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Abstract: Up-conversion nanoparticles (UCNP) under near-infrared (NIR) light irradiation have
been well investigated in the field of bio-imaging. However, the low up-conversion luminescence
(UCL) intensity limits applications. Plasmonic modulation has been proposed as an effective tool to
adjust the luminescence intensity and lifetime. In this study discrete dipole approximation (DDA)
was explored concerning guiding the design of UCNP@mSiO2-Au structures with enhanced UCL
intensity. The extinction effects of gold shells could be changed by adjusting the distance between
the UCNPs and the Au NPs by synthesized tunable mesoporous silica (mSiO2) spacers. Enhanced
UCL was obtained under 808 nm irradiation. The original theoretical predictions could not be
demonstrated to full extend by experimental data, indicating that better models for simulation need
to take into account in homogeneities in particle morphologies. Yet, one very certain conclusion
resulting from the DDA calculations and experiments is that the absorbance can blue-shift with
more Au NPs added and the absorbance can-red shift for samples with enhanced silica sizes in
the UCNP@mSiO2-Au structures. Furthermore, when the DDA model is more consistent with the
practical structure (dispersed Au NPs instead of Au shell), the theoretical absorbance occurs almost
the same as the practical absorbance. All in all, the DDA could fit the extinction effect of Au perfectly
and be suitable for guiding how to design the UCNP and Au.

Keywords: up conversion nanoparticles; discrete dipole approximation; surface plasmon resonance;
lanthanide-based composites

1. Introduction

In the context of bio-imaging lanthanide-based composites have been heavily investigated,
including their synthesis, up-conversion luminescence (UCL) properties, and long-term
cytotoxicity [1–9]. Especially, up-conversion nanoparticles (UCNPs) have been proposed as effective
optical nano-probes because of the possibility to excite them in the near-infrared (NIR), which allows
for deep tissue penetration, and almost negligible self-fluorescence [10–13]. In more recent years,
Nd3+-sensitized UCL materials were proposed using 808 nm light as alternative irradiation source,
which has the merit to reduce overheating of cells and to improve the penetration depth [14–16].
However, the low UCL efficiency is still an important problem that hinders its further application in
bio-imaging [17].

Metal modulation is an important way to improve the luminescence efficiency.
Metal nanoparticles, in particular gold nanoparticles (Au NPs) exhibit surface plasmon resonance
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(SPR) [18–20], i.e., when the oscillating frequency of free electrons on the metal surface is consistent
with the photon frequency of the incident light, an energy resonance phenomenon occurs. The SPR
effect depends on size and morphology of the Au [21,22]. Various extinction (i.e., absorption and
scattering) properties of Au NPs have been used in different applications, such as scattering, dark field,
and two-photon based optical imaging [23–25]. When Au is combined with up-conversion luminescent
NPs, the scattering and absorption in the crossing visible area impairs the luminescence emission.
It is proposed that all UCL peaks could be enhanced if the SPR peak would be tuned to the NIR
region [26,27].

A theory to guide the design of such UCNP@Au structures would be helpful to achieve higher
UCL intensities. In a previous study, we found that discrete dipole approximation (DDA) could be well
used to simulate the SPR effect of gold NPs, and that there is a good agreement with measured optical
properties [28,29]. On basis of this, in the present study we expand the DDA method to calculate the
optical properties of lanthanide-metal nanostructures. Note that DDA permits calculation for arbitrary
shapes. Although there were literatures about the combination of UCNP and SiO2 using the plasmonic
enhancement of the gold nanoparticles [30,31], there was still no literature using DDA to guide the
design of UCNP@mSiO2@Au composites’ structure. It is significant if the DDA simulation results
could be well coincident with the real detected data. Even though there would be some disagreement
between the simulation and the experimental, the simulation still has a meaningful inspiration to
guide to synthesize the proper structure.

Herein, we use the discrete dipole approximation to guide the design of UCNP@mSiO2-AuNP
structures for an enhanced UCL emission. The extinction effects of the gold shells were changed by
adjusting the distance between the center UCNPs and surrounding Au NPs by a tunable mesoporous
silica spacer. Finally, the enhanced UCL under 808 nm irradiation was experimentally verified.
The present study exemplifies the employment of theoretical approaches (i.e., DDA) to describe
the optical properties of gold and up-conversion luminescent NPs, in order to achieve a better
understanding of the behavior of lanthanide-metal hybrid NPs.

2. Experimental Section

2.1. Reagents and Materials

Yttrium oxide (Y2O3, 99.99%), ytterbium oxide (Yb2O3, 99.9%), neodymium oxide (Nd2O3,
99.99%), yttrium chloride (YCl3·6H2O, 99.99%), ytterbium chloride (YbCl3·6H2O, 99.99%), neodymium
chloride (NdCl3·6H2O, 99.9%), oleic acid (90%, tech grade), octadecene (90%, tech grade), trifluoroacetic
acid (CF3COOH, 99%), sodium trifluoroacetate (CF3COONa, 98%), methanol (≥99.8%), hexane
(≥98.5%), ammonia fluoride (NH4F, ≥99.99%), sodium hydroxide (NaOH, anhydrous, ≥97%), citric
acid (H3Cit), chloroauric acid (HAuCl4), hexadecyl trimethyl ammonium bromide (CTAB, 99%),
tetraethyl orthosilicate (TEOS, 99.99%), and aminopropyltriethoxysilane (APTES, molecular weight:
1800, 99%) were obtained by Shanghai Aladdin Bio-Chem Technology Co., Ltd., Shanghai, China.
Ammonia water (25–28%) was purchased from Tianjin Kermel Chemical Reagent Co., Ltd., Tianjin,
China. All chemical reagents were used as received without any further purification.

2.2. Synthesis of NaYF4:18%Yb,2%Er

The synthesis process was carried out following a previously published protocol [2]. Note that all
of the synthesis was under argon atmosphere. Typically, 0.8/0.18/0.02 mmol of YCl3/YbCl3/ErCl3,
10 mL of oleic acid, and 15 mL of octadecene were mixed in a three-necked bottle. The mixture was
heated to 160 ◦C and kept for 1 h to obtain a clear yellow solution (Solution A). 4 mmol NH4F, 2.5 mmol
of NaOH was mixed together with 10 mL of methonal and sonicated for 10 min to obtain a clear
solution (Solution B). Solution B was injected into the three-neck bottle directly after Solution A cooled
down, and stirred for another 30 min under the room temperature. Then, the mixed solution was
heated and kept at 100 ◦C for 20 min to remove the methanol. After that, the solution was heated
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to 300 ◦C and kept for 1 h. Finally, the solution was washed and centrifuged with ethanol to obtain
NaYF4:18%Yb,2%Er NPs. The NP precipitate was finally dissolved in hexane.

2.3. Synthesis of Core/Shell NaYF4:18%Yb,2%Er@NaYF4:30%Yb,10%Nd

Following the previously published protocol [2], 0.6 mmol of Y2O3, 0.3 mmol of Nd2O3,
and 0.1 mmol of Yb2O3 were mixed in a three-necked bottle with 5 mL of CF3COOH and heated
at 120 ◦C until lanthanide trifluoroacetic powder was precipitated in the bottom of the bottle. Then,
the as-synthesized NaYF4:18%Yb,2%Er NPs dissolved in hexane was added into the bottle, together
with 10 mL of oleic acid and 15 mL of octadecene. After further heating and stirring at 120 ◦C for
30 min, the clear solution was heated and kept at 310 ◦C for another 30 min. Finally, the solution was
washed and centrifuged with ethanol and the NaYF4:18%Yb,2%Er@NaYF4:30%Yb,10%Nd NPs were
dissolved in hexane for further use.

2.4. Synthesis of Mesoporous UCNP@mSiO2

Following a previously published protocol [2], the oleic acid-capped UCNPs were firstly rendered
hydrophilic by using CTAB. Typically, 2 mL of NaYF4:18%Yb,2%Er@NaYF4:30%Yb,10%Nd dissolved
in hexane and 0.1 g of CTAB was mixed with 10 mL ethanol and 40 mL of deionized water under
continuous stirring. After stirring for 12 h, the hexane was removed and the solution turned to be
clear. Then, 1 mL of pure ammonia water (25–28%) was added. The mixture was heated and kept at
70 ◦C, and 150 µL of TEOS was added slowly. After 10 min reaction, the mixture was centrifuged and
washed with ethanol and water for several times. The samples with different silica thickness were
synthesized by adjusting the amount of TEOS (0.15 mL, 0.17 mL, 0.20 mL, and 0.30 mL). To obtain the
mesoporous silica shell, the CTAB surfactant should be removed further. Typically, the as-synthesized
silica-coated NPs were mixed with 30 mL of ethanol with 0.3 g of NH4NO3, and then kept at 60 ◦C for
2 h. Then, the solution was centrifuged with ethanol three times and the NP precipitate was collected
(denoted as UCNP@mSiO2 in the following).

2.5. Synthesis of Mesoporous UCNP@mSiO2-Au

UCNP@mSiO2 NPs were dispersed in 20 mL of deionized water and then mixed with 0.1 mL of
APTES solution. After stirring for 2 h at 45 ◦C, the solution was centrifuged and the NP precipitate
was washed with deionized water. 400 µL of HAuCl4 (1 g/L) mixed with 45 mg of sodium citrate were
stirred for 20 min at room temperature in 20 mL of deionized water, and then 0.1 mol of NaBH4 solution
(kept in ice water) were added quickly into the solution to obtain the gold NPs. Then, the sample was
mixed with 4 mL of the obtained gold nanoparticles for another 2 h at room temperature.

2.6. Characterization

Images of the morphology of the NPs were obtained digitally with scanning electron microscopy
(SEM, JSM-6480A, Xi’ an, Shaanxi, China) and transmission electron microscopy (TEM; FEI Tecnai G2
STwin, Xi’ an, Shaanxi, China). Absorbance spectra were recorded with an UV-1601 ultraviolet visible
(UV-vis) spectrophotometer. UCL emission spectra were obtained on an Edinburgh FLS980 apparatus
using a 980 nm laser diode module (MDL-III-980-2W) as irradiation source and recording in the visible
light region.

2.7. DDA Simulation

The DDA calculation was carried out by DDSCAT in the Windows 10, and it starts by dividing the
NaYF4 core@mSiO2 shell-Au shell into a cubic array of N-point dipoles. The refractive index dispersion
of NaYF4@mSiO2-Au spheres with different visible/near-infrared wavelengths (300–1000 nm) were
used (as shown in Figure S1 and Tables S1–S3). The extinction (absorbance and scattering) effect
could be obtain after processed iteratively among polarizable dipoles in the cells, and detected at the
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wavelength of 300–1000 nm. DDA process is converged with the error tolerance less than 10−5 when
the number of dipoles larger than one thousand in order to ensure accuracy.

3. Results and Discussion

The schematic diagram of the synthesis process of UCNP@mSiO2-Au hybrid NPs is shown in
Scheme 1. The structure consists of the UCNP core (radius R1), the mesoporous silica shell (thickness
D), and then the shell of gold NPs grown on top of the mesoporous silica (thickness Z).
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Scheme 1. Sketch of the synthesis of UCNP@mSiO2-Au NPs. The radius of the UCNP core is R1,
the thickness of the silica shell D, and the thickness of the layer of Au NPs is Z. In this way the radius
of UCNP@mSiO2 is R2 = R1 + D and the radius of UCNP@mSiO2-Au is R3 = R1 + D + Z.

TEM images of NaYF4:Yb,Er and NaYF4:Yb,Er@NaYF4:Yb,Nd UCNPs are shown in Figure 1A,B.
The radius R1 of the NaYF4:Yb,Er NPs is about 11 nm. After further epitaxial growth, the radius R1 of
the NaYF4:Yb,Er@NaYF4:Yb,Nd NPs is around 15 nm. TEM images of the as-prepared UCNP@mSiO2

samples with different mesoporous silica shells are shown in Figure 1C–F. Examples of shell thicknesses
D with 5 nm, 15 nm, 30 nm, and 60 nm are shown. This demonstrates that the thickness of the silica
shell could be well adjusted by adjusting the added amount of TEOS. In Figure 1G1–G3, images of
UCNP@mSiO2-Au NPs (D = 30 nm) are shown. As shown in Figure 2A,B, the Au NPs could be clearly
found on the surface and in the mesoporous shell of silica. The energy-dispersive X-ray spectroscopy
(EDS) results of UCNP@mSiO2-Au NPs (D = 15 nm) are presented in Figure 2C, which show presence
of Na, Y, Yb, Nd. F, Si, and Au. Furthermore, SEM images at different magnifications and high-angle
annular dark-field scanning transmission electron microscopy (STEM) images of UCNP@mSiO2-Au
NPs (D = 30 nm) are shown in Figure 3A1,A2,B, respectively. The line scanning intensity and map
scanning images of UCNP@mSiO2-Au NPs (D = 30 nm) in Figure 3C1,3C2 indicate the distinct
distribution of the UCNP core and silica mesoporous shell. The thickness Z of the layer of the Au NPs
was 2–4 nm (as shown in Figures 2 and 3). The silica shell was acting as spacer between the UCNP core
and the Au NP shell. The nomenclature of the NPs with different UCNP core radius R1, silica shell
with thickness D, and Au NP shell with thickness Z is termed R1-D-Z.
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Figure 1. TEM images of (A) NaYF4:Yb,Er and (B) NaYF4:Yb,Er@NaYF4:Yb,Nd UCNPs. TEM images
of UCNP@mSiO2 (R1 = 15 nm) with different mesoporous silica sizes: (C) D = 5 nm, (D) 15 nm,
(E) 30 nm, and (F) 60 nm. (G1–G3) TEM images of UCNP@mSiO2-Au NPs (R1 = 15 nm, D = 30 nm,
Z = 2–4 nm) at different magnifications.
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Figure 2. (A1,A2) SEM images at different magnifications, (B1,B2) TEM images at different
magnifications, and (C) EDS result of UCNP@mSiO2-Au NPs (R1 = 15 nm, D = 15 nm, Z = 2–4 nm),
in which the intensity peaks in the I(E) curve correspond to the differences in energy E between two
states of the electron shell which are characteristic to the atomic structure of the emitting element.
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Figure 3. (A1,A2) SEM images at different magnifications, (B) High-angle annular dark-field scanning
transmission electron microscopy (STEM) images, (C1) line scanning intensity I(x) with x indicating
the position, and (C2) map scanning images of UCNP@mSiO2-Au NPs (R1 = 15 nm, D = 30 nm,
Z = 2–4 nm).

The DDA method was used to perform in accordance to previous studies [28,29].
The electro-dynamic simulations using the dielectric functions of the confined gold and NaYF4 parts
were as inputs. Figure 4A shows the final extinction curves of UCNP-Au NPs (i.e., NPs without
silica spacer, D = 0) for UCNP cores with radius R1 = 15 nm with different sizes of the Au NPs shell,
as derived using DDA simulations. It is known that for nanoscale structures scattering is usually
much smaller than absorption, and therefore the latter dominates the optical response. As shown in
Figure 4B, for the UCNP-Au NPs with Z = 5 nm (i.e., the whole radius R2 = R1 + D + Z = 15 nm +
0 + 5 nm = 20 nm), the scattering is very weak and can be basically ignored. When the thickness of
the Au NP shell increases to Z = 15 nm and 30 nm, the scattering increases (Figure 4C,D). As known
that the increased scattering effect of the composite in the visible emission region would be harmful
to the final UCL intensity. Also, one can see that the SPR peak of the Au NP shell is blue-shifted
(from λSPR = 570 nm to λSPR = 520 nm) with increasing Z. Thus, a thickness of the Au NPs shell with
Z = 5 nm is favorable and is used in the following.
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Figure 4. DDA simulation results I(λ), referring to the wavelength-dependence of extinction (ext),
absorption (abs), and scattering (sca). (A) The extinction curves of UCNP-Au NPs with different Au
NP shell sizes, with geometry R1-0-Z. The contribution of absorbance and scattering to the extinction
curves is shown for (B) 15 nm–0–5 nm, (C) 15 nm–0–15 nm, and (D) 15 nm–0–30 nm geometry.

To obtain a hybrid structure with tunable SPR wavelength λSPR, a spacer of mesoporous silica
with adjustable distance D between the UCNP core and the Au NP shell was introduced. The extinction
curves of UCNP@mSiO2-Au NPs with different silica shells as calculated by DDA simulation are
shown in Figure 5A. There is an obvious red shift of the SPR peak when the thickness of the silica
spacer is increased. The extinction (absorbance and scattering) curves of UCNP@mSiO2-Au NPs with
different shell thicknesses of D = 0 nm, 5 nm, 15 nm, 30 nm, and 60 nm are presented in Figure 5B–F.
The wavelengths of the corresponding SPR peaks are λSPR = 570 nm, 590 nm, 640 nm, 730 nm,
and 880 nm, respectively. The results indicate that the adjustable silica spacer size has an obvious
influence on the final optical extinction.

In order to better visualize the optical properties of the lanthanide-gold hybrid NPs, the electric
field strength (|E|/|E0|) of different UCNP@mSiO2-Au NPs was calculated at excitation at the
SPR resonance λexc = λSPR and at λexc = 808 nm, which would be the envisaged excitation in
bioimaging experiments. As presented in Figure 6, when the distance between UCNP core and
the gold NP shell is 30 nm, there is the strongest field strength at the excitation peak at 808 nm and
SPR peak. DDA simulations thus predict 15 nm–30 nm–5 nm as the most favorable UCNP@mSiO2-Au
NP structure.
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Figure 5. DDA simulation results I(λ), referring to the wavelength-dependence of extinction (ext),
absorption (abs), and scattering (sca). (A) The extinction curves of UCNP@mSiO2-Au NPs with different
silica shell thickness D. The extinction (absorbance and scattering) curves of UCNP@mSiO2-Au NPs
with silica shell thickness D of (B) 0 nm, (C) 5 nm, (D) 15 nm, (E) 30 nm, and (F) 60 nm.

In order to verify the DDA predictions the UCL spectra of as-synthesized UCNP@mSiO2-Au NPs
with different silica spacer thicknesses (cf. Figure 1) were measured. The spectra of UCNP@mSiO2-Au
NPs contained four chief emission peaks at around 409, 521, 543, and 654 nm, corresponding to the
2H9/2 → 4I15/2, 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2 transitions of Er3+, respectively
(Figure 7A). One can see that for a mesoporous silica spacer of thickness D = 30 nm, the UCL intensity at
excitation λexc = 808 nm enhanced more than 2-fold for different emission wavelengths λem (Figure 7B):
2.61-fold (λem = 409 nm), 2.96-fold (λem = 543 nm), and 2.18-fold (λem = 645 nm), respectively. In this
way the experimental data verify the predictions as achieved by DDA simulations. However, when we
detected the actual absorbance properties of the solutions with different Au NPs added and with
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different distances between the UCNPs and Au NPs the results did not fully match the predictions
(Figure 8A compared with Figure 4A, Figure 8B compared with Figure 5A).Nanomaterials 2018, 8, x FOR PEER REVIEW  9 of 13 
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Figure 8. Experimental absorbance curves of UCNP@mSiO2-Au NPs (A) with different Au NPs added
and (B) with different distance D between the UCNPs and Au NPs. The inset figure of Figure 8A shows
the corresponding UCNP@mSiO2-Au solutions with enhanced Au NPs.

Discrepancy in the absorption spectra may be explained by the different distribution of the Au
NPs in the silica shell, which in the case of the synthesized Au NPs is dispersed. Uncertainty in the
geometry of the deposited Au NPs on the surface of the mesoporous silica shell (including dispersion,
number, and location) lead to inexact simulation results. First attempts to use more realistic geometries
in the simulation failed so far. Still, the absorbance blue-shift of samples with more Au NPs added
(Figure 8A) and the absorbance red-shift of samples with enhanced silica sizes (Figure 8B) qualitatively
goes in the same direction as the simulated values (Figures 4 and 5). That means, DDA simulation needs
to be refined taking better into account the distribution of the Au NPs for being better able to predict
improved design of lanthanide@silica@Au NPs with optimized up-conversion luminescence intensity.

We tried another improved DDA model with the aim to be better consistent with the experimental
results. Here, a modified DDA model of UCNP@mSiO2-Au NPs with dispersed NPs in the shell
instead of a full Au shell was carried out. As shown in Figure 9A, when there are more dispersed
Au NPs in the shell, the SPR peak red-shifts in comparison to UCNP@mSiO2-Au NPs with less Au
NPs (Note: dispersed Au NPs instead of Au shell). The electric field strength under the irradiation
wavelength λexc = λSPR (730 nm and 680 nm, respectively, in case of more and medium dispersed
Au NPs) further directly present higher energy in the UCNP@mSiO2-Au NPs with more Au NPs
(Figure 9B). If the amount of Au NPs would be much lower, the NIR peak and energy may disappear,
and there is only one SPR peak at 520 nm. These results may well explain why the experimental
spectra has lower absorbance in the NIR region. That means, the DDA simulation could be suitable for
guiding how the Au NPs effect the UCNPs if the DDA model would be improved.
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4. Conclusions

In this work we have fabricated lanthanide@silica@Au structures with enhanced UCL intensity.
DDA simulation were used to guide the design. The final UCL enhancement factor is more than
2-fold when the distance between lanthanide and Au NPs is 30 nm. The present study exemplifies
the employment of theoretical approaches used to describe the optical properties to achieve better
understanding of the behavior of lanthanide-metal hybrid nanoparticles, while pointing out also
limitations of such modelling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/12/989/s1,
Table S1: The refractive index n of NaYF4 in dependence of the wavelength; Table S2: The refractive index n of
SiO2; Table S3: The refractive index n of Au, Figure S1: The refractive index n (real part) of NaYF4, SiO2, and Au.
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