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Abstract
Arterial hypertension (AH) is a global burden and the leading risk factor for mortality worldwide. Haemodynamic abnor-
malities, longstanding neurohormonal and inflammatory activation, which are commonly observed in patients with AH, 
promote cardiac structural remodeling ultimately leading to heart failure (HF) if blood pressure values remain uncontrolled. 
While several epidemiological studies have confirmed the strong link between AH and HF, the pathophysiological processes 
underlying this transition remain largely unclear. The combined cardiopulmonary-echocardiography stress test (CPET-ESE) 
represents a precious non-invasive aid to detect alterations in patients at the earliest stages of HF. The opportunity to study 
the response of the cardiovascular system to exercise, and to differentiate central from peripheral cardiovascular maladap-
tations, makes the CPET-ESE an ideal technique to gain insights into the mechanisms involved in the transition from AH 
to HF, by recognizing alterations that might be silent at rest but influence the response to exercise. Identifications of these 
subclinical alterations might allow for a better risk stratification in hypertensive patients, facilitating the recognition of those 
at higher risk of evolution towards established HF. This may also lead to the development of novel preventive strategies and 
help tailor medical treatment. The purpose of this review is to summarise the potential advantages of using CPET-ESE in 
the characterisation of hypertensive patients in the cardiovascular continuum.

Keywords Arterial hypertension · Heart failure · Cardiopulmonary exercise test, exercise stress echocardiography

1 Introduction

Arterial hypertension (AH) is a public health burden, with 
an overall prevalence in adults estimated around 30–45% 
[1], making it a major preventable cause of cardiovascu-
lar disease and all-cause mortality worldwide [2]. A major 
contribution to the morbidity and mortality related to AH 

derives from heart failure (HF), for which AH represents 
the leading risk factor [3, 4]. Hypertensive patients show a 
five- to six-fold higher risk of developing HF than healthy 
subjects, and lifetime HF risk grows directly proportional 
to blood pressure [5]. The presence of AH before the HF-
related symptoms represents the most prevalent risk factor 
in heart failure with preserved ejection fraction (HFpEF), 
which is defined, according to current guidelines, by left 
ventricular ejection fraction (LV EF) ≥ 50% [5]. Indeed, 
hypertensive patients fall into stage A-HFpEF, according to 
the American College of Cardiology Foundation/American 
Heart Association classification (AHA/ACC), while those 
with AH-associated asymptomatic cardiac structural and/or 
function alterations fall into Stage B-HFpEF [6].

To tailor preventive and therapeutic interventions, a 
complete understanding of the mechanisms underlying the 
transition from HF stages A-B to clinical HF (AHA/ACC 
Stage C) would be of utmost importance. Cardiopulmonary-
echocardiography stress test (CPET-ESE) is currently used 
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to detect early alterations in patients with a definite diag-
nosis of HF, differentiating central from peripheral abnor-
malities in the cardiopulmonary response to physical exer-
cise [7–12]. However, the opportunity to study the entire 
cardiovascular system under exercise makes the CPET-ESE 
equally effective in highlighting initial alterations induced 
by hypertension and shared with HF, thus identifying early 
and long-acting pathways that might account for the transi-
tion between the two clinical conditions [13]. As a matter 
of fact, CPET-ESE has recently demonstrated an additional 
predictive value in patients with subclinical HF compared to 
the two techniques taken individually, independently from 
bio-humoral, clinical and instrumental parameters evaluated 
at rest [14–16]. Several biomarkers of cardiac function bear 
prognostic significance in patients with overt HF, among 
which the N-terminal pro-B type natriuretic peptide (NT-
proBNP) is the most used, according to current Guidelines 
[5]. However, these biomarkers are often normal in subjects 
in ACC/AHA HF stages A-B, including those with AH, and 
therefore cannot be used to evaluate the risk of transition 
towards more advanced HF Stages. Indeed, a multipara-
metric score including NT-proBNP and CPET-ESE derived 
parameters has been recently proposed as an accurate prog-
nostic tool to predict HF hospitalization and cardiovascu-
lar death in Stage C-HFpEF, as well as to identify the sub-
jects in Stages A and B at risk of transition towards more 
advanced HF Stages [13].

2  Pathophysiology

AH leads to progressive cardiovascular alterations through 
several different processes. Longstanding pressure overload 
on the LV is the first well-known mechanism of damage, 
which brings about structural remodeling and ultimately LV 
concentric hypertrophy (LVH). All of these alterations are 
often globally referred to as “hypertensive heart disease”, 
even if there is no unanimous agreement on the definition 
[17, 18]. Commonly, diastolic dysfunction (usually assessed 
by echocardiography) is the first manifestation of this patho-
logical process, discernible in early, mild AH even before 
the development of LVH [19–21]. This notwithstanding, it 
is worth noting that hypertensive heart disease is also char-
acterized by underhanded systolic dysfunction, even before 
the onset of clinical HF [12].

A network metanalysis by Sciarretta et al. [22] inves-
tigated the impact of different antihypertensive therapies 
in the prevention of HF, concluding that diuretics seem 
the most effective class of drugs in preventing the transi-
tion from AH to overt HF. Nevertheless, pressure overload 
is only one of the numerous mechanisms involved in the 
development of HF. Structural alteration of small coronary 
arteries, with increased collagen deposition and fibrosis (i.e. 

microvascular disease), is a key feature of cardiac chamber 
damage, detectable in the early stages of hypertensive heart 
disease [23]. Chronic hyperactivation of neurohormonal 
pathways (i.e. renin-angiotensin-aldosterone system) has a 
pivotal role in AH, as does the persistent increase of proin-
flammatory cytokines (tumor necrosis factor-alpha, interleu-
kin-1, and interleukin-6), growth factors (i.e. transforming 
growth factor-beta) and reactive oxygen species [18, 24]. 
This miscellaneous humoral environment leads to myocar-
dial fibrosis, coronary microvascular endothelial inflamma-
tion, and rarefaction [25–27]. This, in turn, reduces coronary 
flow reserve, which is also impaired by diminished vasodila-
tory capacity [28], elevation in LV diastolic filling pressure 
and compression of subendocardial microcirculation due to 
increased LV wall thickness [29]. In a vicious circle, the 
inability to satisfy increased oxygen demand (associated 
with LVH) predisposes to ischemia and further fibrosis and 
remodeling [18].

The longstanding neurohormonal and inflammatory acti-
vation also impacts considerably on the remodeling and stiff-
ening of systemic arteries, which is a crucial feature in the 
pathophysiology of AH. Increased arterial stiffness causally 
contributes to isolated systolic hypertension [30], leading to 
both ventricular-arterial uncoupling and microvascular dam-
age [31–33]. There is a strong correlation between LV dias-
tolic function, assessed by tissue Doppler imaging-derived 
mitral annular velocity in early diastole (e’), and indices of 
arterial afterload (i.e. arterial elastance, arterial compliance, 
systemic vascular resistance) or vascular stiffness (i.e. pulse 
wave velocity) both in healthy ageing and in hypertensive 
patients with or without HF [34]. Moreover, pulse wave 
velocity is related to abnormal myocardial deformation 
in systole, assessed by speckle tracking echocardiography 
(STE) [35] and to increased serum levels of biomarkers of 
collagen turnover (suggesting excessive myocardial collagen 
deposition). Beyond its impact on LV function and structure, 
the increased pulsatile energy transmitted by stiff vessels to 
the microvascular system promotes remodeling of the small 
vessels, which might further impair coronary flow reserve at 
the cardiac level and oxygen extraction in the periphery [36]. 
Finally, the microvascular disease promoted by increased 
arterial stiffness is responsible for the damage of target 
organs such as the brain and the kidney [37]. Due to these 
synergetic mechanisms, and in parallel with LVH develop-
ment, AH is thought to progress towards HFpEF [38–41], 
which is indeed characterised by impaired LV systo-diastolic 
function, reduced exercise capacity and a high prevalence of 
peripheral and coronary microvascular dysfunction [42–44].

On the other hand, AH can also lead to HF with LV EF 
< 40% (HFrEF) [5]. The Cardiovascular health study dem-
onstrated that LVH is a strong predictor of depressed ventric-
ular function and acts as a direct or indirect predecessor of 
systolic deterioration through chronic myocardial ischemia 
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[45]. Indeed, comorbidities commonly associated with AH, 
such as obesity, chronic kidney disease and anemia, can lead 
to volume overload and thus contribute to LV dilation [20]. 
Therefore, end-stage hypertensive heart disease can result 
in dilated cardiomyopathy. Furthermore, the development 
of acute ischemic events, facilitated by the co-existence of 
AH and coronary atherosclerosis, is another frequent cir-
cumstance that can cause the progression of hypertensive 
heart disease towards dilated cardiomyopathy [40, 46, 47].

3  Combined 
Cardiopulmonary‑Echocardiography 
Stress Test

Transthoracic echocardiography has a well-known role 
in the clinical assessment of hypertensive patients, both 
to detect LV remodeling and to evaluate the response of 
cardiac structural and functional alterations to antihyper-
tensive medications [2, 40]. 2D-derived resting LV mass 
and geometry and left atrial dimension have been used tra-
ditionally in the stratification of cardiovascular risk, while 
further evaluation of LV diastolic and systolic function can 
be assessed by echo-Doppler and STE [48]. Noteworthy, the 
latter technique—namely, STE-derived global longitudinal 
strain (GLS)—has shown to be more reliable than LV EF in 
evaluating inapparent abnormalities in myocardial contrac-
tile function [49]. However, physical exercise can stress car-
diopulmonary homeostasis and unmask pathological hemo-
dynamic changes still unapparent at rest, allowing a better 
characterisation of the transition from AH to HF (Table 1).

In hypertensive patients, ESE finds its main applica-
tion in risk stratification and in the diagnosis of myocar-
dial ischemia [50]. However, this technique has also been 
successfully used in the last years to gain insight into car-
diovascular mechanisms underpinning effort intolerance in 
patients in different subsets of HF, from Stages A-B to overt 
HF [51–53]. ESE can integrate the assessment of cardiac 
function analysed at rest through the evaluation of chamber 
geometry and volumes, LV systolic and diastolic function, 
left atrial structure and function, and valvular function dur-
ing exercise [54].

Progressive impairment of cardiac mechanics and/or cor-
onary flow reserve can result in the absence of contractile 
reserve, defined as the inability to increase LVEF ≥ 7.5% 
from rest to peak exercise [55]. Subclinical LV contractile 
dysfunction can be evaluated by tissue Doppler imaging-
derived systolic mitral annulus tissue velocity (s’) [12] and 
STE-derived GLS [55]. On the other hand, early (E) to late 
(A) diastolic transmitral flow velocity ratio is part of the rou-
tine assessment of diastolic function both at rest and during 
exercise, together with the ratio of transmitral flow velocity 
to mitral annular velocity in early diastole (E/e’) [56]. The 

latter, in particular, correlates well with LV filling pressure 
when assessed at rest. Resting E/e’ > 15 represents a major 
criterion in the diagnostic workup of HFpEF [57], as well as 
a powerful prognostic indicator in this population [58, 59]. 
However, albeit peak effort E/e’ > 15 is deemed to express 
a stress-induced increase in LV filling pressure, doubts have 
been recently raised regarding the technical feasibility and 
reliability of this parameter during exercise [60]. The evalu-
ation of diastole is integrated with the estimation of systolic 
pulmonary arterial pressure (sPAP), which is calculated by 
adding estimated right atrial pressure to measured tricuspi-
dal regurgitation velocity [61]. An inappropriate increase 
in sPAP indicates a pulmonary hypertensive response to 
physical or pharmacological stress [54], which is common 
in AH and is usually associated with increased LV filling 
pressure [9, 62].

ESE can be easily combined with lung ultrasound, which 
allows for the assessment of extravascular lung water, as 
revealed by the presence of B-lines [63, 64]. An increase 
in the number of B-lines during exercise, rather than their 
absolute number at a given moment, indicates cardiogenic 
extravascular lung water accumulation, which is likely due 
to increased filling pressures [65, 66]. In a recent study 
involving patients in AHA/ACC HF Stages A/B (81% of 
which had AH), those with higher peak-rest ΔB-lines (i.e., 
more severe exercise-induced pulmonary congestion) were 
at higher risk of transition towards manifest HFpEF after a 
two-year follow-up [13].

The combination of ESE with CPET can provide impor-
tant additional information on the systemic and pulmonary 
response to exercice. CPET has been increasingly recognised 
as a reliable tool in assessing aerobic fitness due to the possi-
bility to analyse in a non-invasive and multiparametric fash-
ion the cardiovascular, respiratory and metabolic response 
to exercise [14]. Oxygen consumption  (VO2) was the first 
exercise-derived parameter used to categorise HFrEF [67]; 
a decade later, Mancini et al. proposed peak  VO2 as a prog-
nostic risk factor for cardiovascular death in patients with 
advanced HFrEF [68]. However, increasing evidence sug-
gests that effort intolerance is as common in patients with 
chronic, stable HFpEF as it is in subjects with HFrEF [7, 
10, 12, 69]. Current Clinical Recommendations discuss the 
possibility of converting measured peak  VO2 to percent-pre-
dicted to account for age and sex differences [70]. However, 
recently the reliability of this parameter compared to peak 
 VO2 in HFpEF has been questioned [71].

CPET can detect impairment in aerobic metabolism by 
evaluating the anaerobic threshold (AT), which identifies the 
physiological switch to mainly anaerobic metabolism [72]. 
Earlier AT denotes a principal role of anaerobic metabolism 
during exercise, and this finding characterises both physi-
cal deconditioning and HF [73]. The increased amount of 
time spent in anaerobic conditions appears to be related to 
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impaired oxygen extraction [74]. Indeed,  VO2 depends on 
cardiac output (CO; i.e., heart rate times stroke volume) and 
oxygen extraction by peripheral tissues (i.e., arteriovenous 
oxygen difference  [AVO2diff]), as summarised by Fick’s 
principle [15]. Thus,  VO2 is the physiological result of the 
interplay between central (CO) and peripheral  (AVO2diff) 
components. The physiological increase in  AVO2diff dur-
ing exercise is blunted in the whole spectrum of HF, prob-
ably due to microvascular and mitochondrial impairment 
in AHA/ACC A-B stages and C-HFpEF [12, 75], with the 
additional contribution of cardiac cachexia and sarcopenia 
in advanced HFrEF [73]. Noteworthy,  AVO2diff can be 
assessed only through invasive catheterisation or estimated 
by CPET-ESE from Fick’s principle as  VO2/CO. Indeed, 
although CPET allows a global analysis of  VO2 during exer-
cise, only a concurrent invasive hemodynamic evaluation by 
cardiac catheterisation or with imaging techniques such as 
ESE allows distinguishing its central and peripheral deter-
minants [76]. For this reason, in the last years, the integrated 
CPET-ESE evaluation has been revealed to be a precious 
tool to refine the characterisation of patients with HF or at 
risk of developing it [12–16, 51] (Fig. 1).

The ventilatory equivalent for carbon dioxide (VE/VCO2) 
is another crucial parameter evaluated by CPET, as it demon-
strated robust prognostic power in HF, even in submaximal 
levels of effort, in contrast to other CPET parameters such 
as  VO2 [14, 77, 78]. VE/VCO2 is an index of ventilation/
perfusion matching in the lung and describes the increase in 
minute ventilation for any given amount of  CO2 generated 
from cellular respiration. It is determined by  CO2 produc-
tion, the physiological dead space to tidal volume ratio (VD/
VT) and the arterial  CO2 partial pressure, with higher values 
(i.e., a steeper slope) indicating ventilation/perfusion mis-
match. The VD/VT ratio and the end-tidal partial pressure of 
 CO2 also reflect ventilatory control and ventilation/perfusion 
matching during exercise. Furthermore, the latter provides 
a reliable non-invasive estimation for arterial  CO2 partial 
pressure. Recently, Salvioni et al. proposed an equation to 
predict VE/VCO2 slope in patients with HFrEF, seeking to 
determine whether the percentage of predicted VE/VCO2 
slope could have a greater prognostic power compared to tra-
ditional VE/VCO2 slope [79]. Indeed, percent-predicted VE/
VCO2 slope allowed for a refined prognostic stratification 
in patients with severe HFrEF (peak VO2 < 14 ml/min/kg) 
compared to the absolute VE/VCO2 slope value. However, 
such an equation has yet to find wider application, even in 
the research setting.

Notably, impaired ventilation and ventilation/perfusion 
mismatch correlated with increased B-lines in a cohort of 
patients across the whole HF spectrum [9].

Despite the promising evidence derived by the combined 
approach in patients with HF, this technique has some limi-
tations worthy of being mentioned. Compared with rest 

echocardiographic and clinical evaluation, CPET-ESE is 
more time-consuming, more expensive, and requires spe-
cialized equipment and personnel.

4  The Transition from Subclinical Alterations 
to Heart Failure: The Role of Combined 
Cardiopulmonary Echocardiography 
Stress Test

Despite the importance of risk stratification and preventive 
interventions in hypertensive patients, and despite the tight 
pathophysiological connection between AH with HFpEF 
[18], only scarce attention has been given to the systematic 
analysis of the transition from one condition to the other. 
Moreover, many typical comorbidities of HFpEF (e.g., AH, 
obesity and diabetes mellitus) cluster together and are all 
involved in the pathophysiology of HF, making it difficult 
for the clinician to discern the contribution of each of these 
conditions and their associated cardiovascular and pulmo-
nary alterations in the development and progression of the 
disease [15, 16].

As CPET-ESE is an expensive and time-consuming 
technique, patient selection is mandatory and should be 
driven by clinical judgment. Thus, hypertensive patients 
experiencing symptoms and signs suggestive of HF, such 
as dyspnea, fatigue and ankle swelling, should first undergo 
a comprehensive evaluation, including standard rest echo-
cardiography and natriuretic peptides measurement (Fig. 2). 
HF-specific quality of life questionnaires (e.g., the Kansas 
City Cardiomyopathy Questionnaire), scores based on clini-
cal and rest echocardiographic parameters (e.g., H2FPEF 
and HFA-PEFF [57, 80]), and submaximal exercise tests 
(e.g., the 6-minute walk test) can be used in clinical practice 
but are scarcely reliable for patients at intermediate prob-
ability. For those falling in this "grey zone", the combined 
CPET-ESE approach could offer a better pathophysiologi-
cal characterization, supporting or ruling out the diagnosis 
of HFpEF. Noteworthy, subjects with resistant hypertension 
represent a subgroup at higher risk of transition toward HF 
[81] and likely candidates for the CPET-ESE examination 
when clinically indicated. However, it must be noted that 
exercise testing might be contraindicated in those with rest-
ing BP >200/110 mmHg [82].

In an interesting paper by Melenovsky et al., resting 
vascular (i.e. brachial and carotid pressures, total arte-
rial resistance, arterial elastance) and conventional LV 
diastolic parameters (i.e. E-wave, A-wave, deceleration 
time, and e’ at both mitral annular insertions) were able 
to detect early cardiovascular maladaptations in hyper-
tensive subjects with LVH compared to healthy controls 
[33]. Invasive hemodynamic assessment of arterial func-
tion at rest and during exercise confirmed those results, 
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unmasking significant exercise-induced impairment in 
arterial compliance and vasodilatory response to nitrate 
infusion in HFpEF and AH [9, 83]. Such alterations can 
lead to a reduced peak  VO2, an earlier AT and a steeper 
 VCO2/VO2 in hypertensive patients [84, 85]. It has been 
recently observed that, despite peak VO2 appears more 
severely impaired in hypertensive subjects with HFpEF 
than in isolated AH, the two populations share similar 
signs of low peripheral oxygen extraction in terms of 
impaired  AVO2diff [9]. However, there is also evidence 
of central alterations to exercise intolerance in AH, as 
demonstrated by a mildly reduced peak heart rate than 
healthy subjects [86]. Indeed, chronotropic incompetence 
(i.e., insufficient increase in HR during exercise) is a com-
mon feature in the HF spectrum and a strong predictor of 
cardiac and all-cause mortality [87, 88] Moreover, hyper-
tensive patients present with preserved CO increase dur-
ing exercise, but they show subtle alterations in regional 
myocardial deformation (e.g. STE-derived GLS) that are 
significant compared to healthy controls [9]. The cor-
relation between STE-derived myocardial deformation 
parameters and impaired exercise capacity is well estab-
lished [24, 33]. Nedeljkovic et al. studied hypertensive 
patients with and without HFpEF, showing similar echo-
cardiographic parameters at rest in the two populations, 
except for a lower e’ and higher sPAP in subjects with 
HFpEF, suggesting that peak E/e’ could unmask HFpEF. 
Indeed, subjects with pathologically high E/e’ had sig-
nificantly steeper VE/VCO2 slope and reduced partial 
pressure of end-tidal carbon dioxide  (PETCO2), another 
marker of ventilatory/perfusion mismatch [62]. Similar 
data were observed by Belyavskiy et al., highlighting how 

the evaluation of tricuspid regurgitation velocity during 
exercise—and thus, indirectly, of pulmonary artery pres-
sures—could better detect patients with HFpEF, compared 
with the sole peak E/e’ ratio [90]. Moreover, the mild 
elevation of sPAP observed during exercise in subjects 
with AH and HFpEF was revealed to be consistent with 
a steeper VE/VCO2 slope and increased peak B-lines [9].

These results suggest that exercise can elicit subclinical 
pulmonary congestion even in patients with isolated AH 
and before overt HFpEF occurs, providing a more accu-
rate risk stratification and potentially a more personalised 
therapy.

Several studies analysed the impact of medical therapy 
on the CPET response in patients with HF [91, 92]. As 
far as we know, the combined approach has not been used 
for this purpose in HF nor AH, possibly due to its rela-
tively recent introduction in the research setting. In the 
future, the application of CPET-ESE might also spread to 
the evaluation of the response to pharmacological therapy.

5  Conclusions

AH is a global burden and the leading risk factor for 
HFpEF. Given its capacity to detect early functional altera-
tions, CPET-ESE could give more insight into the clinical 
stages towards HF and allow a better risk stratification 
in hypertensive patients. As identifying early cardiopul-
monary alterations in AH may suggest novel preventive 
strategies and help clinicians tailor medical treatment, 

Fig. 1.  The combined CPET-
ESE approach to evaluate the 
cardiopulmonary response 
to exercise in hypertensive 
patients with and without 
HFpEF. Bottom images depict 
left ventricular hypertrophy 
and arterial thickening, which 
are characterizing features of 
HFpEF. AVO2diff arteriovenous 
oxygen difference, CO cardiac 
output, CPET-ESE cardiopul-
monary-echocardiography stress 
test, GLS global longitudinal 
strain, HFpEF heart failure with 
preserved ejection fraction, 
LV EF left ventricular ejec-
tion fraction, sPAP systolic 
pulmonary arterial pressure, 
VE/VCO2 ventilatory equivalent 
for carbon dioxide, VO2 oxygen 
consumption
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further investigations are needed to confirm the value of 
CPET-ESE in the clinical arena.
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