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With the emergence of wearable technology and machine learning approaches, gait

monitoring in real-time is attracting interest from the sports biomechanics community.

This study presents a systematic review of machine learning approaches in running

biomechanics using wearable sensors. Electronic databases were retrieved in PubMed,

Web of Science, SPORTDiscus, Scopus, IEEE Xplore, and ScienceDirect. A total of

4,068 articles were identified via electronic databases. Twenty-four articles that met

the eligibility criteria after article screening were included in this systematic review. The

range of quality scores of the included studies is from 0.78 to 1.00, with 40% of articles

recruiting participant numbers between 20 and 50. The number of inertial measurement

unit (IMU) placed on the lower limbs varied from 1 to 5, mainly in the pelvis, thigh,

distal tibia, and foot. Deep learning algorithms occupied 57% of total machine learning

approaches. Convolutional neural networks (CNN) were the most frequently used deep

learning algorithm. However, the validation process for machine learning models was

lacking in some studies and should be given more attention in future research. The

deep learning model combining multiple CNN and recurrent neural networks (RNN) was

observed to extract different running features from the wearable sensors and presents a

growing trend in running biomechanics.

Keywords: gait, wearable sensor, machine learning, deep learning, running, lower limb

INTRODUCTION

Machine learning approaches have been widely utilized in gait biomechanics studies in the past
decades (Ferber et al., 2016; Halilaj et al., 2018; Xiang et al., 2022a). Most runners frequently
suffer running-related injuries in the lower limb and foot (van Gent et al., 2007; Murr and Pierce,
2019). Based on learning-driven sensor data, machine learning and deep learning could provide gait
monitoring in real-time, recommendations for running shoes (Koska and Maiwald, 2020; Young
et al., 2020), and suggestions for running injury protection (Girka et al., 2020;Matijevich et al., 2020;
Dempster et al., 2021). It is crucial to know how machine learning techniques are implemented in
lower limb running biomechanics by exploring wearable sensor data.
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Traditional gait biomechanical analysis methods use statistical
hypothesis tests based on discrete variables and summary
metrics, such as the mean peak angles (Taylor et al., 2013;
Halilaj et al., 2018; Dixon et al., 2019). A priori selection of
features and sufficient background knowledge are essential to
conducting further analysis and that may decrease the objectivity
(Phinyomark et al., 2015, 2018). Consequently, these statistical
tools cannot explain the complexity of multi-variables and
process data-intense tasks (Halilaj et al., 2018). In the era of big
data, machine learning as a growing data science method can
process and analyze the large amounts of gait biomechanics data,
for instance, wearable sensor data, and achieve state-of-the-art
performance (Ferber et al., 2016).

Machine learning incorporates supervised learning and
unsupervised learning. In the realm of biomechanics, it has been
utilized for dimensionality reduction of high-dimensional data
(Phinyomark et al., 2015; Watari et al., 2018a), gait classification
(Fukuchi et al., 2011; Taylor et al., 2013; Clermont et al., 2017),
pathology detection (Bennetts et al., 2013; Christian et al., 2016;
Li et al., 2020), and human activity recognition (Ordóñez and
Roggen, 2016; Ignatov, 2018; Ihianle et al., 2020). Principle
component analysis (PCA) as an unsupervised learning method
is commonly used for feature extraction before training (Wu
and Wang, 2008; Taylor et al., 2013; Phinyomark et al., 2014;
Clermont et al., 2017; Mei et al., 2020; Suda et al., 2020).
Clermont et al. (2017) classified competitive and recreational
runners based on lower limb kinematics data using the support
vector machine (SVM). Machine learning algorithms can also
discriminate runners’ experience level and gender via assessing
running’s spatiotemporal parameters (Clermont et al., 2019b).
Bennetts et al. (2013) identified the typical peak plantar pressure
distributions utilizing k-means clustering.

Lower limb gait biomechanical studies are typically limited
to the laboratory-based setting (Xiang et al., 2022b), such as
measuring knee joint angles and moments using an optical
motion capture system and force plates (Liu et al., 2020). Inertial
measurement unit (IMU) is portable, lightweight, and low-
cost, and can be used in an unconstrained environment (Fong
and Chan, 2010; Ahamed et al., 2019). Wearable sensors have
gained popularity for gait analysis in recent years. A recent
systematic review from Camomilla et al. (2018) summarized
the growing trend of utilizing wearable inertial sensors in the
field of biomechanical analysis and activity classification. Picerno
(2017) compared different approaches to evaluating lower limb
joint kinematics by using IMU sensors. Deep learning is a
subset of machine learning algorithms based on artificial neural
networks (ANN). In recent years, it has been widely used in
computer vision (Lee et al., 2009; Sermanet et al., 2013), speech
recognition (Sainath et al., 2015), and medical image analysis
(Ker et al., 2017; Shen et al., 2017). Deep neural network
structures have advantages in processing time-series sensor data
and require lower computational cost than traditional machine
learning approaches. Integrated with deep learning algorithms,
wearable sensors can be utilized for pattern recognition (Cust
et al., 2019) and biomechanical variable prediction (Stetter
et al., 2019; Hernandez et al., 2021) without experiment and
environmental limitations.

Hu et al. (2018) found that long short-term memory
(LSTM) recurrent neural networks (RNN) can detect surface-
and age-related differences in walking gait based on a single
wearable IMU sensor. Ronao and Cho (2016) showed that
the accelerometer and gyroscope sensor data adopting deep
convolutional neural networks (CNN) achieved high accuracy
for human activity recognition. Ordóñez and Roggen (2016)
presented a deep learning framework of the convolutional
and LSTM (DeepConvLSTM) for accurate human activity
recognition. Convolutional layers act as feature extractors
capturing spatial domain features from one-dimensional sensor
data, while recurrent layers are used to extract temporal domain
features (Hernandez et al., 2021). The performance improves by
fusing the accelerometer, gyroscope, and magnetic field sensors
compared to the acceleration or acceleration and angular velocity
data (Ordóñez and Roggen, 2016).

IMU sensors are heavily used technologies in distance running
(Zrenner et al., 2020). Using inertial sensor-based data during
running, one can classify different conditions and predict
kinetical variables (Clermont et al., 2019b; Pogson et al., 2020).
Jogging gait phase and period were detected and identified by
lower extremity placed accelerometers and gyroscopes using
machine learning algorithms (Mannini and Sabatini, 2012;
Zdravevski et al., 2017). Kobsar et al. (2014) utilized PCA to
classify training background from running experience. In a
study by Pogson et al. (2020), PCA and multilayer perceptron
(MLP) were adopted to predict ground reaction force (GRF)
from trunk acceleration. Running speed conditions and running
environments were assessed and classified using SVM with an
IMU sensor placed on the participants’ lower back during data
collection (Benson et al., 2018b, 2020).

In 2018, Benson et al. (2018a) reviewed the progress of IMU
sensors in gait analysis. O’Reilly et al. (2018) evaluated the
lower limb exercise detection accuracy of the wearable inertial
sensor. However, that review retrieved articles till 2017 and
did not include running gait. A systematic review from Farrahi
et al. (2019) revealed that machine learning techniques could
predict activity type and intensity based on raw acceleration
data. Fong and Chan (2010) estimated the use of wearable
sensors in lower limb biomechanics. The approaches to assessing
lower limb joint kinematics by using wearable sensors have
been summarized by Picerno (2017). A systematic review in
2019 illustrated wearable inertial sensors’ performance in sport-
specific movement recognition using machine learning and
deep learning approaches (Rapp et al., 2021). Although there
is a growing trend concerning machine learning in lower limb
running biomechanics, particularly deep learning algorithms
in wearable inertial sensor studies, there are few studies on
the accuracy of machine learning approaches as utilized in
lower limb running biomechanics integrating wearable inertial
sensors. Furthermore, no compelling evidence illustrated the
application scenes of different machine learning algorithms, the
requirements of sensor placement based on the research goal,
and how the model was assessed and validated in lower limb
running biomechanics.

Based on the currently existing knowledge gap, the purpose
of this initial study is to conduct a systematic review regarding
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machine learning and deep learning approaches used in running
biomechanics and was limited to the wearable sensors placed in
lower limbs. By investigating the eligible studies, we hope: (1)
to elaborate on different kinds of machine learning techniques
used in running biomechanics and its performance; (2) to
recommend suitable sensor placement locations to obtain
decent accelerations or angular velocities or other biomechanical
variables; (3) improve predictive accuracy for the related studies
in gait analysis in the future.

METHODS

Search Strategy
This systematic review followed the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
recommendations (Moher et al., 2009). The protocol for this
systematic review was registered on INPLASY (NO. 202210083).
Electronic databases were retrieved in PubMed, Web of Science,
SPORTDiscus, Scopus, IEEE Xplore, and ScienceDirect by one
reviewer (L.X.) to identify original research articles published up
to May 2021 (from 2000). The paper screening was conducted by
two investigators independently (L.X. and A.W.). After an initial
search, relative article information was input to Rayyan QCRI
(Ouzzani et al., 2016) for duplicate removal, study screening,
and identification. A backward search was conducted on the
studies included. One study was added from the reference
lists of included studies to review the flow for further paper
screening. Non-English articles and conference proceedings,
and dissertations were excluded. The retrieve strategy and
limit conditions are shown in Table 1. Four different categories
were used to identify relevant studies: wearable inertial sensor,
machine learning and deep learning, lower limb, and running. By
using Boolean operation, the retrieved studies at least contain one
keyword in the full field. The flow diagram of the paper search
and screen process is presented in Figure 1.

Eligibility Criteria
Articles were selected based on the PICO principle (participants,
intervention, comparisons, and outcomes). Our research
identified studies that utilized machine learning and deep
learning approaches and wearable inertial sensors to assess
running biomechanics. For the included studies, wearable
sensors must be placed in the participants’ lower limbs.
Only inertial sensors were selected in this review, including
accelerometer, gyroscope, and magnetometer. Studies were
removed if the statistical regression model rather than the
machine learning approach was employed for the prediction.
Energy expenditure and sprint performance assessment studies
were not considered in this study. Studies usingmachine learning
and wearable sensors only evaluating walking gait and human
activity recognition were excluded.

Quality Assessment
The methodological quality of the included studies was assessed
by the modified QualSyst Assessment Tool for quantitative
studies (Kmet et al., 2004). A total of ten items were identified
in this scale for aspects of the research question, study design,

statistical analysis, sample size, and results reporting. Each item
was scored as “yes” = 2, “partial” = 1, or “no” = 0 given
the degree of the specific criteria that were met. The risk of
bias was initially evaluated by three investigators (L.X., A.W.,
and J.F.), independently and confirmed by two reviewers (A.W.
and J.F.). Each study’s score was calculated by summing 10
items’ scores and dividing by the total score (Kandula et al.,
2016; Capiau et al., 2020). The evaluation questions include If
the question or objective is clearly described? Is design evident
and appropriate to answer the study question? If the method
of subject selection or source of information/input variables is
described and appropriate? Is the subject’s characteristics, input
variables, or information sufficiently described? Is the outcome
well defined and robust to measurement/misclassification bias? If
means of assessment are reported? Is the sample size appropriate?
If analysis is described and appropriate? If some estimate of
variance is reported for the main results? Are the results reported
in sufficient detail? Do the results support the conclusions?

Data Extraction
Information was extracted from the included 24 studies based
on participants and sensor characteristics, and machine learning
approaches. Participant information included participant
numbers, gender, age, type, and running speed during the data
collection. Sensor characteristics contained sensor number,
placement in the low limb, brand, and sampling frequency
for data collection. For machine learning and deep learning,
specific approaches, percentage of training and test dataset,
cross-validation (CV) methods, data preprocessing, predictors,
response, ground true reference, evaluation, and performance
were extracted from the included literature.

RESULTS

Search Results
A total of 4,068 articles were identified via the electronic
databases retrieve, and one additional study was found from the
reference lists. Then, 405 duplicate articles were removed; 119
studies remained for the full-text evaluation after the screening
of the study’s title and abstract; 95 articles were excluded based
on the exclusion criteria. Finally, 24 articles were included in this
systematic review.

Quality Assessment
As shown in Table 2, the range of quality scores of the included
studies is from 0.78 to 1.00, and the mean score is 0.91. The
main sources of bias are the small sample size and unclear subject
characteristics. Seven studies vaguely reported the study design.
Statistical analysis was not included in eight studies, but machine
learning approaches’ performance and accuracy were reported.

Participants’ Characteristics
The majority of participants were healthy subjects, except for
three studies that contained patellofemoral pain participants or
subjects with running-related injuries (Table 3) (Watari et al.,
2018a,b; Rapp et al., 2021). The healthy subjects included both
experienced runners and novice runners. The sample size was
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TABLE 1 | Electronic databases retrieve strategy.

Search items Limit conditions

PubMed, Web of Science, SPORTDiscus, Scopus

(“wearable sensor” OR “inertial sensor” OR “accelerometer” OR “gyroscope” OR

“IMU”) AND (“machine learning” OR “classification” OR “regression” OR “clustering”

OR “PCA” OR “SVM” OR “KNN” OR “decision tree” OR “boosting” OR “random

forest” OR “deep learning” OR “neural network*” OR “CNN” OR “RNN” OR “LSTM”

OR “ConvLSTM” OR “DeepConvLSTM”) AND (“running” OR “jogging”) AND (“gait”

OR “lower limb” OR “lower extremity” OR “plantar pressure” OR “foot” OR “ankle” OR

“shank” OR “knee” OR “thigh”)

Keywords in all field of the article; Advanced search; Article type: Journal;

Language: English; Publish time: From 2000 to May 2021

IEEE Xplore

(“wearable sensor” OR “inertial sensor” OR “IMU”) AND (“machine learning” OR

“classification” OR “regression” OR “clustering” OR “deep learning” OR “neural

network*”) AND (“running” OR “jogging”) AND (“gait” OR “lower limb” OR “lower

extremity”)

Keywords in all field of the article; Advanced search; Article type: Journal;

Language: English; Publish time: From 2000 to May 2021

ScienceDirect

(“wearable sensor” OR “inertial sensor” OR “IMU”) AND (“machine learning” OR “deep

learning”) AND (“running”) AND (“gait” OR “lower limb”)

Keywords in full text and metadata; Advanced search; Article type: Journal;

Language: English; Publish time: From 2000 to May 2021

from 6 to 580, and three articles with a sample size below ten
(Figure 2A) (Ahamed et al., 2018; Ngoh et al., 2018;Wouda et al.,
2018). Approximately 40% of articles recruited participants with
numbers between 20 and 50. In six studies, only male subjects
were considered (Ngoh et al., 2018; Wouda et al., 2018; Stetter
et al., 2019, 2020; Gholami et al., 2020; Hernandez et al., 2021).
Age characteristics in three articles were not reported (Young
et al., 2020; Johnson et al., 2021; Rapp et al., 2021). Several studies
tested various speeds, except the running speed not mentioned in
two studies (Dixon et al., 2019; Tan et al., 2019).

Sensor Information
The number of IMUs sensors placed on the lower limbs was
1, 2, 3, and 5 (as shown in Figure 2B). Pelvis, thigh, shank,
distal tibia, and foot were frequently selected as the placement
location. Sensor(s) was placed on or in the running shoes in four
studies (Ngoh et al., 2018; Zrenner et al., 2018; Gholami et al.,
2020; Koska and Maiwald, 2020). Three types of IMUs sensors
are utilized, including commercial sensors, custom-built sensors,
and virtual sensors. All studies contain acceleration data with the
range of accelerometers from ±6 to ±50 g. Gyroscope data were
not contained in nine articles (Watari et al., 2018a,b; Dixon et al.,
2019; Komaris et al., 2019; Tan et al., 2019; Derie et al., 2020;
Matijevich et al., 2020; Johnson et al., 2021; Robberechts et al.,
2021) and for most of the studies, magnetometer data were not
incorporated in the IMU sensor (Watari et al., 2018a,b; Zrenner
et al., 2018; Dixon et al., 2019; Komaris et al., 2019; Stetter et al.,
2019, 2020; Tan et al., 2019; Derie et al., 2020; Koska andMaiwald,
2020; Matijevich et al., 2020; Young et al., 2020; Hernandez et al.,
2021; Johnson et al., 2021; Rapp et al., 2021; Robberechts et al.,
2021).

Machine Learning and Deep Learning
Approaches and Purposes
As depicted in Figures 2C–E, Deep learning algorithms occupied
57% of total machine learning approaches, compared with 43%
of traditional machine learning algorithms. CNN was the most

frequently used algorithm (seven times), followed by ANN
and long short-term memory (LSTM). The DeepConvLSTM
model was recently applied to lower limb joint prediction from
linear acceleration and angular velocity data of the IMUs sensor
(Hernandez et al., 2021). Gradient boosting (GB) algorithm
included gradient boosting regression tree (Derie et al., 2020)
and decision tree (Dixon et al., 2019; Liu et al., 2020; Young
et al., 2020). There are two unsupervised learning algorithms [i.e.,
hierarchical cluster analysis (Watari et al., 2018b) and K-means
clustering (Koska andMaiwald, 2020)] adopted for the clustering
tasks. Eight machine learning approaches were used to classify
different conditions. Regression tasks were the primary intention
in 15 articles.

Lower limb running kinematics and kinetics were predicted
using wearable inertial sensors combined with regression
algorithms, including joint angles, forces, and moments and GRF
(as shown in Table 4). Different types of outdoor terrain (Dixon
et al., 2019), inclinations of the running surface (Ahamed et al.,
2019), and environmental weather conditions (Ahamed et al.,
2018) were detected and classified in three studies. The accuracy
of gait event and spatiotemporal parameter detections was also
tested (Zrenner et al., 2018; Tan et al., 2019; Liu et al., 2020;
Robberechts et al., 2021). Two studies aimed at the running
pattern or level classification (Clermont et al., 2019a; Liu et al.,
2020). One study divided patellofemoral pain patients into two
subgroups based on running gait (Watari et al., 2018b). The
accuracy of identifying the effectiveness of exercise treatment for
patellofemoral pain patients was evaluated with an SVM classifier
by the same team (Watari et al., 2018a). PCA was adopted for
dimensionality reduction in these two articles. According to foot
posture and foot strike pattern, the ensemble deep learningmodel
could accurately assess and recommend running shoe types to
runners with an average accuracy of 94.6% (Young et al., 2020).
Comfortable and uncomfortable running shoes also could be
identified from the heel’s sagittal plane angular velocity data using
the k-nearest neighbors’ classifier (KNN) (Koska and Maiwald,
2020).

Frontiers in Neurorobotics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 913052

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xiang et al. Machine Learning in Running Biomechanics

FIGURE 1 | PRISMA flow diagram for original research articles’ searching and screening process.

Predictors of Machine Learning Model
For predictors in the studies, time-series data from the trial-

axis accelerometer were chosen as attributes in 15 articles
(Watari et al., 2018a,b; Zrenner et al., 2018; Dixon et al., 2019;
Komaris et al., 2019; Stetter et al., 2019, 2020; Tan et al.,
2019, 2020; Gholami et al., 2020; Liu et al., 2020; Young et al.,
2020; Hernandez et al., 2021; Johnson et al., 2021; Rapp et al.,
2021). Most of the studies used deep learning neural network

algorithms for prediction. Continuing trial-axis angular velocity
data were considered in eight studies (Zrenner et al., 2018;
Stetter et al., 2019, 2020; Liu et al., 2020; Tan et al., 2020;
Young et al., 2020; Hernandez et al., 2021; Rapp et al., 2021).
Sagittal plane angular velocity (Koska and Maiwald, 2020) and
anterior-posterior (Ngoh et al., 2018), and vertical (Wouda et al.,

2018) acceleration were investigated in three studies. Discrete
biomechanical variables measured from wearable sensors were
also selected as input (Watari et al., 2018a,b; Clermont et al.,
2019a). Three studies extracted the statistical features in raw
sensor signals as the attributes (Derie et al., 2020; Matijevich
et al., 2020; Robberechts et al., 2021). The predicted outcomes of
the regression algorithms were compared with the ground truth
reference data, which was measured from the optical motion
capture system and force plate. For the collection of continuing
time-series data, the force-instrumented treadmill was employed.

Cross-Validation and Evaluation
Several studies had no validation process for the machine
learning algorithms in the methodology section (Ahamed et al.,
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TABLE 2 | Methodological quality assessment by the modified QualSyst quality appraisal tool.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total Summary score

Stetter et al. (2020) +2 +1 +1 +1 +2 +1 +2 +2 +2 +2 16 0.80

Stetter et al. (2019) +2 +1 +2 +1 +2 +1 +2 +2 +2 +2 17 0.85

Hernandez et al. (2021) +2 +1 +2 +2 +2 +2 +2 +2 +2 +2 19 0.95

Gholami et al. (2020) +2 +2 +2 +1 +2 +1 N/A +1 +2 +2 15 0.83

Wouda et al. (2018) +2 +2 +2 +2 +2 +1 +2 +2 +2 +2 19 0.95

Derie et al. (2020) +2 +1 +2 +2 +2 +2 +2 +2 +2 +2 19 0.95

Liu et al. (2020) +2 +1 +2 +2 +2 +1 +2 +2 +1 +2 17 0.85

Rapp et al. (2021) +2 +2 +2 +1 +2 +2 +2 +2 +2 +2 19 0.95

Ngoh et al. (2018) +2 +2 +2 +1 +2 +1 N/A +2 +2 +2 16 0.89

Young et al. (2020) 2 2 1 1 2 2 N/A 1 1 2 14 0.78

Robberechts et al. (2021) +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 20 1.00

Zrenner et al. (2018) +2 +2 +2 +1 +2 +2 N/A +2 +2 +2 17 0.94

Komaris et al. (2019) +1 +1 +2 +2 +2 +2 +2 +2 +2 +2 18 0.90

Tan et al. (2019) +2 +1 +2 +1 +2 +1 N/A +1 +2 +2 14 0.78

Watari et al. (2018a) +2 +2 +2 +2 +2 +1 +2 +2 +1 +2 18 0.90

Watari et al. (2018b) +2 +2 +2 +2 +2 +1 +2 +2 +2 +2 19 0.95

Ahamed et al. (2019) +2 +2 +2 +1 +2 +1 +2 +2 +2 +2 18 0.90

Ahamed et al. (2018) +2 +2 +2 +2 +2 +1 +2 +2 +2 +2 19 0.95

Clermont et al. (2019a) +2 +2 +2 +2 +2 +1 +2 +2 +2 +2 19 0.95

Dixon et al. (2019) +2 +2 +2 +2 +2 +2 N/A +2 +2 +2 18 1.00

Johnson et al. (2021) +2 +2 +2 +1 +2 +2 N/A +2 +2 +2 17 0.94

Tan et al. (2020) +2 +2 +2 +1 +2 +1 +2 +2 +2 +2 18 0.90

Koska and Maiwald (2020) +2 +2 +2 +2 +2 +1 N/A +2 +2 +2 17 0.94

Matijevich et al. (2020) +2 +2 +2 +1 +2 +1 +2 +2 +2 +2 18 0.90

0.91

2 = “yes”, 1 = “partial”, 0 = “no”. N/A means that study should not be checked for this question. Summary score = total sum/total possible sum.

Q1: Question or objective clearly described?

Q2: Design evident and appropriate to answer the study question?

Q3: Method of subject selection or source of information/input variables is described and appropriate.

Q4: Subject characteristics or input variables/information sufficiently described?

Q5: Outcome well defined and robust to measurement/misclassification bias? Means of assessment reported?

Q6: Sample size appropriate?

Q7: Analysis described and appropriate?

Q8: Some estimate of variance is reported for the main results?

Q9: Results reported in sufficient detail?

Q10: Do the results support the conclusions?

2018, 2019; Watari et al., 2018a; Zrenner et al., 2018; Dixon
et al., 2019; Derie et al., 2020; Koska and Maiwald, 2020;
Matijevich et al., 2020; Stetter et al., 2020; Tan et al., 2020;
Young et al., 2020; Johnson et al., 2021). In one study, KNN
was trained in different proportions of the dataset, but trained
models were not validated or tested (Koska and Maiwald, 2020).
Half of the studies used leave-one-subject-out cross-validation
(LOSOCV) methods (Wouda et al., 2018; Zrenner et al., 2018;
Ahamed et al., 2019; Komaris et al., 2019; Stetter et al., 2019,
2020; Derie et al., 2020; Gholami et al., 2020; Liu et al., 2020;
Matijevich et al., 2020; Tan et al., 2020; Robberechts et al., 2021).
For the regression assignments, Pearson’s correlation coefficient
(R2), root-mean-squared error (RMSE), mean error (ME), and
mean absolute error (MAE) were utilized to assess the model’s
performance. Accuracy, F1 score, precision, recall, confusion
matrix, Matthews correlation coefficient (MCC), and receiver

operating characteristic curves (ROC) were employed to evaluate
the classification problems.

DISCUSSION

This systematic study evaluated the use of wearable inertial
sensors combined with machine learning and deep learning
algorithms in the field of low limb running biomechanics. The
pelvis, tibia, and foot were common locations for the sensor
placement, and two sensors were most frequently adopted.
Simulated IMU signals were also explored by converting marker
trajectories into accelerations via numerical differentiation
(Johnson et al., 2021; Rapp et al., 2021). It was found that
the use of IMU sensors with machine learning approaches
emerged recently (from 2018). The performance of assessing joint
angles, forces, moments and GRF, and identifying and classifying
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TABLE 3 | Participants and wearable inertial sensor specifications.

References Participants

(male/female)

Age (years) Participant

characteristics

Running speed Number

of

sensors

Sensor

placement

Sensor brand Sampling

frequency

AccelerometerGyroscope Magnetometer

Stetter et al. (2020) 13 (13/0) 26.1 ± 2.9 Healthy subjects Moderate running,

fast running

(speed not

mentioned)

2 Right thigh and

shank

Custom-built IMUs 1,500 Hz Tri-axis;

range: ±8 g

Tri-axis;

range:

±2,000/s

/

Stetter et al. (2019) 13 (13/0) 26.1 ± 2.9 Healthy subjects Moderate running,

fast running

(speed not

mentioned)

2 Right thigh and

shank

Custom-built IMUs 1500 Hz Tri-axis;

range: ±8 g

Tri-axis;

range:

±2,000/s

/

Hernandez et al.

(2021)

27 (27/0) 26.5 ± 3.9 Healthy subjects 8–14 km/h 5 Pelvis, left and

right thigh and

tibias

PUSH Pro system 100 Hz Tri-axis Tri-axis /

Gholami et al.

(2020)

10 (10/0) 27.0 ± 4.0 Healthy subjects 8–12 km/h 1 On the shoes

(dorsum)

Xsens (MTw

Awinda)

100 Hz Tri-axis Tri-axis Tri-axis

Wouda et al.

(2018)

8 (8/0) 25.1 ± 5.2 Experienced

runners

10,12, 14 km/h 3 Pelvis and lower

legs

Xsens 240 Hz Tri-axis Tri-axis Tri-axis

Derie et al. (2020) 93 (55/38) 35.3 ± 0.9 Recreational and

competitive rear

foot runners

2.55, 3.2, 5.1 m/s

and preferred

running speed

2 Left and right tibias LIS331, Sparfkun 1,000 Hz Tri-axis / /

Liu et al. (2020) 30 (16/14) 31.6 ± 3.2 Competitive,

recreational and

novice runners

7–17 km/h 2 Left and right

distal tibias

MyoMOTION

(Noraxon)

200 Hz Tri-axis;

range: ±16 g

Tri-axis;

range:

±2,000/s

Tri-axis;

range: ±1.9

Gauss

Rapp et al. (2021) 580 (292/288) NR Healthy

participants and

subjects with

running-related

lower limb injuries

Self-selected

speeds

/ Sacrum, left and

right thighs, left

and right shanks,

and left and right

feet

Virtual IMUs / Tri-axis Tri-axis /

Ngoh et al. (2018) 7 (7/0) 21.3 ± 0.5 Healthy subjects 8–10 km/h 1 Right running shoe

(above the third

metatarsal)

Opal inertial

sensor (APDM

Inc.)

NR Tri-axis;

range: ±6 g

Tri-axis;

range:

±2,000/s

Tri-axis;

range: ±6

Gauss

Young et al. (2020) 203 (91/112) NR Healthy subjects 8 km/h 2 Left and right foot MYMO 60 Hz Tri-axis Tri-axis /

Robberechts et al.

(2021)

93 (55/38) 35.3 ± 0.9 Rearfoot runners 2.55, 3.2, 5.1 m/s

and preferred

running speed

2 Left and right shins LIS331, Sparkfun 1,000 Hz Tri-axis / /

Zrenner et al.

(2018)

27 (21/6) 24.9 ± 2.4 Amateur runners

(forefoot/midfoot

runners: 6,

rearfoot runners:

21)

2–6 m/s 2 Left and right

shoes midsole

miPod 200 Hz range: ±16 g Range:

±2,000/s

/

(Continued)
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TABLE 3 | Continued

References Participants

(male/female)

Age (years) Participant

characteristics

Running speed Number

of

sensors

Sensor

placement

Sensor brand Sampling

frequency

AccelerometerGyroscope Magnetometer

Komaris et al.

(2019)

28 (27/1) 34.8 ± 6.6 Competitive or

elite runners

2.5, 3.5, and 4.5

m/s

/ Left and right

shank

Virtual

accelerometer

/ Tri-axis / /

Tan et al. (2019) 20 (12/8) 33.4 ± 7.0 Healthy subjects Running speed

not mentioned

(including indoor

run, treadmill run,

outdoor run)

2 Left and right ankle Shimmer3 128 Hz Tri-axis;

range: ±8 g

/ /

Watari et al.

(2018a)

41 (29/12) 30.8 ± 3.2 Runners with

patellofemoral pain

2.7 m/s / Pelvic Virtual

accelerometer

/ Tri-axis / /

Watari et al.

(2018b)

110 (44/66) 34.1 ± 2.9 Runners with

patellofemoral pain

2.61 ± 0.2 m/s / Pelvic Virtual

accelerometer

/ Tri-axis / /

Ahamed et al.

(2019)

11 (10/1) 37.3 ± 11.7 Recreational

runners

2.35 ± 0.1 m/s 1 Pelvic Lumo Run 100 Hz Tri-axis Tri-axis Tri-axis

Ahamed et al.

(2018)

6 (5/1) 38.3 ± 13.1 Recreational

runners

2.18–2.54 m/s 1 Pelvic Lumo Run 100 Hz Tri-axis Tri-axis Tri-axis

Clermont et al.

(2019a)

27 (12/15) 45.7 ± 6.7 Marathon runners 8.56–9.55 km/h 1 Pelvic Lumo Run 100Hz Tri-axis Tri-axis Tri-axis

Dixon et al. (2019) 29 (15/14) 23.3 ± 3.6 Untrained subjects

(n = 10),

recreational (n =

9), and

well-trained (n =

10) runners

NR 1 Right tibia X50-2, Gulf coast

data concepts

1,024 Hz Tri-axis;

range: ±50 g

/ /

Johnson et al.

(2021)

Training

dataset: NR

(male: 59.9%,

female:

40.1%); test

dataset: 5

(4/1)

NR Training dataset:

young adult

athletes, test

dataset:

team-sport

athletes

Slow speed

running (2–3 m/s),

moderate speed

running (4–5 m/s),

and fast speed

running (>6 m/s)

5 Pelvis, bilateral

thigh, bilateral

shank

Noraxon DTS-3D

518 (test dataset

only)

NR Tri-axis / /

Tan et al. (2020) 15 (8/7) 23.9 ± 1.1 Recreational

runners

2.4 and 2.8 m/s 1 Left shank MTi-300, Xsens 200 Hz Tri-axis Tri-axis NR

Koska and

Maiwald (2020)

22 (10/12) 29 ± 5.9 Recreational

runners

10.7 ± 0.7 km/h 1 Heel cup of the left

running shoe

InvenSense

ICM-20601

2,000 Hz Tri-axis;

range: ±32 g

Tri-axis;

range: ±

4,000/s

/

Matijevich et al.

(2020)

10 (5/5) 24 ± 2.5 Recreational

runners

2.6–4.0 m/s 2 Shank and foot Virtual IMUs / NR / /

NR, not reported in the study; IMUs, inertial measurement units.
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Xiang et al. Machine Learning in Running Biomechanics

FIGURE 2 | Characteristic information: (A) sample size; (B) the number of sensors; (C) types of machine learning algorithms; (D) machine learning approaches; (E)

purpose of machine learning.

multiple conditions were investigated. Furthermore, processing
time-series data from IMUs using deep learning algorithms to
predict lower limb biomechanics and classification tasks are
becoming increasingly prevalent.

Machine Learning-Based Methods for
Evaluating Running Biomechanics
Musculoskeletal models and kinematic chain models are physics-
based approaches introduced to calculate gait kinematics and
kinetics from IMU sensors (Karatsidis et al., 2017; Picerno,
2017; Dorschky et al., 2019). Subject-specific anthropometric
data, however, are mandatory to scale the musculoskeletal
model (Stetter et al., 2020). This process could inevitably cause
inaccuracy (Faber et al., 2016; Ancillao et al., 2018). Kinematic
chain modeling needs to capture the kinematic behaviors of main
body segments by attaching one sensor to each segment (Wouda
et al., 2018). Therefore, it takes a longer time for the experimental
setup, requires multiple sensors, and constrains gait movement
(Ngoh et al., 2018). In contrast to physics-based models, data-
driven approaches used fewer sensors and built-up and optimized
model parameters by training the model using part of the data
rather than requiring any prior knowledge of the model (Wouda
et al., 2018; Stetter et al., 2020).

The accuracy of predicted knee joint angles using CNN is
higher than hip and ankle angles, even though the sensor data
were obtained from the foot (Gholami et al., 2020). This means
the sensor location may not be the most critical factor for

the estimation of lower joint kinematics. Another factor, for
instance, the flexibility of joints, may also affect the accuracy.
Tenforde et al. (2020) found that tibial acceleration is associated
with the GRF matrix in injured runners. However, Matijevich
et al. (2019, 2020) clarified that the vertical average loading rate
(VALR) during running is not strongly correlated with peak
tibial force. Miller et al. (2019) using tibial acceleration combined
with ANN predicted vertical GRF across multiple speeds [RMSE
= 0.16 body weight (BW), R2 = 0.97]. Linear regression with
least absolute shrinkage and selection operator regularization
(LASSO) regression algorithm also showed promising results
for evaluating peak tibial bone load from pressure and foot-
mounted IMU data (Matijevich et al., 2020). These findings
highlight that machine learning and deep learning algorithms
could successfully predict response even though the relationship
between inputs and output is still unclear and these issues can be
explained from the perspective of data-driven approaches.

Model Assessment
Only two public datasets of running biomechanics (Komaris
et al., 2019; Tan et al., 2019) were employed for analysis within
the included studies, and the sample size is limited (below
thirty). Generally, the CNN model sets 2–3 hidden layers, the
LSTM usually contains two layers, and the ANN layer varies
from 1 to 3 layers. The number of neurons in each hidden layer
ranged from 10 to 250. Adam was the most frequently used
optimizer, but those should be determined by hyperparameter
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TABLE 4 | The detailed machine learning approaches.

References Predictor Data

preprocessing

Dataset split CV Machine

learning

approaches

Response Evaluation Performance Ground truth/

biomechanical

model reference

data

Stetter et al. (2020) Tri-axial linear

acceleration and

tri-axial angular

velocity

Filtered by a 4th

order Butterworth

filter with cut-off

frequency of 15

Hz; IMUs signals

were interpolated

to keep the same

sample frequency

with knee joints

moments data

/ LOSOCV ANN (two hidden

layers, 100 and 20

neurons)

External knee

flexion and

adduction

moments

R2, rRMSE, RMSE Knee flexion

moment:

Moderate running:

R2 = 0.85, RMSE

= 0.58 Nm/kg,

rRMSE = 19.7%;

fast running: R2 =

0.65, RMSE =

1.13 Nm/kg,

rRMSE = 25.5%.

Knee adduction

moment:

Moderate running:

R2 = 0.4, RMSE =

0.37 Nm/kg,

rRMSE = 34.4%;

fast running: R2 =

0.21, RMSE = 0.8

Nm/kg, rRMSE =

33.8%

Kinematics and

kinetics were

collected by using

a Vicon motion

capture system

and two AMTI

plates

simultaneously.

Knee flexion and

adduction

moments were

calculated via an

inverse dynamic

modeling

Stetter et al. (2019) Tri-axial linear

acceleration and

tri-axial angular

velocity

Filtered by a 4th

order Butterworth

filter with cut-off

frequency of 15

Hz; IMUs signals

were interpolated

to keep the same

sample frequency

with knee joints

forces data

Training/validation/

test:

0.70/0.15/0.15

LOSOCV ANN (two hidden

layers, 250 and

100 neurons)

Vertical,

anterior-posterior,

and medial-lateral

knee joint forces

R2, rRMSE Moderate running:

mean R2 = 0.76,

mean rRMSE =

25%; fast running:

mean R2 = 0.73,

mean rRMSE =

28.7%

Kinematics and

kinetics were

collected by using

a Vicon motion

capture system

and two AMTI

plates

simultaneously.

Knee joint forces

were calculated

via an inverse

dynamic modeling

Hernandez et al.

(2021)

Tri-axial linear

acceleration and

tri-axial angular

velocity

Data were

standardized using

Z-score

normalization

Training/

validation/test:

19/4/4 subjects

Nested k-fold CV

(user-independent

approach)

DeepConvLSTM

(two convolutional

layers, two

recurrent layers,

sliding window:

100, step

size:100)

Lumbar extension,

bending, and

rotation; hip

flexion, adduction,

and rotation (left

and right); knee

flexion (left and

right); ankle

dorsiflexion and

inversion (left and

right)

R2, ME, MAE Mean R2 = 0.9 ±

0.16, mean MAE

= 3.6 ± 2.1◦,

mean ME = 0.02

± 3.75◦

Marker-based

Vicon motion

capture system

was utilized and

inverse kinematics

was conducted in

OpenSim

(Continued)
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TABLE 4 | Continued

References Predictor Data

preprocessing

Dataset split CV Machine

learning

approaches

Response Evaluation Performance Ground truth/

biomechanical

model reference

data

Gholami et al.

(2020)

Tri-axial linear

acceleration

Filtered by a 4th

order Butterworth

low-pass filter with

cut-off frequency

of 6 Hz

Training/test:

0.80/0.20

LOSOCV CNN (kernel size

= 3, stride = 1)

Hip, knee, and

ankle angles

RMSE, NRMSE,

R2

Intra-participant

model: R2 > 0.97,

RMSE < 3.4◦,

NRMSE < 4.6%;

inter-participant

model: R2 > 0.78,

RMSE < 6.5◦,

NRMSE < 11.1%

Marker-based

Vicon motion

capture system

was utilized for

collecting markers’

trajectory and joint

angles were

calculated in Visual

3D (C-Motion inc.)

Wouda et al.

(2018)

Relative orientation

of the lower legs

was input

information in the

first ANN;

estimated joint

angles and vertical

accelerations were

input in the ANN

Inertial data was

down sampled to

match the optical

and vertical GRF

data

Data of 10 and 14

km/h was used for

training, running

data at 12 km/h

was used for test.

LOSOCV ANN (two hidden

layers, 250 and

100 neurons)

Vertical GRF and

sagittal knee joint

angles

R2, RMSE Knee

flexion/extension

angles: RMSE <

5◦; vertical ground

reaction force:

RMSE < 0.27 BW

Joint angles were

collected with both

Xsens MVN Link

inertial and Vicon

optical motion

capture system;

vertical ground

reaction force was

measured from an

instrumented

treadmill

Derie et al. (2020) Auto-generated

statistical features

of 3D acceleration

waveform;

trial-specific

features;

subject-describing

features

Filtered by a 2nd

order band-pass

Butterworth filter

with cut-off

frequencies of 0.8

and 45 Hz

/ LOSOCV;

LOTOCV

EN, LASSO, XGB VILR MAE, R2, ROC Subject-

dependent XGB

model: MAE =

5.39 ± 2.04 BW/s,

R2 = 0.95;

Subject-

independent XGB

model: MAE =

12.41 ± 7.90

BW/s; R2 = 0.77

GRF were

measured by two

built-in force

platforms (2 and

1.2 m, AMTI)

Liu et al. (2020) Tri-axial

accelerometer and

gyroscope data

The number of

data points per

sample and mean,

standard

deviation, median,

maximum, and

minimum of the

acceleration and

angular velocity

data were

extracted from

each step and

anthropometric

features for

RunNet-MLP

Training/test:

0.80/0.20

LOSOCV Biomechanical

parameter:

RunNet-CNN (6

layers),

RunNet-MLP (3

layers), and GBDT;

running

performance level:

RunNet-MLP

Runners’

performance level

(novice,

recreational and

competitive),

VALR, peak

braking force and

propulsion force,

stride length, and

running speed

Accuracy,

confusion matrix,

R2

Runners’

performance level:

an overall

accuracy of

97.1%;

biomechanical

parameters:

RunNet-CNN: R2

> 0.9

Biomechanical

parameters were

measured from an

instrumental

treadmill

(Continued)
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TABLE 4 | Continued

References Predictor Data

preprocessing

Dataset split CV Machine

learning

approaches

Response Evaluation Performance Ground truth/

biomechanical

model reference

data

Rapp et al. (2021) Tri-axial

accelerometer and

gyroscope data

Synthetic

accelerometry and

gyroscope data

were generated by

taking numerical

derivatives and

adding Gaussian

noise

Training/validation/test:

0.80/0.10/0.10

/ Conv1D, LSTM Flexion/extension,

abduction/adduction,

internal/external

rotation of hip,

knee, and ankle

RMSE Mean RMSE of

flexion/extension <

1.27 ± 0.38◦,

Mean RMSE of

abduction/adduction

< 2.52 ± 0.98◦,

Mean RMSE of

internal/external

rotation < 3.34 ±

1.02◦

Marker-based

Vicon motion

capture system

used for collecting

markers’ trajectory

and joint angles

were calculated

with custom

software (Running

Injury Clinic Inc.)

Ngoh et al. (2018) Acceleration along

x-axis

Acceleration was

filtered using 2nd

Butterworth

low-pass filter with

cut-off frequency

of 10 Hz

Training/validation/test:

280 trials for

training, 120 trials

for validation and

testing; Remain

230 data for

accuracy

evaluation

/ ANN (two hidden

layers, 10 and 100

neurons)

Vertical GRF R2, RMSE RMSE < 0.017

BW, R2 > 0.99

Vertical GRF was

measured from an

instrumented

treadmill

Young et al. (2020) Tri-axial

accelerometer and

gyroscope data

Degree of

pronation (neural,

slight, and severe)

and foot strike

type (heel,

midfoot, and

forefoot) were

measured or

calculated from

raw data

Training/test:

0.75/0.25

/ Ensemble deep

learning model (a

MLP classifier, a

GB classifier, and

a custom-train

ANN model)

Recommending

running shoes type

Accuracy Accuracy = 94.6% /

Robberechts et al.

(2021)

Filtered

acceleration, Jerk,

roll, pitch,

acceleration right x

peak min

Filtered by a 2nd

order band-pass

Butterworth filter

with cut-off

frequencies of 0.8

and 45 Hz

The perceptron

model:

training/test:

83/10 subjects;

The RNN model:

training/validation/test:

73/10/10 subjects

5-fold CV,

LOSOCV

The averaged

structured

perceptron

algorithm; RNN

(two bidirectional

long short-term

memory layers, 50

hidden neurons,

dropout 20% after

each layers)

Gait event

detection (initial

contact and toe

off), stance time

MRE, MAE, ROC The perceptron

model: IC: MAE =

2.00 ± 2.89, TO:

MAE = 9.00 ±

8.18, ST: MAE =

10.00 ± 8.73; The

RNN model: IC:

MAE = 2.00 ±

3.29, TO: MAE =

4.00 ± 4.52, ST:

MAE = 6.50 ±

5.74

Gait event were

detected by two

built-in force

platforms (2 and

1.2 m, AMTI)

(Continued)
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TABLE 4 | Continued

References Predictor Data

preprocessing

Dataset split CV Machine

learning

approaches

Response Evaluation Performance Ground truth/

biomechanical

model reference

data

Zrenner et al.

(2018)

Tri-axial

accelerometer and

gyroscope data

The IMUs data in

each stride was

zero padded to

200 samples

/ LOSOCV CNN (two

convolutional

layers, two max

pooling layers, one

flattening layer,

two

fully-connected

layers, and one

30% dropout layer)

Stride length and

velocity; distance

of running (3.2 km)

ME, MAE, MAPE Running stride

length: ME = 2.5

± 20.1 cm, MAE

= 15.3 cm, MAPE

= 5.9%; velocity:

ME = 0.055 ±

0.285 m/s, MAE =

0.216 m/s, MAPE

= 5.9%; distance

of running: MAE =

194.5 m

The Vicon motion

capture system

was used as the

gold standard for

velocity and stride

length; total

distance of field

running was

recorded using

GPS by a

smartphone

(Galaxy S8,

Samsung Inc.)

Komaris et al.

(2019)

Tri-axial linear

acceleration

Data were

standardized using

Z-score

normalization

Training/validation/

test:

0.60/0.20/0.20

LOSOCV ANN (one hidden

layer with 10

neurons)

Vertical,

anterior-posterior,

and medial-lateral

GRF

RMSE for

force-time

waveform

evaluation; ME for

peak force

evaluation

RMSE: Vertical

GRF: 0.134 ±

0.027 BW,

anteroposterior

GRF: 0.041 ±

0.007 BW, and

mediolateral GRF:

0.042 ± 0.006 BW

GRF was

measured using

an instrumented

dual-belt treadmill

(Bertec Corp.)

Tan et al. (2019) Tri-axial linear

acceleration and

composite

accelerations over

three timesteps

Data were scaled

to a range of 0–5

using Min-Max

scaling

Training/validation/test:

0.47/0.23/0.30

/ LSTM (five layers,

44 hidden neurons

in each layer)

Gait event

detection (heel

strike and toe off)

F1, Precision,

Recall, and MAE

F1: heel strike:

treadmill run =

0.92, indoor run =

0.96, outdoor run

= 0.92; toe off:

treadmill run =

0.77, indoor run =

0.86, outdoor

run=0.81

/

Watari et al.

(2018a)

Tri-axial pelvic

acceleration,

patient reported

outcome

measures and

demographic

variables

Raw data were

standardized to a

mean of 0 and a

standard deviation

of 1,

dimensionality

reduction was

performed with

PCA

/ 10-fold CV PCA (for feature

extraction), SVM

Classifying

patellofemoral pain

cohort

Accuracy,

precision, recall,

F1-score, MCC,

confusion matrix

Accuracy: 85.4%,

precision: 90.0%,

recall 96.4%,

F1-score: 0.93,

MCC: 0.69

/

(Continued)
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TABLE 4 | Continued

References Predictor Data

preprocessing

Dataset split CV Machine

learning

approaches

Response Evaluation Performance Ground truth/

biomechanical

model reference

data

Watari et al.

(2018b)

Tri-axial pelvic

acceleration

Dimensionality

reduction was

performed with

PCA, each step

was normalized to

100 points and

standardized to

zero mean and

unit variance

/ / PCA (for feature

extraction), HCA

Clustering

patellofemoral pain

patients into

homogeneous

subgroups

/ Two subgroups

were identified for

female runners

/

Ahamed et al.

(2019)

Pelvic drop,

vertical oscillation

of the pelvis,

ground contact

time, braking,

pelvic rotation, and

cadence

/ Subject-specific

approach

LOSOCV RF Classifying

inclination

conditions

(downhill, level,

and uphill) and

determining the

importance of

each variable

Accuracy Subject-specific

approach: mean

accuracy =

86.29%; LOSOCV

approach: mean

accuracy =

76.17%

/

Ahamed et al.

(2018)

Pelvic drop,

vertical oscillation

of the pelvis,

ground contact

time, braking,

pelvic rotation, and

cadence

Biomechanical

variables were

averaged for each

ten-strides

Training/test:

0.70/0.30

One-against-

another

RF (the number of

trees: 100)

Classifying

changes in

subject-specific

running gait

patterns based on

the environmental

weather conditions

and ranking the

importance of

biomechanical

variables

Accuracy Partitioning

datasets: accuracy

= 95.42%; One-

against-another:

accuracy =

87.18%

/

Clermont et al.

(2019a)

Cadence, braking,

vertical oscillation

of pelvis, pelvic

rotation, pelvic

drop, and ground

contact time

Biomechanical

variables were

averaged for each

ten-strides

/ / K-means

clustering

Clustering running

patterns

throughout the

marathon based

on running gait

alternations

/ Runners were

clustered into two

subgroups

/

(Continued)
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TABLE 4 | Continued

References Predictor Data

preprocessing

Dataset split CV Machine

learning

approaches

Response Evaluation Performance Ground truth/

biomechanical

model reference

data

Dixon et al. (2019) Tri-axial linear

acceleration

The first 2s of

each trial were

excluded, then the

data were scaled

from 0 to 1

according to the

minimum and

maximum value in

the set of available

trials for each

subject; statistical,

autocorrelation,

sample entropy,

smoothness, body

load, and

wavelet-derived

energy features

were extracted for

the GB model

Training/test:

90%/10%

/ GB and CNN (two

convolutional

layers, one max

pooling layer, two

convolutional

layers, one global

average pooling

layer and one drop

out layer with

probability of 0.5)

Classifying three

different surfaces

(concrete road,

synthetic track,

woodchip trail)

Accuracy,

precision, recall,

F1-score,

confusion matrix

Accuracy: GB:

concrete:93.7 ±

2.8, synthetic:

92.2 ± 2.1,

woodchip: 95.7 ±

2.4, average: 93.9

± 1.9; CNN:

concrete:95.9 ±

4.0, synthetic:

94.7 ± 3.3,

woodchip: 97.6 ±

1.2, average: 96.1

± 2.6

/

Johnson et al.

(2021)

Tri-axial linear

acceleration and

time

4D acceleration

inputs were

flattened into 2D

images by

representing the

five sensors’

locations on the

horizontal axis,

stance-normalized

time frames

upwards on the

vertical axis

/ / Two CNN models

CaffeNet and

ResNet-50

GRF R2, rRMSE For moderate

speed running of

the left stance limb

using CaffeNet,

Vertical GRF: R2 =

0.97, rRMSE =

13.93%; For slow

speed running of

the left stance limb

using ResNet-50,

anterior-posterior

GRF: r = 0.96,

rRMSE = 17.06%;

Kinematics and

kinetics were

recorded and

calculated with

Vicon optical

motion capture

system and AMTI

force plate

Tan et al. (2020) Tri-axial

accelerometer and

gyroscope

Min-max

normalization was

used to normalize

each IMU channel

/ LOSOCV CNN (3 hidden

layers with 50, 50,

and 10 neurons,

respectively)

VALR R2, MAE, NRMSE R2 = 0.94 ± 0.03,

MAE = 13.8 ± 5.8

BW/s, NRMSE =

9.7 ± 3.6%

GRF data were

collected using an

instrumented

dual-belt treadmill

(Bertec Corp.)

(Continued)
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TABLE 4 | Continued

References Predictor Data

preprocessing

Dataset split CV Machine

learning

approaches

Response Evaluation Performance Ground truth/

biomechanical

model reference

data

Koska and

Maiwald (2020)

Sagittal plane

(gyroscope) data

Filtered by a 4th

order low-pass

Butterworth filter

with cut-off

frequencies of 20

Hz, data were

normalized

between 0 and 1

10, 20, 50, and

100% dataset

were used for

training model,

respectively

/ KNN Classifying the

subjective

perception of

running shoe

comfort

(comfortable and

uncomfortable)

CCR Mean CCR = 0.92 /

Matijevich et al.

(2020)

Foot and shank

minimum and

maximum angles

and angles at

midstance

Feature were

normalized to

z-scores prior to

model training

/ LOSOCV LASSO Peak force on the

tibial bone

MAPE Foot: MAPE = 7.9

± 2.3%, shank:

MAPE = 8.0 ±

2.9%

Kinetics was

collected on a

force-

instrumented

treadmill (Bertec

Corp.)

CV, cross-validation; LOSOCV, leave-one-subject-out cross-validation; LOTOCV, leave-one-trial-out cross-validation; RMSE, root-mean-squared error; rRMSE, relative root-mean-squared error; NRMSE, normalized root-mean-square

error; R2, Pearson’s correlation coefficient; ME, mean error; MAE, mean absolute error; MAPE, mean absolute percentage error; MRE, mean relative error; CCR, correct classification rate; ROC, receiver operating characteristic curves;

MCC, Matthews correlation coefficient; ANN, artificial neural network; DeepConvLSTM, deep learning framework of the convolutional and LSTM recurrent neural networks; CNN, convolutional neural network; EN, linear regression with

elastic net regularization; LASSO, linear regression with least absolute shrinkage and selection operator regularization; GB, gradient boosting; XGB, gradient boosted regression tree; GBDT, gradient boosting decision tree; MLP, multilayer

perceptron; Conv1D, 1D convolutional neural network; LSTM, lone short-time memory; RNN, recurrent neural network; PCA, principle component analysis; SVM, support vector machine; HCA, hierarchical cluster analysis; RF, random

forest; KNN, k-nearest neighbors algorithm; GRF, ground reaction force; VILR, maximal vertical instantaneous loading rate; VALR, average vertical loading rate; IMUs, inertial measurement units; BW, body weight.
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tuning for the best combination (Hernandez et al., 2021). The
predicted error of sagittal joint angles from the simulated
IMU data has been shown to decrease (Dorschky et al., 2020).
This might be due to the simulated data being smoother than
the measured data (with less noise effect) (Rapp et al., 2021).
Different validation or test approaches were compared to check
their influence on the predicted accuracy (Wouda et al., 2018;
Derie et al., 2020; Gholami et al., 2020; Liu et al., 2020). This
review noticed that some studies did not validate the model’s
performance, which should be improved in future research.
Best accuracy was achieved by splitting one subject’s trials
into both training and test procedures. The data not seen
during testing were vital to assess machine learning models’
performance and improve confidence in its practice (Halilaj
et al., 2018). This intra-participant method could reduce the
reliability and practicality in real-world applications (Ahamed
et al., 2019; Derie et al., 2020; Gholami et al., 2020). Nested
k-fold CV could conduct both hyperparameter tuning and
evaluation based on inner and outer loops (Hernandez et al.,
2021). It is recommended to use the LOSOCV or Nested k-fold
CV method to validate or test the model’s performance.
The leave-one-trial-out cross-validation (LOTOCV) or
random train test split approach will be only suitable for
validating or testing the subject-specific machine learning
model (Ahamed et al., 2019; Derie et al., 2020).

The Practice of Deep Learning
The deep learning technique takes time-series data into the input
and has high computational efficiency compared with traditional
machine learning approaches. Both CNN and RNN are popular
tools utilized in lower extremity running biomechanics. A new
approach (Ordóñez and Roggen, 2016) called DeepConvLSTM
developed from human activity recognition classification was
adopted to predict lower limb kinematics and shows state-
of-the-art accuracy (Hernandez et al., 2021). Spatiotemporal
features of multiple wearable sensors were extracted through
CNN and RNN layers in these neural networks. Ihianle et al.
(2020) found that DeepConvLSTM achieved the highest accuracy
for the classification of jogging and running from multiple
daily activities, compared to CNN and LSTM algorithms based
on wearable sensor data. However, currently, only lower limb
kinematics has been estimated using the DeepConvLSTMmodel.
This review demonstrated that running kinetics is the most
investigated prediction task. Based on the knowledge gap, it could
be valuable to explore this algorithm’s ability to predict lower
limb kinetics during running. However, the current applications
of the deep learning technique suffer from one main pitfall.
Data-driven deep learning algorithms require large datasets
for model training, but such datasets are scarce in running
biomechanics compared with gait datasets in walking, which
incorporate ground truth values from the motion capture system
and wearable sensor data. On the other hand, data augmentation
or transfer learning techniques can be considered to improve the
model’s generalization and performance on the limited training
dataset (Komaris et al., 2019; Rapp et al., 2021).

Recommendations for Future Studies
According to the information from these included articles
and analysis, there are several limitations in the reviewed
previous studies. The following directions are identified and
should be reviewed for future research regarding machine
learning in running biomechanics by using wearable inertial
sensor data:

• The sample size to garner sensor data for assessing running
biomechanics is recommended to be larger than 20.

• One or two sensors are enough to obtain predictors inputting
to the machine learning and deep learning models.

• The tibia, foot, and pelvis are frequently employed locations
for sensors’ attaching.

• Subject-independent (inter-participant) methods should be
used to test the performance of the machine learning model
(Derie et al., 2020; Liu et al., 2020; Tan et al., 2020; Hernandez
et al., 2021).

• Raw acceleration data is recommended as input to capture
the variabilities of spatial and temporal features (Dixon et al.,
2019).

• Acceleration data are among the most commonly
adopted wearable inertial data in lower extremity
running biomechanics.

• Deep learning approaches could be more suitable for dealing
with time-series data from wearable sensor data.

• Hyperparameter tuning is not only beneficial for picking the
best combination of the model’s parameters but also for the
model’s structure selection (Hernandez et al., 2021).

• Dividing training, validation, and testing datasets rigorously
and presenting data not seen before during testing are essential
to assess machine learningmodels’ generalization and improve
confidence in their practice (Halilaj et al., 2018).

• CNN, ANN, LSTM, DeepConvLSTM, MLP, and GB are
popular algorithms to process IMUs data.

• The implementation of DeepConvLSTM for exploring
wearable sensor signals in the field of lower limb running
biomechanics is generally promising (Hernandez et al.,
2021).

• Data augmentation or transfer learning approaches
provide us with a novel viewpoint on running
biomechanics, given the scarcity of data currently
accessible in the field (Komaris et al., 2019; Rapp et al.,
2021).

CONCLUSION

This study reviewed the current practice and trend in the
realm of lower extremity biomechanics during running. Machine
learning approaches, especially deep learning approaches, have
rapidly arisen in recent years due to wearable technology
improvements in gait analysis. Machine learning algorithms
showed state-of-the-art predictability for processing wearable
inertial data. However, in the future, the validation procedure
for machine learning models should receive increased emphasis.
A deep learning model combining resemble CNN and RNN
should be utilized to extract different running features from

Frontiers in Neurorobotics | www.frontiersin.org 17 June 2022 | Volume 16 | Article 913052

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xiang et al. Machine Learning in Running Biomechanics

the IMUs sensor. Investigating both upper limb and lower
limb biomechanics for future studies would be interesting and
worthwhile as running is a whole-body action.
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