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Abstract: This study aimed to perform an investigation for the potential implementation of bismuth
silicate glasses as novel shield equipment instead of ordinary shields in nuclear medicine facilities.
Accordingly, a group of Bi2O3 reinforced silicate glass system were investigated and compared
with ordinary shields in terms of their gamma-ray attenuation properties in diagnostic nuclear
medicine radioisotope energies emitted from 99mTc, 111In, 67Ga, 123I, 131I, 81mKr, 201Tl, 133Xe. Mass
attenuation coefficient (µm) results for glass samples were calculated comparatively with the XCOM
program and MCNPX code. The gamma-ray attenuation parameters such as half value layer (HVL),
tenth value layer (TVL), mean free path (MFP), effective atomic number (Zeff) were obtained in the
diagnostic gamma ray energy range from 75 to 336 keV. To confirm the attenuation performance
of superior sample, obtained results were extensively compared with ordinary shielding materials.
According to the results obtained, BISI6 glass sample with the highest Bi2O3 additive has an excellent
gamma-ray protection.

Keywords: shielding parameters; bismuth silicate glasses; radioisotope energies; MCNPX code

1. Introduction

Among the healthcare-based studies, medical radiation is still a hot topic for re-
searchers and practitioners in different sub-fields such as nuclear medicine, radiation
therapy, and diagnostic radiology. The term of medical radiation has a wide variety of
utilization worldwide. Besides the benefits from medical radiation, concerns on exposure
to a radiation dose of radiation workers cannot be ignored. Therefore, radiation protection
is an essential issue for occupational and public health [1–3]. In addition to the personal
protective equipment of radiation workers, the protection of radiation sources is also a sig-
nificant task to be considered. For example, although the majority of diagnostic radiology
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equipment use ionizing X-rays to acquire anatomical information from patients, radiation
doses from CT and X-ray facilities are expected to have a greater effect on the environment
and worker during the examination. On the other hand, the situation of nuclear medicine
facilities is different in terms of implemented radiation type and structure of the clinical
and laboratory environment (i.e., HOT lab). Local and international regulations have deter-
mined the utilization of radiopharmaceuticals (RPs) to ensure the safety of the personnel
working with the RPs; internal regulations of clinical implementation should be considered.
Unlike the radiation technologists of diagnostic radiology, it is worth mentioning that
there is another stakeholder such as isotope technician and isotope technologist in nuclear
medicine facilities. This is often beneficial for isotope experts to use a ring dosimeter on
one or both hands in addition to standard safety equipment if they have high rates of
activity to control. This allows workers to monitor radiation doses while working with
highly radioactive materials in a safe manner. Lead (Pb) and lead-based materials, on the
other hand, are the most often used materials in radiation safety. These include heated
laboratory shields, syringe and bottle covers, screened wastes, and covered workstations.
Meanwhile, tungsten (W) is the preferred choice for medical and industrial settings that
require radiation shielding since it uses less material than lead to provide the same level
of absorption. More recent findings have found that lead has harmful effects on both the
human population and the environment. The concrete is used to resist electromagnetic
ionizing radiation (normal or heavy). Nevertheless, it is only used in buildings, which
is very heavy and costly but is no more efficient than usual. Concrete is vulnerable to
cracking as it is used, making it translucent and immovable [4,5]. Alloys, minerals, marbles,
slag, steel, and polymers have been investigated for their ability to shield against ionizing
radiation [6–16]. Among the latest generation shielding materials, glass materials have
become a strong alternative to the negativity of Lead and concrete materials used in pro-
tection against radiation. Cheapness, lightweight, easy-to-form manufacturing compared
to Lead and concrete materials, and most of all do not affect living conditions adversely.
There are number of investigations on gamma-ray shielding properties of glass materials.
Structural and optical studies belonging to TeO2 and B2O3 glasses containing bismuth are
commonly found in the literature [17,18]. However, this study was based on SiO2 glasses
containing Bi2O3 [19,20]. El Batal studied various properties of bismuth silicate glasses
containing Bi2O3 at a ratio higher than 55% and also reported the change in spectroscopic
properties after gamma irradiation [19]. The change in conduction mechanism of bismuth
silicate glasses containing high ratios of bismuth with doping with titanium was the sub-
ject of another study [20]. Bi2O3 glass structures exhibit increased handling properties as
ionomers for radioactivity resistance but are especially well suited for electronic application
and ceramic materials [21–24] compared to Pb-based glasses [25,26]. On the other hand,
there has been an increased glass network communication in the tellurite glasses in the
presence of heavy metal oxide in the tellurite glasses [27]. In this study, which was based on
literature studies, 6 bismuth silicate glass samples were envisioned according to their Bi2O3
content within the range of 20–70% mole and were tested for their attenuation against
diagnostic energy in nuclear medicine for the purposes of shielding effectiveness. The
investigated radioisotopes and their gamma-ray energies can be listed as follow.

• Tc-99m 140 keV
• In-111 172,247 keV
• Ga-67 93,185,300 keV
• I-123 159 keV
• I-131 364 keV
• Kr-81m 190 keV
• Tl-201 75,167 keV
• Xe-133 364 keV

In addition, obtained results have been compared with traditional shielding mate-
rials as well as with available shielding materials in the literature. The study’s key goal
was to search for nuclear medicine-specific shielding products that can replace lead and
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concrete-based materials. Accordingly, we hypothesized to report several effects of Bi2O3
reinforcement on the attenuation of ionizing nuclear radiation types. As a result, the data
from each nuclear shielding parameter will be addressed in the analyzed glass samples
concerning the increase in Bi2O3 additive. The results of this large-focused study would
have great significance for research on a new generation of radiation-shielding glass shields
and their advanced development.

2. Materials and Methods
2.1. Theoretical Density Calculations

ρ =
(
xBi2O3 .ρBi2O3

)
+

(
xSiO2 .ρSiO2

)
(1)

Theoretical densities belonging to Bi2O3-SiO2 glass compositions are given in
Equation (1) [28]. In this equation, ρ is the theoretical density of the glass samples, xi
is the molar fraction, ρi is the density value of the chemical substance.

2.2. Method of Calculating Radiation Absorption Parameters

Primary gamma-ray intensity drops exponentially because of the Beer–Lambert law:
Positioning the attenuator shield between the detector and the source lowers gamma-ray
intensity [29–31].

I = Ioe−µx (2)

In Equation (1), Io depicts the intensity of primary gamma-rays; on the other hand, I
represent the intensity of transmitted gamma through the attenuator sample. Moreover,
µ indicates the linear attenuation coefficient of the energy of interest. The term x is the
thickness of the attenuator sample. Mass attenuation coefficients for glasses can be found
using next equation [32,33]:

MAC = ∑
i

wi(MAC)i (3)

wi: Weight fraction of the ith constitute elements.
A highly accurate calculation of the total atomic cross section (σa) and electronic (σt)

and the effective atomic density (σa dependent on the total molecular cross section (σt) are
calculated based on these values.

σt =
1

NA
∑

i
niAi(MAC)i (4)

σa =
1

NA
∑

i
fiAi(MAC)i (5)

σe =
1

NA
∑

i

fiAi

Zi
(MAC)i (6)

Zeff =
σa

σe
(7)

Neff =
(MAC)

σe
(8)

ni: Number of atoms, Ai: atomic weight of ith element; Zi: atomic number of ith

element; fi: fractional abundance of ith element; NA: Avogadro number
Some attenuators are able to decrease the absorbed radiation level to 1/2: this is called

the HVL, and the following equation can be used:

HVL =
ln(2)
LAC

(9)
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An absorption of 0.368 of the incident gamma radiation was observed by samples that
have a thickness of one mean free path (MFP):

MFP =
1

LAC
(10)

2.3. Monte Carlo Simulations

Formal modeling techniques are commonly employed in nuclear shielding tests,
commonly employed in numerical assessment. Many simulations can be carried out using
Monte Carlo techniques on radiation shielding. Work has been done in MCNPX [34]
general-purpose Monte Carlo code to simulate a point isotropic radioactive source has been
conducted. Aspherical geometry has been defined as a source. In addition, the gamma-
ray energies of isotope were defined for each diagnostic nuclear medicine radioisotope,
i.e., 99mTc, 111In, 67Ga, 123I, 131I, 81mKr, 201Tl, 133Xe. In MCNPX simulation, there is no direct
outcome to record MAC values but another sub-calculation via analyzing of output file.
Firstly, Monte-Carlo simulation data was constructed by adding the key parts, including
cell cards, surface cards, and source information in MCNPX input file. Each glass sample
was defined considering elemental mass fractions (wt%), material density (g/cm3), and
geometric form. It is essential to include material properties for radiation interaction
issues, including radiation shielding and nuclear protection—the knowledge needed to
describe physical quantities defined for an MCNPX input source. Therefore, material
definitions of MCNPX input file were performed using the glass properties (see Table 1).
The configuration of the modeled devices for gamma-ray transmission studies can be seen
in Figure 1. To calculate the average ingested dose, the precise F4 Tally mesh was used.
This is a promising technique for measuring average photon flux in a cell [33]. Our models
omitted photon and electron energy cutoffs. To begin, the MCNPX code was executed
for 108 histories or NPS (number of particle history). In all simulations, the uncertainty
associated with MC estimates was less than 1%. The source definition was completed in the
INPUT file’s sdef (source definition) section. As a result, the variables si (source probability)
and sp (source bias) were defined in terms of the gamma-ray beam distribution from the
source. The source was a point source biased toward the glass sample in the direction of
experimental gamma ray transmission investigations. The evaluation of the recent MCNPX
simulation has been performed by utilizing the D00205ALLCP03 MCNPXDATA package
is included of DLC-200/ MCNPDATA cross-section libraries.
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Figure 1. (a) Modeled point isotropic radioactive source obtained from MCNPX visual editor; (b) 2D view of simulation
setup obtained from MCNPX visual editor.
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Table 1. Samples codes, chemical composition, elemental compositions and density (ρ) of glass samples.

Code Bi2O3 (mole%) SiO2 (mole%) O (wt%) Si (wt%) Bi (wt%) ρ (g/cm3)

BISI1 20 80 0.52529 0.295312 0.179398 3.537
BISI2 30 70 0.472505 0.258398 0.269097 4.207
BISI3 40 60 0.41972 0.221484 0.358796 4.878
BISI4 50 50 0.366935 0.18457 0.448495 5.548
BISI5 60 40 0.31415 0.147656 0.538194 6.218
BISI6 70 30 0.261365 0.110742 0.627893 6.889

3. Results and Discussion

In this study, gamma ray attenuation properties of different bismuth silicate glasses
were investigated. Samples codes, chemical composition, elemental compositions, and
density (ρ) of glass samples can be obtained from Table 1. Sample densities obtained with
theoretical method are in compatibility with similar bismuth silicate glass structures found
in the literature, yielding experimentally obtained densities [19]. In addition, Inaba reported
that theoretically obtained density values were reasonably consistent with experimental
density values [35]. According to Table 1, BISI6 has the highest density, and BISI1 has
the lowest density. Mass attenuation coefficient (µm) results for glass samples encoded
BISI1, BISI2, BISI3, BISI4, BISI5, and BISI6 were calculated with the MCNPX [34] code and
XCOM [36] program, and the results were obtained in some of the well-known diagnostic
nuclear medicine gamma-ray energy range of 75 and 336 keV (see Table 2).

Table 2. Comparison of mass attenuation coefficients obtained from MCNPX [34] and XCOM [36].

E (keV) BISI1 BISI2 BISI3 BISI4 BISI5 BISI6

XCOM MCNPX XCOM MCNPX XCOM MCNPX XCOM MCNPX XCOM MCNPX XCOM MCNPX

75 0.617 0.619 0.835 0.836 1.053 1.058 1.271 1.273 1.489 1.491 1.707 1.712
93 1.324 1.327 1.906 1.912 2.488 2.491 3.069 3.101 3.651 3.653 4.232 4.238
140 0.535 0.539 0.733 0.735 0.931 0.935 1.130 1.136 1.328 1.334 1.526 1.531
159 0.415 0.417 0.556 0.559 0.697 0.701 0.838 0.841 0.979 0.981 1.121 1.123
167 0.378 0.379 0.501 0.504 0.625 0.627 0.749 0.754 0.873 0.876 0.996 0.103
172 0.358 0.357 0.472 0.475 0.586 0.589 0.700 0.705 0.814 0.815 0.929 0.931
185 0.314 0.317 0.407 0.408 0.501 0.503 0.595 0.601 0.689 0.701 0.783 0.784
190 0.299 0.301 0.387 0.391 0.474 0.471 0.561 0.564 0.648 0.653 0.736 0.738
247 0.199 0.202 0.242 0.245 0.285 0.286 0.328 0.331 0.370 0.372 0.413 0.417
300 0.156 0.157 0.182 0.181 0.207 0.210 0.232 0.235 0.257 0.256 0.282 0.285
364 0.128 0.129 0.143 0.145 0.158 0.159 0.172 0.174 0.187 0.190 0.202 0.205

The obtained variation trend of mass attenuation coefficients is shown in Figure 2. A
sharp peak is observed at 93 keV due to the K absorption edge in the Bi portion for the
glasses (as seen in Figure 2). Moreover, µm values decrease as the energy value rises from
75 to 336 keV. On the other hand, µm increased with the increase of Bi2O3 additive in the
glass composition. The prominent processes above are photoelectric (PE), Compton scatter-
ing (CS), and pair-production (PP). The energy changes influenced all the glasses’ energy
attenuation coefficients. The sharp decline in µm values are caused by the photoelectric
effect predominant at low energies. This is due to the microscopic cross-section being
linked to the Z4−5/E3.5 relations. On the other hand, Compton scattering is effective in
medium energies with a smooth change. The results showed that the BISI6 sample has the
highest mass attenuation coefficients among the investigated glasses. To compare mass
attenuation coefficients of BISI6 with ordinary and previously studies shields, a comparison
was performed between the materials.

Figure 3 shows the relationship between the mass attenuation coefficient values of
BISI6 glass samples with some concrete (OC, HSO, and SCO) samples and Pb as a function
of photon energy between 75–336 keV. As shown in Figure 3, the glass sample BISI6 with
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the highest Bi2O3 additive is the material closest to the mass attenuation coefficient of
lead material. A very critical shielding parameter is also known as HVL. This parameter
provides the required thickness to reduce incoming photon energy to its half at a specific
energy. Therefore, HVL is very significant, especially during the selection of the most
proper shields.
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Figure 4 shows the energy-dependent variation of the HVL values of all glass materials
between the energy region of 75–336 keV. Figure 4 shows that BISI6 has the lowest half
value layer values at all gamma-ray energies. Therefore, one can say that the sample with
the lowest HVL value has the best protection feature. As seen from the figure, the increase
of Bi2O3 additive and the maximum density decreases the HVL value and increases the
gamma attenuation capacity. Therefore, among the glass samples, it is seen from the figures
that BISI6 has the best shielding feature. As explained above, this glass sample has the
lowest HVL value.
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In Figure 5, the HVL values of the BISI6 glass sample and the Pb and several concrete
(OC, HSC, and SCC) samples were compared. The results showed that BISI6 sample has
higher HVL values than Pb but lower than OC, HSC, and SCC [37]. On the other hand, TVL
values, which are the calculation of the shielding material thickness required to decrease
the intensity of the incoming photons to one-tenth, have also been calculated in the energy
range between 75 and 336 keV and shown in Figure 6.

There is an inverse relationship between the mean free path and the linear attenuation
coefficient in λ = 1

µ . Alternately, the linear attenuator with the most significant free path
coefficients may be represented as the attenuation value with the lowest attenuation. Thus,
strong attenuation characteristics may result in shorter minimum mean free routes. It is
plotted in Figure 6 as mean free path difference overall glasses.

We observed that when incident energy rose, the mean free pathways of all the
glasses became longer. In addition, however, there were notable variations between the
glasses. The findings revealed that BISI6 samples had the shortest mfp values among the
investigated samples. Figure 7 shows the Zeff values as a function of incident photon energy.
The effective atomic number (Zeff) is a measure used to characterize the ionizing radiation
reactions of various elemental configurations [11,38–41]. Energy values are changed from
75 to 336 keV and are shown for all glass samples. Among the glass samples, BISI6 has the
highest Zeff value. As it is observed, Zeff values decrease with increasing energy value. The
sudden change in Zeff value at low energies (93 keV) is due to the absorption edge K of the
Bi element.
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BISI6 has the highest Zeff value. As it is observed, Zeff values decrease with increasing en-
ergy value. The sudden change in Zeff value at low energies (93 keV) is due to the absorp-
tion edge K of the Bi element. 

Figure 5. Half value layer (HVL) values of BISI6 glass samples Pb, ordinary concrete (OC), hematite-
serpentine concrete (HSC), steel-scrap concrete (SCC) as a function of photon energy.
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4. Conclusions

This study aimed to perform a characterization of Bi2O3 rich silicate glass systems in
terms of their availability for utilization as a shield in nuclear medicine facilities. Therefore,
gamma-ray energies of used isotopes were defined considering diagnostic nuclear medicine
radioisotopes and their gamma-ray energy values. Some types of standard shielding
materials, such as Pb and concrete, have significant photon shielding properties. However,
some recent investigations and tests found that lead-based products have extreme side
effects such as toxicity, poor efficiency, and high price. Therefore, this study attempted to
explore eco-friendly alternatives for nuclear medical facilities. Bismuth silicate samples
with various bismuth content were tested as new protective material. According to the
observations, BISI6 glass has an outstanding radiation shielding property by using the
Bi2O3 additive. Moreover, half-value layers of superior samples encoded BISI6 have
been compared with traditional shielding materials such as lead, ordinary concrete (OC),
hematite-serpentine concrete (HSC), steel-scrap concrete (SCC) as a function of photon
energy. The comparison results showed that the BISI6 sample has significant superiority to
ordinary concrete (OC), hematite-serpentine concrete (HSC), steel-scrap concrete (SCC).
However, slight differences were obtained between the lead and BISI6 samples. The
superiority of lead was slightly more in the range of 75–190 keV gamma-ray energies. On
the other hand, the HVL differences between BISI6 and lead slightly increased in the range
of 190–364 keV.
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