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Abstract 
Predictive biomarkers are important to the future of oncology; they can be used to identify patient 

populations who will benefit from therapy, increase the value of cancer medicines, and decrease the size 
and cost of clinical trials while increasing their chance of success. But predictive biomarkers do not always 
work. When unsuccessful, they add cost, complexity, and time to drug development. This perspective 
describes phases 2 and 3 development methods that efficiently and adaptively check the ability of a 
biomarker to predict clinical outcomes. In the end, the biomarker is emphasized to the extent that it can 
actually predict. 
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Perspective 

The future of oncology drug development lies in 
using predictive biomarkers to identify subsets of patients 
who will benefit from particular therapies. Increasingly, 
national health authorities and insurers are demanding 
value from medicines. For example, the United Kingdom s 
National Institute for Clinical Excellence demands a cost 
of less than or equal to 30,000 British pounds per 
quality­adjusted life­year (QALY). Most cancer 
medicines, however, are far more  expensive. The low 
value of cancer medicines is largely driven by two 
factors: (1) the low average benefit of cancer medicines 
because they benefit only a subset of the population, and 
(2) the high cost of oncology drug development due to its 
high failure rate and the need for large pivotal trials to 
detect small average benefits. 

Predictive biomarkers, or responder identification 

biomarkers, are molecules or other characteristics of a 
patient or a patient  s malignancy that predict increased 
benefit from a particular drug. Predictive classifiers, 
which may be constructed from one biomarker or a 
composite of biomarkers, identify patients more likely to 
benefit. With increasing knowledge of the molecular 
biology of cancer, the number and potential of these 
predictive biomarkers and classifiers are increasing. 

Examples of predictive biomarkers of importance in 
oncology include HER2/neu expression for trastuzumab 
therapy, sensitizing mutations in the epidermal growth 
factor receptor (  ) gene for gefitinib and erlotinib 
therapy, and wild­type  for therapy with cetuximab 
or panitumumab [1­8] . However, failures of predictive 
biomarkers have also been reported. In these cases, 
biomarker use added cost, complexity, and time, and 
narrowed the treated population unnecessarily. A notable 
setback was the failure of EGFR expression to predict 
the efficacy of EGFR­directed antibodies. This anomaly 
may have been due to insufficient sensitivity, biased 
sampling, loss of antigen expression with storage, or 
tumor evolution between the time the biopsy was 
obtained and when the therapy was applied [9,10] , but these 
issues affect any real world attempt to test a predictive 
biomarker hypothesis. Thus, predictive biomarker 
classifiers and the assays used to test them must be 
robust to these pitfalls. 
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The great promise of predictive biomarkers, together 
with inconsistent results and the significant investment of 
time and money required, have led to variable attitudes 
ranging from uncritical enthusiasm to harsh skepticism [11­13] . 
The skepticism is well expressed by Ratain and 
Glassman: 野Whereas 耶wins爷 have occurred here噎 most 
attempts to identify such biomarkers have been nothing 
more than expensive fishing expeditions. Drug response 
is multifactorial; patient populations are heterogeneous; 
potential markers are innumerable; and scientific 
underpinnings to marker development are imperfect.冶 [13] 

These issues and legitimate concerns may hinder 
the development of a field that increases in promise as 
the molecular understanding of cancer increases. 
Interdisciplinary drug development teams often fail to 
reach a consensus on if, when, and how to apply 
predictive classifiers, and this manifests in present­day 
clinical trials that lack a meaningful use for these 
classifiers. The approach presented below was 
developed after extensive discussions among discovery 
scientists, translational medicine experts, clinicians, 
statisticians, regulatory affairs experts, and commercial 
experts from several pharmaceutical and biotechnology 
firms, and is inspired by a broad consensus from these 
discussions (but does not represent the official position 
of the firms). In this approach, predictive classifier use is 
actively considered in each case, and early investments 
are made in preclinical and clinical programs to 
determine if they predict clinical benefit. Classifiers are 
then applied in phase 3 trials only to the extent that they 
can be shown to predict clinical benefit. 

This report will first discuss four fundamental 
strategic principles underlying this approach, and then 
follow with four tactical innovations for efficient 
implementation of the strategic principles. Biomarker 
development can be divided into an exploration phase 
and a confirmation phase [14] . This report focuses on the 
confirmation phase. 

Strategic Principles 
The central goal is to apply predictive biomarker 

classifiers in exact proportion to the evidence supporting 
their clinical value. Four strategic principles are 
fundamental to the approach: (1) maximum efficiency of 
development based on objective mathematical functions 
that quantify benefit or utility (such as the number of 
approved therapeutic indications) per resource unit 
expended (such as money spent or patients enrolled), 
(2) adaptive decision making, (3) continuous integration 
of biomarker and clinical information, and (4) validation 
of predictive biomarker hypotheses against clinical 
benefit. Adaptive decision making and continuous 
integration of biomarker and clinical information are 

inherent in the tactics discussed later in this and 
subsequent sections. In particular, adaptive decision 
making that integrates biomarker and clinical information 
will be evident in the decision analysis­based transition 
from phase 2 to phase 3, and in the adaptation within 
the phase 3 study based on both interim results from 
phase 3 and maturing results from phase 2 ( 

). In the strategy sections immediately below, 
we further explain the principles of maximum efficiency 
of development and validation of predictive biomarker 
hypotheses against clinical benefit. 

Departing from tradition: development efficiency 
and type III error 

Testing whether predictive biomarkers work requires 
both biomarker­positive and biomarker­negative patients 
in late development. This could require more patients in 
some cases. To conserve resources, we would like to do 
the most efficient development we can要that is, getting 
the answer with the smallest number of patients in 
phases 2 and 3 trials. 

A critical step in drug development is the proof of 
concept (PoC) trial, a phase 2 trial designed to provide 
an initial test of a particular therapy or combination of 
therapies in a defined population or indication. Given that 
there are typically  nearly 1,000 approved and experi鄄  
mental therapies for cancer active in clinical trials at any 
one time, that they can be combined in twos and threes, 
that different schedules may be used, and that many 
clinical indications and lines of therapy are available, the 
number of potential PoC trials that could potentially be 
performed is enormous. The number only increases 
when considering possible subsets defined by biomarker 
classifiers, which must take into account approximately 
30,000 genes in the human genome and the genetic 
instability and consequent heterogeneity of cancer [15­17] . 
Although preclinical information offers prioritization of 
these possibilities, there still remain a very large number 
of potentially useful PoC trials that far exceeds the 
availability of patients and funding from either public or 
private sources. 

Statisticians traditionally design randomized PoC 
trials with the concepts of type I and type II error in 
mind. These refer, respectively, to false positive and 
false negative rates due to chance as a result of the 
finite sample size in a PoC trial. False positive results 
lead to phase 3 trials undertaken in error and will likely 
produce negative results at great expense. False 
negative results lead to the wrong conclusion that the 
drug is ineffective for the indication, resulting in a loss of 
opportunity. Traditionally, phase 2 PoC trials are 
designed to have a type I error of 10% and a type II 
error of 20% (the  is 100% minus the type II error, 
thus 80%  in this case). So engrained is this 
tradition that PoC trials with less than 80% power are 
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often termed  , even though the traditional 
powering still allows significant room for error, and 
野perfect冶 PoC trials would require infinite sample sizes. 
However, there is no absolute scientific basis for 
selecting particular types I and II error rates in PoC 
trials; these are simply a function of risk tolerance, which 
is in turn a function of strategy. Indeed, we observe an 
alternative style of smaller underpowered trials being 
executed in many cases. 

Chen  . [18,19]  investigated whether optimal type I 
and type II error rates could be objectively defined by 
requiring that the efficiency of phase 2 and phase 3 
development be maximized. Given the fact that the 
possible expenditure on PoC trials of interest in oncology 
usually exceeds available patient and financial 
resources, efficiency was defined as the risk­adjusted 
number of truly effective drug/indication combinations 
identified by PoC trials and developed to approval 
(benefit) divided by the risk­adjusted number of patients 
enrolled in phases 2 and 3 trials (cost). The risk­adjusted 
benefit is diminished by the risk because of missing a 
truly effective drug that was not recognized as such by 
the PoC trial (false negative: type II error). The 
risk­adjusted cost includes the risk of enrolling patients in 
a costly phase 3 trial involving an ineffective 
experimental drug presumed to be effective based on the 
PoC trial (false positive: type I error). In this benefit/cost 
ratio, cost is defined as number of patients in that 
patients are the ultimate limiting resource in drug 
development. Indeed, we wish to find optimal therapies 
while exposing the fewest patients to the failures that are 
common in drug development. It should be noted that 
financial cost is not exactly proportional to the patient 
number, as there is a fixed start­up cost of even the 
smallest clinical trial. 

The scenario assumed that there was a fixed total 
patient budget for PoC trials and that there were many 
more PoC hypotheses of equal merit that could be 
tested than that could be funded within the budget, if all 
trials were designed using traditional type I and type II 
errors. It was further assumed that every positive PoC 
trial would result in a phase 3 pivotal trial with type I and 
type II error rates fixed according to health authority 
requirements. Finally, it was assumed that the PoC trial 
type I and type II error rates, which (along with the 
minimum benefit of clinical interest) dictate the PoC trial 
sample size, can be selected to optimize the efficiency 
function. The question was essentially: is it better to 
perform larger PoC trials to minimize the adverse 
consequences of type I and II statistical errors, or to 
perform smaller PoC trials so that more valuable 
hypotheses can be tested under a fixed PoC trial 
budget? 

Surprisingly, it is up to 30% more efficient to 
reduce the power of PoC studies from 80% to 60% , 

while maintaining the traditional type I error and 
correspondingly performing approximately twice as many 
PoC trials (because of the reduced sample size required 
compared to traditional PoC trials). This is called 

. 
Further reductions in sample size do not lead to further 
increases in efficiency. The reason for this surprising 
result is readily apparent: doing trials with traditional 
powering, which needs more patient or financial 
resources per PoC trial, may cause us to not perform 
some valuable PoC trials due to budgetary restrictions. 
Not performing a PoC trial may cause us to miss an 
opportunity to test a hypothesis that might have been 
successful. This lost opportunity is an invisible mistake 
but is severely detrimental to the efficiency of 
development. The resulting opportunity cost has been 
termed  [12] . Larger, traditional PoC trials have 
lower type I and type II errors but higher type III error 
when performed as part of an overall development 
program under a fixed PoC budget. 

Because the development efficiency function is 
野flat冶 as we go to smaller and smaller PoC trials, it is 
not helpful to look for the actual optimum. Rather, the 
recommended procedure is to reduce the power and size 
of the trial until most of the potential efficiency increase 
is realized. This is generally at 60% power, with a type I 
error of approximately 10%, assuming that the effect size 
(degree of clinical benefit) used for power calculations is 
the minimum clinically significant effect size, such as 
33% or 2 months improvement in progression­free 
survival (PFS), whichever is greater. This is in contrast 
to the practice of powering on an aspirational or desired 
larger effect size, so that the traditional power may be 
achieved with a small, practical sample size. The latter 
practice uses optimism about the effect size, not always 
justified,  to mask the reality of the phase 2 trial power 
statistical properties. 

The above results assume a variety of equally 
meritorious hypotheses to be tested. However, based on 
preclinical information or other considerations, the 
interdisciplinary drug development team may judge some 
hypotheses to have greater value and/or probability of 
success than others. The same mathematics can be 
used to find the corresponding optimal type I and type II 
error rates for each hypothesis and the optimal allocation 
of resources in the case of hypotheses of unequal merit, 
such that PoC trials corresponding to the strongest or 
most valuable hypotheses get more than their share of 
resources, others less resources, and PoC trials 
corresponding to the weakest or least valuable 
hypotheses may not be done. For example, if two 
hypotheses are of equal merit, it is more efficient to do 
two trials at  rather than to test 
only one hypothesis at traditional power. But if the 
hypotheses are of unequal merit, the mathematics 
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suggests devoting more resources to testing the better 
hypothesis. If the difference in relative merit of the 
hypotheses is very great, the mathematics may suggest 
devoting all the resources to the better hypothesis, 
mirroring the traditional paradigm. The mathematical 
approach can further incorporate the correlation between 
the endpoint for phase 2 (for example, PFS) and the 
primary variable of interest in phase 3 [for example, 
overall survival (OS)] [20] . 

Using this optimal sizing of phase 2 trials has 
certain advantages and disadvantages, in addition to the 
efficiency considerations outlined above. Smaller phase 
2 trials can lead to faster enrollment, accelerating the 
appearance of successful drugs and greatly benefiting 
patients who need additional treatment options as soon 
as possible. More rapid drug development is also 
beneficial for pharmaceutical and biotechnology 
companies. The effect of smaller phase 2 trials on 
motivating phase 3 investigators in the subsequent trial 
is another important issue. Optimal cost­effectiveness 
with less power also corresponds to a higher empirical 
bar for 野go­no go冶 decisions that determine whether a 
drug will advance to phase 3 development  [18,19] . Thus, 
phase 3 investigators may have greater motivation to 
enroll phase 3, which will be supported by a larger 
observed phase 2 effect size than usually required for a 
野go.冶 Conversely, these same phase 3 investigators 
may have less motivation to enroll phase 3 if they find a 
larger phase 2 trial more convincing. Finally, smaller 
phase 2 trials decrease the precision of estimating the 
probability of phase 3 success and the clinical benefit 
effect size. We do not recommend designing phase 3 
around the estimated effect size based on phase 2 
results; rather, we recommend designing phase 3 around 
the minimum clinically significant effect size (such as 
25% improvement in OS or 2 months, whichever is 
greater) for this reason. Exceptions to this 
recommendation may be considered in the case of 
particularly compelling phase 2 results. 

When a predictive biomarker classifier is validated 
in a PoC study, we are really testing two PoC 
hypotheses: a PoC hypothesis concerning the drug and 
a PoC hypothesis concerning the biomarker classifier. 
This would, in principle, double the size of the PoC study 
because one needs to perform statistical tests on both 
biomarker­positive and biomarker­negative patient 
subgroups. However, by powering each of the subgroups 
at the Chen­Beckman power, the sample size again 
becomes manageable. 

Validation of predictive biomarker classifiers: 
a moratorium on fishing and the importance 
of iteration 

To demonstrate the value of a predictive biomarker 

classifier, the classifier must be validated against patient 
clinical benefit. In the program described herein, this 
validation is formal statistical validation, beginning with 
the randomized PoC trial, and continuing, if indicated by 
the data, through to a phase 3 pivotal trial that 
definitively validates the biomarker classifier as a 
predictor of clinical benefit. This would result in 
simultaneous health authority approval for both the drug 
and the associated diagnostic test for patient selection 
[co­diagnostic or  diagnostic (IVD)]. By incor鄄  
porating formal statistics into the predictive classifier 
evaluation in a randomized phase 2 study, we are able 
to optimally manage risk across a portfolio of drugs and 
putative biomarker classifiers (see 野decision analysis 
guided phases 2­3 predictive biomarker transition冶 below). 

Formal statistical analysis precludes 野fishing 
expeditions冶 as described by Ratain and Glassman, in 
which a large number of biomarkers are informally tested 
in an exploratory fashion. In this exploratory approach, 
many possible biomarker hypotheses are simultaneously 
tested, and the possibility that one of these hypotheses 
will appear to be true based on chance alone is 
extremely high. This multiple hypothesis problem leads 
to an unacceptably high type I error rate in typical 
biomarker studies. Moreover, if the hypotheses are not 
specified prospectively, but rather after the study data is 
available, the chance of crafting an artifactually 
successful predictive biomarker hypothesis is even 
higher. 

Therefore, we require that one primary predictive 
biomarker hypothesis be specified in advance. This 
hypothesis is termed the primary predictive biomarker 
clinical benefit identification (ID) hypothesis. The 
randomized PoC study is formally powered around the 
subgroups defined by this biomarker classifier, at 
powering designed for optimal efficiency. Ideally, the 
primary predictive biomarker hypothesis will be specified 
prior to the start of the randomized PoC study, as it is 
helpful in the study design. If necessary, however, its 
specification can be delayed until just before the 
samples are analyzed at the end of the study, the 
prospective retrospective approach [21] . Clinical benefit is 
stated in general terms and may refer to tumor shrinkage 
(response), increased PFS or OS, or even enhanced 
health­related quality of life. 

The time just prior to the end of phase 2 sample 
analysis is also the latest time by which assays to 
determine biomarker status must be available. Ideally, 
these assays will be analytically validated in terms of 
sensitivity, specificity, reproducibility, accuracy, and 
linearity [22]  at this time. Such analytically validated assays 
require only validation against clinical data to be 
approved as IVDs, and are termed  . If 
absolutely necessary, the phase 2 samples can be 
analyzed with a non­analytically validated 野research use 
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only冶 assay and the I VD candidate assay delivered at 
the time of analysis of phase 3 samples (interim or final 
analysis), but this entails the risk of misleading results 
from the phase 2 biomarker evaluation. 

Clinical validation of a predictive biomarker classifier 
involves the use of at least some patients who are 
biomarker­negative to verify that the diagnostic test can 
distinguish between those who will benefit and those who 
will not; this is necessary because the test will be used 
in the future to guide patient selection, including advising 
biomarker­negative patients not to use a therapy. Testing 
biomarker negative patients raises ethical issues if the 
confidence in the proposed biomarker classifier is 
believed to be high. Accordingly, we recommend that 
predictive biomarker classifier testing be performed as 
an add­on design, employing standard­of­care therapy 
with and without experimental therapy on the two 
respective study arms, so that all patients receive 
standard­of­care therapy. In some cases, add­on to 
standard­of­care is not recommended due to possible 
pharmacologic antagonism between the standard­of­care 
and the proposed experimental agent. In these cases, an 
add­on design with a second experimental agent 
predicted not to antagonize the first experimental agent 
may be indicated. The objective is to design a rigorous, 
randomized test of the first experimental agent without 
compromising the rights of patients who are 
biomarker­negative for this agent to receive therapy that 
is thought to have a chance of being effective. 

In some cases, the inclusion of biomarker­negative 
patients may dilute the efficacy signal from a drug that is 
effective in only a subpopulation. Thus, trastuzumab 
would have likely failed to achieve PoC in a mixed 
population. Because oncology drug development usually 
entails several indications being studied in parallel, a 
parallel study may look at a different indication in 
biomarker­positive patients only, to optimize the chance 
of PoC for the drug. 

The argument to include bio­marker­negative patients 
assumes a certain degree of 要that is, uncer鄄  
tainty about the truth or falsity of the biomarker­based 
clinical benefit ID hypothesis. Equipoise is often 
underestimated in real situations (e.g., in cases where 
the predictive biomarker clinical benefit ID hypothesis is 
invented by people on the development team who may 
not objectively recognize the inconsistent translation of 
preclinical results to the clinic). Moreover, publication 
bias leads to more frequent and prominent publication of 
biomarker success stories than cautionary tales. The 
surprising failure of EGFR expression to clearly 
segregate patients who would benefit from anti­EGFR 
antibody therapy from those who would not argues that 
even the most 野obvious冶 biomarker­based clinical 
benefit ID hypotheses require validation. We must 
remember that even the most well supported clinical 

benefit ID hypothesis will be limited by assay performance 
under real world clinical conditions. 

The primary predictive biomarker clinical benefit ID 
hypothesis is chosen based on data from preclinical 
studies, phase 1 clinical studies; phase 2a exploratory, 
non­randomized studies; neoadjuvant studies where 
tissue for exploratory biomarker work can be readily 
obtained; and where applicable, experimental medicine 
studies in patients or volunteers. The selected 
hypothesis should be the one best supported by the 
scientific rationale and data to that point. Moreover, 
studies of tissue banks should have determined the 
expected prevalence of biomarker­positive and ­negative 
subgroups in the proposed PoC indications. If the 
biomarker­positive subgroup is too small, it may be 
difficult to enroll a suitable trial, and if the biomarker­ 
negative subgroup is too small, it may not be cost 
effective to screen when the error rate of the assay is 
considered. Ideally, the biomarker classifier should be 
designed such that biomarker­positive and ­negative 
subgroups are both sufficiently large in an unselected 
population. For this reason, it is preferable for study 
design if the primary clinical benefit ID hypothesis can be 
specified prior to the start of the phase 2 study rather 
than before the assay of samples at the end. 

Given the intricacies of cancer biology, choosing 
one primary clinical benefit ID hypothesis will not be a 
foolproof exercise. As a backup, additional predictive 
biomarker hypotheses may be tested in an exploratory 
fashion in the randomized PoC study. If the primary 
clinical benefit ID hypothesis is false, perhaps one of 
these exploratory hypotheses will generate promising 
data. Such new findings represent a lower level of 
evidence and should be validated in a second 
randomized PoC study designed with the new clinical 
benefit ID hypothesis as primary. This represents 
another iteration through phase 2 development. 
However, such iteration should not be viewed as failure. 
Successfully unraveling the complexities of biomarker­ 
directed cancer therapy will require persistence. Just as 
backup compounds are available in the event of failure 
of a lead compound in development, backup predictive 
biomarker­based clinical benefit ID hypotheses, which 
need to be validated with a subsequent iteration of phase 
2, should be planned for and expected. 

Tactics 

Efficiency鄄  optimized, biomarker鄄  stratified, 
randomized phase 2 PoC study 

Biomarker­directed randomized PoC studies fall into 
three categories要enrichment, biomarker stratified, and 
biomarker strategy要and their efficiency has been  eva鄄  
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luated [23] . In the enrichment study, the randomized  study 
is performed in biomarker­positive patients only.  This 
practice is most efficient if there is very high  confidence 
in the clinical benefit ID hypothesis. As discussed, we 
would recommend it only rarely as equipoise around the 
clinical benefit ID hypothesis tends to be underestimated. 
In the biomarker­stratified design, enrollment is stratified 
by the biomarker status and the results evaluated in 
each independent stratum. This is the most efficient 
design when there is equipoise concerning the predictive 
biomarker based clinical benefit ID hypothesis. Finally, 
the biomarker strategy design randomizes patients 
between two patient allocation strategies: biomarker­ 
directed allocation based on the clinical benefit ID 
hypothesis, or standard randomization. This latter 
strategy has been shown to be less efficient because the 
patient can be randomized to the same therapy on either 
arm, diluting comparisons. Moreover, a difference 
between arms may occur due to efficacy of the 
experimental therapy, even when the clinical benefit ID 
hypothesis is false. 

The tactic utilized herein is a biomarker­stratified 
design, with both biomarker­positive and ­negative strata 
powered at the Chen­Beckman level, thus optimizing the 
efficiency of simultaneously testing two strata (or, 
equivalently, two hypotheses要one concerning drug effi鄄  
cacy and the other, the clinical benefit ID hypothesis) [18,19] . 
The strata are defined based on a single prospectively­ 
specified, primary predictive biomarker based clinical 
benefit ID hypothesis. The efficiency of the study is 
greatest when neither the biomarker­positive nor 
biomarker­negative subgroups are too small, with optimal 
efficiency at a 50­50 split. This should be borne in mind 
when choosing the indication and designing the clinical 
benefit ID hypothesis and classifier. Additional backup 
biomarkers may be assayed in the usual exploratory 
fashion. The arms should be standard­of­care with or 
without experimental therapy (an add­on design), so that 
biomarker­negative patients are guaranteed standard­of­ 
care. In instances where there is concern about possible 
pharmacologic antagonism with standard­of­care, one 
might consider an add­on design with a second experi鄄  
mental therapy that is expected to be additive or 
synergistic with the agent in question. 

We recommend PFS as the primary endpoint in 
most cases. In contrast to response, it is a continuous 
variable and is informative in all patients, which is 
particularly helpful with targeted therapies that may not 
influence response rate. PFS may also correlate more 
closely than response with the primary variable of 
interest, OS [24] . 

Because the availability of fresh tissue specimens 
cannot be guaranteed, and because circulating tumor 
cells [25] , while promising, may not be recoverable in 
sufficient quantity, we currently recommend that the focus 

be on developing assays that can work in archival 
formalin­fixed, paraffin­embedded specimens. Nonethe鄄  
less, such specimens have several disadvantages: (1) 
some biomarkers may not be assayable under these 
conditions or may degrade in storage, and (2) the tumor 
may have evolved to a different biomarker status 
between the time the specimen was obtained and the 
present. Hence, the wider availability and applicability of 
fresh frozen specimens and/or circulating tumor cells is 
eagerly anticipated. A new fixative that allows better 
preservation of phosphoprotein biomarkers and tissue 
morphology may offer an advantage over formalin 
fixation in this regard [26] . 

Waiting for the delivery of an archival tumor 
specimen, which may have been obtained at another 
institution, and for biomarker tests to be performed on 
that specimen may be intolerable for patients with rapidly 
progressing disease, and they may choose another, 
simpler study. In this regard, it is better to require only 
documented tissue availability upfront, not assay results 
for pre­selection. The indication and biomarker classifier 
must then be designed such that the subgroups will be 
relatively close to 50­50 without pre­selection. A blinded 
interim analysis to assure balance between strata and 
adequate numbers in each subgroup may be done, and 
a serious imbalance may have to be corrected through 
pre­selection of patients in the remainder of the study. 

Decision analysis鄄  guided phase 2-phase 3 
predictive biomarker transition 

In a decision analysis­guided phase 2­phase 3 
predictive biomarker transition [12] , evidence supporting 
clinical benefit for biomarker­positive and biomarker­ 
negative patients contributes to a two­dimensional 
decision rule, plotted on a two­dimensional graph of 
values for efficacy in biomarker­positive and biomarker­ 
negative patients, respectively. Regions of the graph 
correspond to four possible choices: (1) no go, when the 
drug is clearly ineffective in both biomarker­positive and 
biomarker­negative patients; (2) go to biomarker­positive 
only enriched phase 3, when the drug is effective and 
the clinical benefit ID hypothesis is clearly true (e.g., 
when the drug is clearly and statistically effective in 
biomarker­positive patients and clearly ineffective in 
biomarker­negative patients); (3) go to traditional, 
unselected phase 3, when the drug is effective but the 
clinical benefit ID hypothesis is false (e.g., when the 
drug equally demonstrates clear, statistically significant 
efficacy in both biomarker­positive and biomarker­ 
negative patients); or (4) go to a biomarker adaptive 
phase 3, when the drug is effective but the results 
concerning the clinical benefit ID hypothesis are 
equivocal (e.g., when the drug is clearly and statistically 
effective in the biomarker­positive group and shows a 
non­statistically  significant trend towards efficacy in the 
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biomarker­negative group). 
To draw the regions in the graph, the team assigns 

utility values to possible outcomes resulting from these 
choices. Regions are drawn to maximize risk­adjusted 
utility while maintaining the type I error at the level 
chosen with the original study powering. For example, 
possible outcomes include: (1) approval of the drug in 
the full population; (2) approval of the drug in the 
biomarker­positive population when the clinical benefit ID 
hypothesis is true; (3) approval of the drug in the 
biomarker­positive population only when the clinical 
benefit ID hypothesis is false (opportunity cost due to 
overemphasis on the clinical benefit ID hypothesis); or 
(4) failure to approve the drug in the full population when 
the clinical benefit ID hypothesis is true (due to 
inappropriate emphasis on the full population diluting the 
clinical benefit in the biomarker­positive population). 

We note that in practical terms, it is the drug 
development team (usually from a biotechnology or 
pharmaceutical company) that defines the utilities of 
possible outcomes as an input to the decision analysis. 
However, patients, insurers, or society as a whole may 
view the utilities differently compared with the drug 
development team. Research into these differences 
could lead to objective criteria for utility that may be 
broadly applied as a best practice. 

In line with the strategic principles, the decision 
analysis­guided phase 2­phase 3 predictive biomarker 
transition is the first point where the clinical development 
program adapts based on integration of clinical and 
biomarker data. 

Adaptive predictive performance鄄  based 
hypothesis prioritization in phase 3 

The efficiency­optimized, biomarker­stratified, rando鄄  
mized phase 2 study attempts to definitively test two 
hypotheses simultaneously: the hypothesis concerning 
drug efficacy and that concerning the truth of the clinical 
benefit ID hypothesis. However, given that phase 2 
studies are not definitive, the truth or falsehood of the 
clinical benefit ID hypothesis may still be unknown at the 
end of phase 2. In this case, the program proceeds to a 
further adaptive design in phase 3 to resolve this 
question. 

In this adaptive phase 3 study, two hypotheses are 
being tested simultaneously: (1) the drug is effective in 
the full population, or (2) the drug is effective in the 
biomarker­positive subset only. The study enrolls the full 
population so that both hypotheses can be tested. 

The total type I error rate (false positive rate) for 
both hypotheses combined is set at 5%, as required by 
health authorities. This raises the question of how to 
divide the rate between the two hypotheses. The 
hypothesis to which more of the type I error is assigned 
is effectively prioritized or emphasized in the final 

statistical analysis. Previous approaches have either 
arbitrarily assigned 4% to the full population hypothesis 
(fixed allocation) [27]  or assigned all 5% to the hypothesis 
that is better supported at an interim analysis (all or none 
adaptive allocation) [28] . In the approach described below, 
the split of the type I error is neither fixed nor all or none. 
At an interim analysis point, the data are applied to 
determine the optimal allocation based on maximizing an 
objective efficiency function, which can be phase 3 study 
power or phase 3 study power weighted by indication 
size (e.g., more weight to the full population hypothesis, 
which has the potential to benefit more people). Thus, 
the clinical benefit ID hypothesis is prioritized or 
emphasized to the exact degree that is justified by its 
predictive performance to that point in development. 
Another tactical innovation, the  method, is 
deployed so that the maturing phase 2 data may be 
combined with the phase 3 data to the interim point and 
therefore be considered in determining the allocation of 
type I error (see below). The term  indicates 
that the phase 2 data is given added significance by 
allowing it to influence an adaptation within the phase 3 
trial. 

The allocation is determined at the interim analysis 
by an independent review board according to pre­ 
specified rules that must be approved by health 
authorities in advance. The adaptation is only to the 
analysis strategy and does not affect patient selection or 
management. The results from the interim analysis will 
not be used to claim efficacy. Type I error is strictly 
controlled. Based on these safeguards, we believe this 
approach will be acceptable to ethics committees, insti鄄  
tutional review boards, and national health authorities. 

Adaptive predictive performance­based hypothesis 
prioritization in phase 3 is a second example of the 
strategic principle of adaptation by integration of bio鄄  
marker and clinical information. 

The phase 2+ method for allowing maturing 
phase 2 data to influence adaptation within 
phase 3 

Continuous adaptation in response to data is a 
cornerstone of our proposed strategy. Nonetheless, 
frequent adaptation in oncology is hampered because 
the primary endpoint of greatest interest, OS, takes 
significant time to collect. More rapid endpoints are of 
interest only to the degree that they have some 
predictive ability for survival. 

In the traditional approach, a decision is made to 
continue to phase 3 based on PFS in phase 2. Then, if 
there is an adaptation within phase 3, it is at an interim 
analysis where minimal OS data are available, and 
therefore is based on PFS. However, PFS is an 
imperfect surrogate for OS. The phase 2 OS data, which 
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may have matured substantially by that point, does not 
contribute to the phase 3 adaptation. 

In the approach recommended here, maturing PFS 
and OS data from the phase 2 study are combined with 
the phase 3 data at the time of the interim analysis in 
phase 3, so that all clinical information to that point 
contributes to the phase 3 adaptation [29,30] . Alternatively, 
given that PFS is an imperfect surrogate for OS, one 
may choose to adapt in phase 3 based solely on phase 
2 OS. In this way, one is making no assumptions about 
the correlation between PFS and OS in the analysis. 
Because of the safeguards described above, we do not 
believe there will be objections from ethics committees 
or institutional review boards on the use of data outside 
the phase 3 study they are regulating. 

The phase 2 study may thus have up to three 
analysis points: (1) a primary analysis point for PFS that 
results in a go­no go decision to phase 3, (2) a final 
analysis when OS data are also mature, and (3) an 
analysis to support interim decision making in phase 3, if 
the final phase 2 OS analysis has not occurred by that 
point. The possibility of these three analyses must be 
pre­specified to avoid concerns about 野cherry picking冶 
phase 2 analysis points. The phase 3 interim analysis 
using phase 2 and phase 3 data will not be used to 
support efficacy claims. 

Discussion 
We have devised methods to adaptively integrate 

predictive biomarkers into oncology clinical development 
programs in a data­driven manner. These biomarkers 
are emphasized in exact proportion to the evidence 
supporting their clinical predictive value. The program is 
built on four strategic principles: (1) maximum objective 
efficiency functions based on utility per resource unit 
expended, (2) adaptive decision making, (3) continuous 
integration of biomarker and clinical information, and (4) 
validation of predictive biomarker hypotheses against 
clinical benefit. 

Central to this paradigm is the selection of a single 
primary predictive biomarker clinical benefit ID 
hypothesis that will be subjected to statistical validation 
as a predictor of clinical benefit in a randomized phase 2 
PoC study. This hypothesis may be based on a single 
biomarker or a defined composite of biomarkers. The 
primary hypothesis and related assays to determine 
biomarker status should ideally be available at the 
beginning of this phase 2 study, but it is possible to wait 
until the sample analysis at the end. Ideally, an 
analytically validated IVD candidate assay will be 
available for this purpose. This is required by the time of 
interim analysis in phase 3. 

The tactical innovations described herein maximize 
the use of integrated biomarker and clinical data for 
adaptation of the development program. These 
innovations must be pre­specified, and the phase 3 
design pre­approved by health authorities. The goal of 
co­registering the drug with a diagnostic assay that 
determines the optimal patient population is approached 
in an efficient manner. 

This approach is exacting and demands value from 
predictive biomarkers, steering a middle course between 
uncritical enthusiasm and harsh skepticism. The 
approach could lead to rejection of putative predictive 
biomarkers and/or the need to iterate through 
development a second time with a new predictive 
biomarker hypothesis, but in the end it is expected to 
lead to more enduring value. 
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