When FASN is acutely depleted in adipocytes using an inducible system, the mice displayed a
significant increase in WAT browning even under a thermoneutrality condition [114]. The acute
knockout of FASN in adipocytes also protected from high-fat diet-induced obesity and insulin
resistance [114]. However, BAT-specific FASN deletion neither improved glucose tolerance nor induced
iWAT browning [114,134], suggesting the beneficial effects of FASN deficiency in all adipocytes are
only attributed to white adipocytes.

In terms of molecular mechanisms, two distinct models are proposed. In the first model, FASN is
required to produce endogenous PPARγ ligands in a cell-autonomous fashion [137]. Fatty acids
synthesized by FASN serve as the substrates of PexRAP, which generates alkyl ether lipids as PPARγ
ligands [137]. Thus, loss of FASN decreases these ether lipids, altering the coactivator milieu to favor
PPARα-dependent gene expression [137]. As a result, fatty acid oxidation and iWAT browning are
increased, and diet-induced adiposity and insulin resistance are attenuated [137]. By contrast, in the
second model, adipocyte FASN regulates the crosstalk between adipocytes and neurons [114,134].
In this model, FASN deficiency in adipocytes initiates neuronal signaling that triggers sympathetic
stimulation to iWAT, which then activates the cAMP pathway and subsequently induces iWAT
browning (Figure 2) [114,134].

Despite the disparity surrounding the molecular mechanisms, both studies show that loss of FASN
indeed improves glucose metabolism and insulin sensitivity. This observation appears paradoxical to
other studies showing that adipocyte DNL is beneficial to systemic glucose homeostasis and insulin
sensitivity. One possible explanation is that depletion of FASN in adipocytes does not exactly mimic
the decreased DNL that occurs in obesity, because other enzymes in the lipogenic pathway are also
downregulated in obesity [114]

Therefore, the beneficial effects caused by the loss of FASN in adipocytes is more likely a
pathophysiological compensation, instead of a physiological regulation. To better understand the
role of DNL in WAT browning, adipocyte-specific ChREBP knockout mouse models may be useful in
future studies.

8. Conclusions and Perspectives

DNL is an intrinsic metabolic process that converts excessive sugar to fat. Under normal
physiological conditions, DNL in hepatocytes and adipocytes is synergistically regulated by signals
from the peripheral tissues and the central nerve system. However, under pathophysiological
conditions such as obesity, insulin resistance, and T2DM, the equilibration between hepatocyte and
adipocyte DNL is disturbed, leading to increased DNL in the liver and decreased DNL in adipose
tissues, which contributes to fatty liver and other relevant metabolic diseases.

Hepatocyte and adipocyte DNL are differentially regulated at the transcription level. SREBP-1c
is a major lipogenic transcription factor in the liver, but plays a minor role in adipocyte DNL.
LXRs stimulate DNL in the liver, but have almost opposite roles in adipose tissues. By contrast,
ChREBPs are major lipogenic transcription factors in both hepatocytes and adipocytes. Importantly,
the ChREBP levels in adipose tissues are highly correlated with insulin sensitivity in humans, and are
reduced by high-fat diets or in obesity. Meanwhile, ChREBP-mediated DNL in adipocytes has beneficial
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effects on metabolism by generating insulin-sensitizing fatty acids such as FAHFAs. Therefore,
ChREBP-mediated DNL is a potential drug target for the treatment of insulin resistance. To this
end, two potential strategies may be adopted in the future. First, specific ChREBP agonists can be
developed by targeting the glucose inhibitory domain or other activating steps of ChREBP-α. Second,
additional beneficial products of ChREBP-mediated DNL may be identified to serve as the drug leads.

Although recent studies have provided more insights into the regulation of adipocyte DNL and
its physiological relevance, there are still important questions to be addressed. Most importantly,
how is DNL in adipocytes regulated differently from that in hepatocytes? The answer to this question
will help us to specifically activate DNL in adipocytes. In addition, what is the physiological role of
DNL in brown and beige adipocytes? Future studies on adipocyte DNL will further improve our
understanding on the role of lipid metabolism in insulin resistance.
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Abbreviations

DNL de novo lipogenesis
AT adipose tissue
WAT white adipose tissue
TG Triglyceride
FAHFA fatty acid ester of hydroxyl fatty acid
PAHSA palmitic acid ester of hydroxyl stearic acid
T2DM type 2 diabetes
CVD cardiovascular disease
NAFLD non-alcoholic fatty liver disease
VLDL very low density lipoproteins
NEFA non-esterified fatty acids
LPL lipoprotein lipase
FATP1 fatty acid transport protein-1
ATGL adipose triglyceride lipase
DAG diacylglycerol
HSL hormone-sensitive lipase
MAG monoacylglycerol
MGL monoacylglycerol lipase
BAT brown adipose tissue
TCA tricarboxylic acid
ACLY ATP-citrate lyase
ACC1 acetyl-CoA carboxylase-1
FASN fatty acid synthase
SREBP sterol regulatory element-binding protein
ChREBP carbohydrate response element-binding protein
LXR liver X receptor
ER endoplasmic reticulum
SCAP SREBP cleavage-activating protein
mTORC mammalian target of rapamycin complex
SCD1 stearoyl-CoA desaturase-1
PPAR peroxisome proliferator-activated receptor
BCKDH branched-chain α-ketoacid dehydrogenase
BCAA branched-chain amino acids
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AMPK AMP-activated protein kinase
O-GlcNAc O-Linked N-Acetylglucosamine
OGT O-Linked N-Acetylglucosamine transferase
OGA O-GlcNAcase
USP2A ubiquitin-specific protease-2a
MBH media basal hypothalamus
NPGL neurosecretory protein GL
GPR120 G protein-coupled receptor 120
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