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Abstract: Our group has used the marine bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125)
as a platform for the successful recombinant production of “difficult” proteins, including eukaryotic
proteins, at low temperatures. However, there is still room for improvement both in the refinement
of PhTAC125 expression plasmids and in the bacterium’s intrinsic ability to accumulate and handle
heterologous products. Here, we present an integrated approach of plasmid design and strain
engineering finalized to increment the recombinant expression and optimize the inducer uptake in
PhTAC125. To this aim, we developed the IPTG-inducible plasmid pP79 and an engineered PhTAC125
strain called KrPL LacY+. This mutant was designed to express the E. coli lactose permease and to
produce only a truncated version of the endogenous Lon protease through an integration-deletion
strategy. In the wild-type strain, pP79 assured a significantly better production of two reporters in
comparison to the most recent expression vector employed in PhTAC125. Nevertheless, the use of KrPL
LacY+ was crucial to achieving satisfying production levels using reasonable IPTG concentrations,
even at 0 ◦C. Both the wild-type and the mutant recombinant strains are characterized by an average
graded response upon IPTG induction and they will find different future applications depending on
the desired levels of expression.

Keywords: Pseudoalteromonas haloplanktis; strain engineering; Lon protease; EcLacY; recombinant
protein production; IPTG; pP79 vector

1. Introduction

Over recent years, both constitutive promoters [1] and inducible cassettes [2,3] have been
established for the recombinant expression in Pseudoalteromonas haloplanktis TAC125 (PhTAC125) in a
wide range of temperatures. Regulatable systems are particularly desirable in industrial processes
where the decoupling of the biomass accumulation from the recombinant expression could be crucial
to guarantee satisfactory yields. Although they proved to be useful for a series of studies [2–6], the two
inducible expression vectors used in PhTAC125 so far showed some major drawbacks. The L-malate
inducible pUCRP plasmid guaranteed a remarkable protein accumulation [2], but its efficacy resulted
in be strongly influenced by the medium composition. In particular, the use of L-glutamate as carbon
source negatively affected pUCRP induction, making it necessary to formulate bacterial media devoid
of this amino acid [5]. Given the pivotal contribution of such a carbon source to PhTAC125 specific
growth rate and metabolic regulation [7], its depletion might limit the versatility of this recombinant
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system for industrial purposes. On the other hand, the D-galactose regulatable pMAV expression
vector showed a good versatility in terms of the temperature range of use when P. haloplanktis TAE79
β-galactosidase was employed as a reporter [3]. Nevertheless, the amount of enzyme that could
be accumulated in recombinant PhTAC125 pMAV-lacZ was lower than the yield achievable in the
nonrecombinant parental PhTAE79 strain [8], suggesting a low strength of the used inducible promoter.

The β-galactosidase production in PhTAE79 wt was indeed sufficiently high to guarantee its
purification from PhTAE79 extracts and its industrial exploitation for lactose treatment without the
use of any recombinant technology [8,9]. This data induced us to evaluate the potential translatability
of the regulatory sequences of PhTAE79 lacZ in PhTAC125 for recombinant purposes. The preferable
choice of PhTAC125 rather than PhTAE79 as a host descends from the wider available information in
terms of genomic organization and annotation [10], genetic modification strategies [11], and metabolic
networks [5,7,12,13] for the first bacterium.

Based on an in silico analysis of the PhTAE79 lacZ expression cassette and on previously published
data from other authors, we were persuaded of the feasibility of the use of this regulatory system to
develop a new expression vector in PhTAC125. This plasmid, called pP79, proved to be IPTG-inducible,
to outperform our previous regulated expression vector pMAV, and to allow the detection of the
production of a fluorescent protein in PhTAC125 for the first time. To better the performance of this
system, we genetically engineered the host for the expression of a mesophilic lactose permease. Such a
mutant strain guaranteed a higher recombinant production using a lower IPTG concentration range in
comparison with the parental strain. Collectively, our results emphasize the remarkable flexibility of
PhTAC125, a polar host capable of combining a heterologous psychrophilic expression system with a
mesophilic inducer transporter for the recombinant production of proteins.

2. Materials and Methods

2.1. Bacterial Strains and Growth Media Formulations

The strains used in this study are listed in Table S1. E. coli DH5αwas used for cloning procedures, while
E. coli S17-1(λpir) was employed in intergeneric conjugations as a donor strain for KrPL transformations [14].
KrPL—a cured PhTAC125 strain—was used in all the recombinant expression and mutagenesis experiments.
E. coli was cultured in LB broth (10 g/L bacto-tryptone, 5 g/L yeast extract, 10 g/L NaCl) at 37 ◦C and
the recombinant strains were treated with either 34 µg/mL chloramphenicol or 100 µg/mL ampicillin,
depending on the selection marker of the vector. KrPL was grown in TYP (16 g/L bacto-tryptone, 16 g/L
yeast extract, 10 g/L NaCl) during conjugations and precultures development, and in GG [3] in expression
growths. For the propagation and culture of KrPL recombinant strains, either chloramphenicol or ampicillin
was used. In detail, chloramphenicol was added to solid and liquid media at 12.5 µg/mL and 25 µg/mL
concentrations, respectively. Ampicillin was always used with a concentration of 100 µg/mL, instead.

2.2. Construction of pP79 and p79C Expression Plasmids

The AUTL01000130.1 contig containing PhTAE79 lacZ (Figure 1) was automatically annotated
with RAST [15] and the annotations were refined using BlastP [16]. For all digestion/ligation reactions,
NEB enzymes were used (New England Biolabs, Hitchin, UK). The restriction sites in pP79 and p79C
that were hydrolyzed for cloning purposes are visible in the maps in Figure 2. The pP79 inducible
expression vector was designed by cloning the DNA fragment from PhTAE79 encompassing the
lacR gene and the divergent lacZ promoter + 5′ UTR into pUCLT/Rterm vector [2,17]. To this aim
the pSP73-β-gal vector [8] was used as a template in a PCR involving the use of p79_fw and p79_rv
primers (Table S2). The resulting ~1.2 kb amplified sequence covered the 18′782–19′909 region of
AUTL01000130.1 and was characterized by the addition of SphI restriction site to its 5′ extremity and
NdeI, SalI and XbaI to its 3′ terminus. Both pUCLT/Rterm and the p79 amplicon were double digested
with SphI/XbaI and ligated. The resulting plasmid was pP79.
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p79C is a variant of pP79 harboring a chloramphenicol resistance marker rather than an ampicillin
selection gene. For its construction, pP79 regulatory sequences, its MCS and the aspC transcriptional
terminator were extracted with SphI and SacI from pP79 and ligated with pUCC [4] digested in the
same sites.

Figure 1. Disposition of genes surrounding the β-galactosidase encoding gene in Pseudoalteromonas
haloplanktis TAE79 (PhTAE79) AUTL01000130.1 contig. Blue arrows indicate genes involved in
metabolism, in orange receptors and transporters, while in green transcriptional regulators. Black arrows
depict genes involved in DNA rearrangements, the red arrow highlights the presence of a gene involved
in plasmid replication and the gray arrow indicates a coding sequence with unknown functions.

Figure 2. Maps of pP79 and p79C shuttle vectors. (A) The two plasmids differ for the selection markers,
which are a β-lactamase encoding gene (amp(R)) in pP79 and a chloramphenicol acetyltransferase
encoding sequence (cm(R)) in p79C. The common elements to the plasmids are PhTAE79 regulatory
gene lacR, the promoter of PhTAE79 lacZ gene (PlacZ), the transcriptional terminator on PhTAC125
aspC gene (TaspC), an origin of conjugative transfer (OriT), the pMtBL-derived replication origin for
the maintenance in PhTAC125 (OriR) and the pUC18-derived replication origin for the propagation in
E. coli (OriC). Restriction sites outside the MCS that have been used for cloning purposes are indicated.
(B) The sequence encompassing the 5′ UTR and the MCS of the two plasmids included between PlacZ
and TaspC is illustrated using the coordinates of pP79. The +1 of the mRNA and the start ATG are
indicated in red and bold black, respectively.
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2.3. Sub-Cloning of Heterologous Genes into the Expression Plasmids

The expression plasmids used in this work are reported in Table S3. pMAV-lacZ was prepared in a
previous study [3] and was used to isolate the psychrophilic β-galactosidase encoding gene for the
construction of pP79-lacZ. In particular, lacZ was split into two different fragments: one of 1.2 kb with
NdeI/NcoI extremities and the second of 2.3 kb with NcoI/XbaI extremities. The two gene fragments
were ligated with pP79 opened with NdeI and XbaI restriction sites. For the conversion of pP79-lacZ
into p79C-lacZ, the same approach described in Section 2.2 was employed: the regulatory lacR gene
and lacZ were isolated using SphI/SacI double digestion and inserted into pUCC hydrolyzed with the
same enzymes.

The R9-gfp gene was taken from pET-21b-R9-gfp [18] using NdeI and HindIII restriction sites. In the
detail, the HindIII digestion was performed first and then the extremities of the hydrolyzed vector
were filled by Klenow reaction. After NdeI digestion, the R9-gfp gene was cloned into pMAV with
NdeI/filled-EcoRI extremities. pMAV-R9-gfp was then converted into pP79-R9-gfp by replacing pMAV
typical expression sequences with the ones of pP79. To do so, ScaI/NdeI double digestion was used
to isolate the pP79 fragment encompassing its promoter and its regulatory gene (2.1 kb). This was
cloned into the pMAV-R9-gfp backbone devoid of the galT expression sequences isolated with the
same restriction sites (3.6 kb). pP79-pGFP was designed to drive the expression of a codon optimized
version of the eGFP [19]. Composition optimization of the pGFP for the codon usage of PhTAC125
was automatically performed with the Optimizer web tool using the “guided random” method [20].
The synthesized gene (Thermo Fisher Scientific, Waltham, MA, USA) was cloned into pP79 using NdeI
and KpnI restriction sites.

p13C-lacY and pFC-lacY were the two constructs used for the constitutive expression of E. coli
lacY gene. Briefly, the gene encoding the mesophilic lactose permease was synthesized by Thermo
Fisher Scientific (Waltham, MA, USA) following a sequence optimization for the codon usage of
PhTAC125 [20] and adding a c-myc encoding sequence at its 3′ extremity. The insert harbored NdeI
and KpnI restriction sites at its 5′ and 3′ ends, respectively, and was cloned into p13C and pFC vectors
using the same sites. p13C is a plasmid containing the P13 promoter and a chloramphenicol resistance
gene. It was built by fusing P13 sequence taken from pPM13 [1] using HindIII/XbaI double digestion
with pUCC [4] hydrolyzed with the same enzymes. pFC contains the constitutive promoter of the
PhTAC125 aspC gene and was already available [21].

The complete sequences of genes introduced in this study are reported in the Appendix A and
Supplementary Material.

2.4. Preparation of pVS-lon and pVS-lacY Suicide Vectors

For the construction of lon mutant, two DNA fragments of PhTAC125 lon gene (A and B) were
amplified by PCR using bacterial genomic DNA as the template. Two primer pairs were designed to
amplify a 305 bp region at the 5′ end (lonA_SphI fw, lonA_SacI rv) and a 233 bp region at the 3′ end
(lonB_SacI fw, lonB_EcoRI rv) of lon gene. The obtained amplicons were subjected to SphI/SacI and
SacI/EcoRI double digestions respectively and cloned into the pVS [22] previously digested with SphI
and EcoRI, resulting in pVS-lon vector.

The construction of pVS-lacY was performed starting from the recovery of the fragment P13-lacY from
p13C-lacY vector through hydrolysis with HindIII and KpnI. Then two fragments (B and B’) at the 3′ end of
PhTAC125 lon gene were amplified by PCR. The reactions were carried out using the genomic DNA as the
template and allowed the amplification of a fragment of 233 bp (lonB_SphI fw, lonB_HindIII rv) and one of
a 170 bp region (lonB’_HindIII fw, lonB’_EcoRI rv). SphI/HindIII and KpnI/EcoRI double digestions were
performed on the obtained amplicons, respectively. The fragment B carrying SphI/HindIII extremities and
P13-lacY hydrolyzed with HindIII/KpnI were cloned into pUCC vector, previously digested with SphI and
KpnI. Afterward, the obtained intermediate vector pUCC-lonB-P13-lacY was digested with SphI and KpnI
to extract the fragment lonB-P13lacY. This fragment was finally cloned together with the second amplicon
B’ hydrolyzed KpnI/EcoRI into pVS adequately digested with SphI and EcoRI, resulting in pVS-lacY.
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2.5. Transformation of KrPL and Selection of the lon and lacY+ Mutant Strains

The recombinant vectors were mobilized into KrPL by intergeneric conjugation [14]. The selection
of recombinant transconjugants was performed at 15 ◦C in the presence of 50 µg/mL kanamycin
and either 100 µg/mL ampicillin or 12.5 µg/mL chloramphenicol, depending on the specifically
employed vector.

As for the mutant strains, the transconjugants were selected at 15 ◦C in the presence of 50 µg/mL
kanamycin and 30 µg/mL carbenicillin.

2.6. gDNA Extraction from the Mutant Strains and Sequence Analysis

Genomic DNA extraction from KrPL mutants and PhTAE79 was performed using the Bacterial
DNA kit (D3350-02, E.Z.N.A™, OMEGA bio-tek, Norcross, GA, USA) following the manufacturer’s
instructions. The insertion of the suicide vectors into the cells was verified by PCR analysis with a
NEB Taq DNA polymerase (New England Biolabs, Hitchin, UK). The genomic DNA was used as the
template of the reactions and two couples of primers were used for the amplification of amp(R) (bla_fw,
bla_rv) and pheS (pheS_fw, pheS_rv) genes. Then, further PCR analysis was performed to identify the
insertion site into lon gene. The couples of primers used for this purpose are:

lonA_SphI fw, lon_rv and lon_fw, lonB_EcoRI rv, for the analysis of lon mutants;
lonY_fw, lacY_rv and lacY_fw, lonY_rv, for the analysis of lacY+ mutants.

2.7. Recombinant Production of the Reporter Proteins

Glycerol stocks (−80 ◦C) of KrPL recombinant strains were streaked over TYP agar selective
plates. After three-five days of incubation at 15 ◦C, a single colony was inoculated in 2–3 mL of TYP
at 15 ◦C for one day. To grow the bacteria in GG, they were routinely trained in the same medium
with two subsequent 1/100 dilutions within a time frame of 24 h. The actual inoculum was generally
performed in the liquid medium filling an Erlenmeyer flask by 20% of its volume and with a starting
OD600 of 0.1. For recombinant expression at 15 ◦C, the cells were generally induced in late exponential
phase (OD600 = 1) about 13 h after the initial dilution. Strains harboring pMAV derived vectors were
induced with 10 mM D-galactose, while pP79 and p79C carrying strains were treated with different
concentrations of either IPTG or lactose. Expression trials were attempted also at 0 ◦C in a similar way
as described above. In this case, Erlenmeyer flasks were filled by 35% of their volume to stem oxidative
stress and the growths lasted several days considering that KrPL generation time was about 24 h at
0 ◦C. In most of the experiments, a Biosan PSU-20i orbital shaker was used setting the agitation at
180–220 rpm.

2.8. Analysis of the Production of the Recombinant Proteins

For the analysis of the β-galactosidase production, 10 OD600 pellets were harvested during the
cultures by centrifugation (5000× g for 5 min at 4 ◦C) and resuspended in 0.4 mL of Lysis buffer (100 mM
sodium phosphate buffer pH 7.5, 2% (v/v) Triton X-100, 1 mM DTT, 5 mg/mL lysozyme). After 20 min of
incubation at 15 ◦C, the samples were centrifuged (10,000× g, 15 min, 4 ◦C) and the supernatants were
used in the following enzymatic measurements with ONPG as a substrate. The spectrophotometric assays
were performed in triplicate as reported by Hoyoux et al. [8] and the data analysis was carried out using
the ONPG extinction coefficient at 410 nm (3.5 mM−1 cm−1) and the total protein concentration measured
with the Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA).
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To monitor the production of fluorescent proteins, 1 OD600 of liquid cultures was centrifuged
at 5000× g for 5 min at 4 ◦C and the pellets were resuspended in 0.5 mL PBS. Then, the samples
were serially diluted to achieve the best signal to noise ratio in fluorescence measurements and the
dilution factor was used for normalization. Fluorescence measurements were conducted with a JASCO
FP-750 spectrofluorometer at 25 ◦C with an excitation wavelength of 488 nm (slit 3 nm), an emission
wavelength of 509 nm (slit 6 nm) and an integration time of 0.10 s.

The production of the recombinant proteins was also monitored by SDS-PAGE, by loading 20 µg
of soluble cellular extracts onto the wells of 10% denaturant gels. The cellular homogenization was
carried out through the chemical-enzymatic method indicated at the beginning of this section and the
total protein concentration in the soluble fractions was estimated with the Bradford method. In the
case of GFP producing strains, we also checked for the synthesis of the recombinant proteins in total
lysates to control their solubility. Nevertheless, the presence of R9-GFP and pGFP was never visible
both in the soluble and total extracts when run onto SDS-PAGE.

To verify the presence of the truncated form of Lon protease, 1 OD600 cell pellets were collected
by centrifugation and solubilized in 60 µL of Laemmli buffer 4X. Then, the samples were boiled at
95 ◦C for 20 min, quickly cooled on ice for 5 min and finally centrifuged at 10,000× g for 5 min at RT.
5 µL of samples were analyzed by SDS-PAGE. 4–15% Mini-Protean TGX (Biorad) gels were used in
TGS buffer setting the power supply to constant 120 V. For electroblotting, the Biorad Transblot Turbo
system with Biorad PVDF mini membranes was used employing the mixed molecular weight setting.
After the transfer, the membrane was blocked with PBS, 0.05% Triton X-100, 5% (w/v) milk for one
hour. Then, an anti-Lon antiserum (ab103809) was diluted 1:1,000 in the same buffer. After one hour of
incubation at RT with the primary antibody, the membrane was washed with PBS, 0.05% Triton X-100
three times (5 min each) and incubated with an anti-rabbit antibody diluted 1:30,000 in PBS, 0.05%
Triton X-100, 5% (w/v) milk for one hour at RT. Then, the membrane was washed again with PBS, 0.05%
Triton X-100 three times (5 min each) and the secondary antibody was detected using the ECL method.

2.9. mRNA Extraction and qPCR

Total RNA was isolated from the cells using the Direct-zol RNA Kit (Zymo Research, Irvine, CA, USA)
following the manufacturer’s instructions. Contaminating genomic DNA was then removed through
treatment with RNAse-free DNase I (Roche, Mannheim, Germany). Total RNA was reverse transcribed
using SuperScript IV (Invitrogen, Carlsbad, CA, USA) according to the recommended protocol. The primers
used for this reaction are listed in Table S2. Quantitative real-time PCR was performed on cDNA from
each sample by using PowerUp SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA)
implemented with the specific primers (listed in Table S2) in StepOne Real-time PCR System (Applied
Biosystems, Foster City, CA, USA). The housekeeping gene PSHA_RS01090 was chosen as the normalizer.
The expression level of the gene of interest was assayed for up-regulation in experimental samples in
comparison to a calibrator sample (NI). The relative quantification of mRNA was expressed as fold-change
and was calculated through the standard curve method [23]. Three independent sets of experiments
were performed.

3. Results

3.1. Analysis and Cloning of the PhTAE79 lacZ Expression Sequences

The PhTAE79 genome has been sequenced in the framework of a WGS project involving several
Antarctic Pseudoalteromonadales [24], but it was neither assembled nor annotated. The lacZ gene is in
the AUTL01000130.1 contig according to the GenBank notation, whose predicted genes distribution
has been schematized in Figure 1. In this ~24 kb region, lacZ clusters with other genes involved
in carbohydrates and amino acids metabolism (Figure 1, blue arrows) and, intriguingly, with three
predicted CDSs involved in cut and paste mechanisms (black arrows) and a putative RepB protein
involved in plasmid replication (red arrow) [25]. In particular, the RepB is highly conserved (65–95%
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nucleotide identity) in plasmids harbored by three marine Pseudoalteromonadales, P. haloplanktis TAC125
(MN400773.1), P. nigrifaciens KMM 661 (CP011038.1), P. arctica A 37-1-2 (CP011027.1), whose reciprocal
similarities have been recently examined [26]. Considering that the whole analyzed contig is almost
totally conserved in P. nigrifaciens plasmid (88% coverage with 99% identity), it is very likely that the
DNA containing the lacZ gene is the result of horizontal gene transfer also in PhTAE79.

Upstream and divergent to PhTAE79 lacZ is a gene predicted to encode an AraC family
transcriptional regulator (one of the two green arrows in Figure 1), which probably regulates the
β-galactosidase mRNA synthesis and, for this reason, it will be named LacR from now on. Hoyoux et al.
used a combination of lactose and IPTG to induce the production of the β-galactosidase in PhTAE79
and reported that IPTG addition led to an increased protein yield [8]. We confirmed this outcome
by inducing lacZ expression in PhTAE79 using IPTG as the only inducer molecule (data not shown).
This suggests that LacR is probably regulated by this small allolactose analog.

Persuaded by this preliminary data, we developed a shuttle vector, named pP79, containing
PhTAE79 lacR-lacZ regulatory elements. In detail, a PCR was designed to amplify the LacR CDS with its
putative transcriptional terminator and promoter together with the predicted lacZ divergent promoter,
its 5′ UTR and initial ATG. Then, the amplicon was cloned into the shuttle vector pUCLT/Rterm [2,17],
so to have the pP79 plasmid. To make this expression system compatible with other constructs, we also
developed its chloramphenicol resistant version, p79C, by ligating pP79 expression cassette with the
pUCC vector (Figure 2A) [4]. The transcription start of the lacZ gene indicated in red in Figure 2B was
identified with a primer extension assay (data not shown).

3.2. Quantification of pP79 Activity Using β-Galactosidase and R9-GFP Reporters

3.2.1. Comparison between pP79 and pMAV Efficiencies

To test the usefulness of pP79, we compared its performance with our most recent inducible
expression system, pMAV [3]. To this aim, we used two different reporter genes, PhTAE79 lacZ that has
been employed for the characterization of all the expression plasmids in PhTAC125 so far [1–3], and R9-gfp
which encodes a GFP variant tagged with an N-terminal R9 peptide [18]. In particular, the GFP protein
encoded by this construct harbors the eGFP mutations for enhanced fluorescence [19] and the Cycle
3 mutations for improved folding [27]. To ensure plasmids stability, the recombinant constructs were
mobilized into KrPL, a PhTAC125 strain cured of its endogenous plasmid pMtBL (unpublished results
from this laboratory). The β-galactosidase production in KrPL pMAV-lacZ was carried out by D-galactose
induction in the defined medium GG at 15 ◦C [3]. In the case of KrPL pP79-lacZ strain, a 1–10 mM IPTG
range was tested for induction in the same growth conditions and the levels of accumulated recombinant
protein were measured after overnight expression. pP79 proved to guarantee a higher enzymatic specific
activity at all the tested inducer concentrations than pMAV, reaching a 20-fold higher production when
10 mM IPTG was used (Figure 3A). This result was confirmed by assessing the fluorescence emitted by
R9-GFP producing strains at 15 ◦C (Figure 3B). When induced with 10 mM D-galactose, pMAV-R9-gfp
bearing cells had a fluorescence that was at the same level as the autofluorescence of non-recombinant
PhTAC125. Conversely, KrPL pP79-R9-gfp showed a detectable protein accumulation over time when
10 mM IPTG was added to the culture.
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Figure 3. Quantification of the relative strengths of pMAV and pP79-driven expression of lacZ and R9-gfp
genes at 15 ◦C. (A) β-galactosidase production measured with an enzymatic assay. Logarithmic cultures
of KrPL pMAV-lacZ and KrPL pP79-lacZ strains were exposed to 10 mM D-galactose and 1-10 mM IPTG,
respectively. After 26 h expression, the β-galactosidase activities were assayed. The enzymatic specific
activities are reported as measures normalized by pMAV-lacZ. (B) R9-GFP synthesis was triggered with
10 mM D-galactose in the case of pMAV-R9-gfp bearing strain and with 10 mM IPTG in the case of KrPL
pP79-R9-gfp. The recorded fluorescence intensities were scaled to the autofluorescence of wild-type
cells (PhTAC125 bars and horizontal dashed line). Levels of β-galactosidase activity and fluorescence
are expressed as mean ± SD, n = 3.
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3.2.2. Evaluation of the Reliability of lacZ and R9-gfp as Reporter Systems

Although the two reporter systems consistently demonstrated that pP79 guarantees a higher
recombinant production than pMAV, the fluorescence-based approach suffered from lower sensitivity
because pMAV-driven R9-GFP production could not be distinguished from the background noise
(Figure 2B). To define if this drawback was due to the intrinsic different sensitivities of the two assays
or to a discrepancy in the absolute production of the two reporters, further analyses were carried out.
First, we monitored the β-galactosidase productions via SDS-PAGE, which allowed us to detect the
presence of the recombinant enzyme both in KrPL pMAV-lacZ and KrPL pP79-lacZ induced strains
(Figure 4A). As expected, even when the lower IPTG concentration of 1 mM was used, the intensity of
the estimated 118 kDa band was higher in the cellular extract of KrPL pP79-lacZ than the one observable
in KrPL pMAV-lacZ induced lysate (lanes 2 and 4 in Figure 4A, respectively). However, no protein
band was visible in induced KrPL strains producing R9-GFP at the expected molecular weight of
28 kDa, regardless of the employed plasmid and inducer concentration (Lanes 5 and 6 in Figure 4A).
To define if this different accumulation of the two recombinant proteins was related to transcriptional
issues, lacZ and R9-gfp mRNAs produced by pP79 were quantified through quantitative real-time PCR.
The results were expressed as fold-changes to compare the relative amount of lacZ and R9-gfp mRNA
produced both in the presence and in the absence of IPTG. As reported in Figure 4B, a rapid increase of
mRNA and a significant accumulation during the time were observed for both the reporters.

Figure 4. β-galactosidase and R9-GFP proteins productions (panel A) and their respective mRNA
transcriptions (panel B). (A) SDS-PAGE analysis of cell extracts of KrPL strains producing the
β-galactosidase (lanes 1–4) and R9-GFP (lanes 5–6). The induction was performed with 10 mM
D-galactose for pMAV carrying strains and with 1 mM IPTG for pP79 bearing cells and protracted for
26 h. M, molecular weight marker; 1, non-induced pP79-lacZ; 2, induced pP79-lacZ; 3, non-induced
pMAV-lacZ; 4, induced pMAV-lacZ; 5, induced pP79-R9-gfp; 6, induced pMAV-R9-gfp. Black arrows on
the right of the gel represent the expected molecular weights of the recombinant proteins. Red arrows
inside the gel highlight the bands of the β-galactosidase. (B) Relative quantification by RT-qPCR of
mRNA expression levels of lacZ and R9-gfp. Two genes under the control of the PlacZ promoter were
analyzed for their mRNA expression levels after 2 and 6 h from the induction in comparison to the
non-induced condition. The reported results are the mean of three independent experiments.
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Taken together, these results prove that R9-GFP production is considerably less efficient than
the one of the psychrophilic β-galactosidase in PhTAC125 and that this phenomenon is unrelated
to transcriptional issues. To determine if the N-terminal polyarginine moiety of R9-GFP and its
Cycle 3 mutations were the cause of such a low protein yield, we designed an automatically codon
optimized gene encoding the eGFP devoid of any N-terminal tag and sequence mutations other than
the ones needed for increased fluorescence. This protein was named pGFP and its fluorescence levels
were compared with the ones of R9-GFP using pP79 plasmid. The fluorescence of KrPL cultures
was significantly higher when R9-GFP was produced (Figure S1), suggesting that this construct is
characterized by improved properties in comparison to the canonical eGFP also at low temperatures.

3.2.3. Influence of Medium Composition on pP79 Efficiency

We performed all our expression trials in GG, a defined medium whose only carbon sources are
D-gluconate and L-glutamate [3]. The uptake of substrates is hierarchical in PhTAC125 [7,28] and specific
amino acid combinations had to be formulated in the past to guarantee the optimal induction of another
psychrophilic expression plasmid in this bacterium [5]. To understand if this kind of interference could
be experienced also using pP79, we measured the achievable levels of β-galactosidase production when
KrPL pP79-lacZ was grown in TYP, a complex medium containing yeast extract and bacto-tryptone.
The growth curves of the recombinant bacteria cultivated in GG and TYP at 15 ◦C are reported in
Figure S2A,B, respectively. As observable in Figure S2C, the performance of the expression plasmid was
similar in the two media when the lower IPTG concentration (1 mM) was reached in the cultures. On the
other hand, at the two higher tested IPTG concentrations the β-galactosidase production was less
efficient in the complex broth, indicating that in those conditions some negative effects took place.

3.3. Optimization of IPTG Transport Mechanism

3.3.1. Attempts in the Plasmidic Expression of a Lactose Permease

For an in-depth study of the pP79 system, the influence of the IPTG transport mechanism was
evaluated in relationship to protein expression. The requirement of a high concentration of IPTG
(10 mM) to reach full induction and the absence of the lactose metabolic pathway in PhTAC125 [29]
suggest the potential absence of high-affinity IPTG transporters in this bacterium. If so, the mechanism
by which the inducer penetrates within the cells is supposed to be either simple or facilitated diffusion.

This observation led us to examine whether the heterologous expression of a suitable lactose
permease could deliver a significant contribution to the optimization of the pP79 system. Since the
E. coli LacY transporter has already been successfully used in other Gram negative bacteria [30],
its encoding gene was optimized for the codon usage of PhTAC125 and cloned into pFC [21] and p13C,
a pPM13 derivative [1]. These constitutive psychrophilic expression plasmids possess a medium and a
strong promoter, respectively [1]. However, no transconjugant clones resulted from the mobilization
of both plasmids into KrPL, probably due to toxic effects on the cell membrane deriving from the
excessive production of the permease (data not shown). An alternative strategy was then applied
through the integration of E. coli lacY gene into the genome of KrPL.

3.3.2. Construction of KrPL lon and lacY+ Mutant Strains

To ensure a subtoxic level of LacY in KrPL a mutant strain was developed so that the production
of the permease derived from a single copy of lacY, integrated within the host genome.

Firstly, we focused on the selection of the target gene for the integration of lacY. To obtain a mutant
strain displaying improved features as a host for recombinant protein production, the centerpiece of
our analysis was the set of genes coding for proteases that are constitutively expressed in PhTAC125
and are involved in the proteolytic process of recombinant proteins. The Lon protease encoding gene
(PSHA_RS10175) was chosen as the target of mutagenesis because it represents the major protein
quality control protease and, as such, is responsible for most of the ATP-dependent degradation



Microorganisms 2020, 8, 1466 11 of 24

of misfolded proteins in bacteria [31]. Despite this protease is involved in a wide range of cellular
functions (from proteins degradation to DNA replication and recombination, stress response, motility
and biofilm formation), it is not an essential enzyme in many bacterial species such as E.coli [32].
To evaluate the consequence of lon disruption in PhTAC125, a first mutant strain was constructed
through a two-step integration–segregation approach using pVS, a suicide vector suitably constructed
for PhTAC125 [22]. Two internal gene fragments of lon were chosen as homologous sequences for the
recombination event, amplified by PCR and cloned into pVS, resulting in pVS-lon. The first fragment
(named A) is located into the sequence encoding the N-terminal domain of Lon, while the second
fragment (named B) includes the sequence encoding the region straddling the ATPase domain and
the proteolytic domain (Figure 5A). Since two different crossing-over events could occur, depending
on which fragment underwent recombination, the two homologous regions were selected in order to
provide the disruption of the whole Lon protease in the case of recombination of fragment A or the
deletion of its proteolytic domain in the case of recombination of fragment B (Figure 5B). Once obtained,
pVS-lon was mobilized into KrPL by intergeneric conjugation and a single recombination event allowed
the vector insertion on the genome. PCR analyses demonstrated that the insertion occurred in fragment
B of the gene (data not shown) resulting in a mutant that contains two non-functional copies of the
lon gene. The first one encodes a truncated form of the Lon protease because it is devoid of the fragment
B downstream sequence, coding for the active site domain of the protease. The second copy is not
transcribed because it lacks its promoter and the 5′-encoding region (Figure 5C).

Figure 5. Construction of KrPL lon mutant strain. (A) Domain organization of Lon protease. The N-domain
is involved in substrate recognition and binding; the AAA+ domain contains the ATPase module; the
Protease domain is responsible for proteins degradation. S679 and K722 represent the catalytic dyad of
the proteolytic domain. Fragments A and B encoding sequences were chosen as recombination regions.
(B) Schematic representation of pVS-lon vector. (C) Genetic organization of KrPL lon selected mutant.



Microorganisms 2020, 8, 1466 12 of 24

The presence of the truncated form of Lon was evaluated through Western blot analysis carried
out on total KrPL cellular extracts with a polyclonal anti-Lon antiserum. As shown in Figure 6, the Lon
band signal was detected at different heights in the wild-type and the mutant strains: the first one
exhibited a band compatible with the expected molecular weight of the full-length protein (87.4 kDa,
lane 1 in Figure 6), whereas the lower band of the mutant strain was clearly the truncated form (lane 2
in Figure 6). Indeed, the partial deletion of the first copy of the lon gene caused the loss of 564 bp at the
3′-region, generating a truncated protein with a theoretical size of 66 kDa.

Figure 6. Western blot analysis carried out with anti-Lon antiserum. Total cellular extracts of KrPL wt
and lon mutant were analyzed through Western blot analysis. Lane 1 shows a signal corresponding to
the full-length form of Lon protease (expected size 87.4 kDa) in the wt strain. A lower band (theoretical
size of 66 kDa) is detected in the selected lon mutant strain corresponding to the truncated form of
the protein.

The growth behavior and the fitness of lon mutant were then compared to the wt strain and no
deleterious effects took place (Figure S3). Thus, lon was confirmed as the target of insertion of EclacY
gene and the strain mutated in lon was used as its isogenic control. With this purpose, an expression
cassette—consisting of the strong constitutive psychrophilic promoter P13 [1] and the E. coli lacY
gene—was designed and included between two intragenic fragments of the lon gene. The entire
construct was then cloned into pVS resulting in pVS-lacY. With a similar strategy used for the obtaining
of the lon mutant strain, pVS-lacY was designed to obtain a truncated Lon protease devoid of its
proteolytic domain. To do this, the fragment B, already used for the construction of KrPl lon, and the
fragment B’, including the upstream region of the active site of Lon, were chosen as target sequences
(Figure 7A).

The obtained pVS-lacY was then mobilized into KrPL through interspecies conjugation and the
genomes of the mutant clones were analyzed by PCR to define the presence and the orientation of the
insertion (data not shown). Here too, the recombination event occurred in fragment B, succeeding in
the disruption of lon and insertion of lacY. The obtained KrPL lacY+ mutant strain is potentially capable
of producing a lactose permease and a truncated form of Lon protease (Figure 7C).
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Figure 7. Construction of KrPL lacY+ mutant strain. (A) Domain organization of Lon protease.
The N-domain is involved in substrate recognition and binding; the AAA+ domain contains the ATPase
module; the Protease domain is responsible for proteins degradation. S679 and K722 represent the
catalytic dyad of the proteolytic domain. Fragments B and B’ encoding sequences were chosen as
recombination regions. (B) Schematic representation of pVS-lacY vector. (C) Genetic organization of
KrPL lacY+ selected mutant.

3.4. Comparison between the Performance of KrPL lon and KrPL lacY+ Strains

3.4.1. Evaluation of the Production Improvement at Different Temperatures

To study whether the lactose permease provides an improvement to the transport of IPTG within
the cell, the recombinant production of β-galactosidase was performed in lacY+ in comparison to
its isogenic control, lon mutant. Both strains were transformed with the expression vector p79C-lacZ
and grown in GG medium at 15 ◦C. During the middle exponential growth phase, the induction was
performed with different concentrations of IPTG. In particular, 0.05 mM, 0.1 mM, 0.5 mM, 1 mM IPTG
was added to the culture to examine the difference in β-galactosidase production. The β-galactosidase
activity was then assayed in the soluble cellular extracts recovered 8, 24, 32 and 48 h after the induction.
As shown in Figure 8A, the highest production was achieved with the lacY+ mutant and proved to be
about 5-fold superior to lon strain. In the tested range of IPTG concentration, a direct proportionality
between the inducer amount and production level was observed in both strains, but with a higher slope
in lacY+ mutant. As an example, Figure 8B highlights the linear correlation between β-galactosidase
activity and IPTG concentration for the last data points. Bacterial cells containing the lactose permease
yielded high levels of production both with 0.5 mM and 1 mM IPTG. However, the increase of inducer
concentration in this range only drove a slight improvement in recombinant production. This is
probably due to the decrease in the contribution of the lactose permease in the IPTG uptake when its
concentration is relatively high, compatibly with its saturation. Furthermore, these results highlight
that the minimum concentration of IPTG needed for the induction of expression in the strain containing
the LacY transporter is 10-fold lower in comparison with the strain lacking the permease. When the
induction of lacZ expression was performed with 0.05 mM and 0.1 mM IPTG in lon mutant, no difference
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in β-galactosidase activity is observed in comparison to the non-induced cells (NI). Hence, the lactose
permease is a very important contributor in transporting IPTG across the PhTAC125 membrane.

Figure 8. Evaluation of production performance of KrPL lon and lacY+ mutant strains. (A) β-galactosidase
specific activity (U/mg) in lacY+ and lon mutant cells harboring p79C-lacZ, collected after progressive times
of induction, in GG medium at 15 ◦C using different concentrations of inducer. Levels of β-galactosidase
activity are expressed as mean ± SD, n = 3. (B) Analysis of the relationship between IPTG concentrations
and β-galactosidase specific activity measured after 48 h of expression in lacY+ and lon strains.

To verify that the mesophilic membrane protein is produced and functioning in the psychrophilic
bacterium even at ultra-low temperatures, the recombinant production ofβ-galactosidase was performed
at 0 ◦C using 0.5–1 mM IPTG. The levels of the reporter protein were then assayed after 24, 48 and 72 h
from the induction. The specific activity of β-galactosidase measured in lon mutant highlights a poor
accumulation of the protein, suggesting that the response of the system is owing to the basal expression
of the protein (Figure 9). On the contrary, the effect of LacY in the transport of IPTG is noticeable already
after 24 h of expression, with an enhancement of the production in lacY+ strain of about 1.5-fold in
comparison to lon cells treated with the same inducer concentration. As with the expression trials at
15 ◦C, 0.5 and 1 mM IPTG triggered the same expression levels in lacY+mutant also at 0 ◦C, except for
the first time point where a higher recombinant production was guaranteed by increasing amounts
of inducer.
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Figure 9. Evaluation of production performance of KrPL lon and lacY+ mutant strains at 0 ◦C.
β-galactosidase specific activity (U/mg) in lacY+ and lon mutant cells harboring p79C-lacZ, collected
after progressive times of induction, in GG medium at 0 ◦C using different concentrations of inducer.
Levels of β-galactosidase activity are expressed as mean ± SD, n = 3.

3.4.2. Evaluation of β-Galactosidase Production Using Lactose as an Inducer

A further demonstration of the functioning of EcLacY transporter in the mutant strain was
performed through the recombinant expression of lacZ by using 2% (w/v) lactose as an inducer. As shown
in Figure 10A, a rapid increase in β-galactosidase activity was observed in lacY+ strain after the first 4 h
of expression, while no production was detected in lon mutant. Nonetheless, after 8 h of induction,
the amount of recombinant protein took a decreasing trend. This can be traced back to a toxic effect
observed when the cells can transport the lactose within the cells (Figure 10B). To better understand the
reason for this occurrence, the growth behavior of the cells bearing pP79-lacZ and pP79 in the presence
of lactose was compared. As reported in Figure 10B, only the cells capable of producing β-galactosidase
showed cell death, suggesting that this effect was potentially caused by the metabolism and degradation
of the disaccharide.

Figure 10. Cont.



Microorganisms 2020, 8, 1466 16 of 24

Figure 10. (A) Evaluation of β-galactosidase production in KrPL lacY+ strain using lactose as the
inducer. β-galactosidase specific activity (U/mg) in lacY+ and lon mutant cells harboring p79C-lacZ
collected after progressive times of induction in GG medium at 15 ◦C using 2% (w/v) lactose as inducer.
Levels of β-galactosidase activity are expressed as mean ± SD, n = 3. (B) Growth curves of KrPL lacY+

harboring p79C-lacZ and pP79 in the presence of 2% (w/v) lactose. The growth was performed at 15 ◦C in
GG medium. The moment of the induction is represented by the intersection of the axes. The measures
of optical density are expressed as mean ± SD, n = 2.

4. Discussion

The ability to produce heterologous proteins with high yields is a prerequisite for the exploitation
of a microorganism as a cell factory [33]. The psychrophilic bacterium PhTAC125 represents a model
as a non-conventional host for the production of difficult to express proteins in a soluble and active
form [2,5,34,35]. In the present paper, the set of plasmids for controlled gene expression in PhTAC125
and KrPL—a pMtBL deficient strain—has been expanded with the IPTG-inducible plasmid pP79.
Moreover, the usability of this plasmid for different purposes has been widened by the development
of an engineered KrPL strain. All our experiments were carried out in the cured PhTAC125 strain to
avoid instability issues possibly arising from the coexistence of pMtBL and pP79 or pMAV.

In our selection of a new expression system, we looked for characterized psychrophilic genes
involved in carbohydrate catabolism with a clear regulator-catabolic gene asset. In this sense, the choice
of the lacR-lacZ gene couple of PhTAE79 was immediate, considering the high levels of β-galactosidase
produced by this bacterium [8] and the luck of lacZ-based inducible plasmids in other prokaryotes [33].
Rather than a disadvantage, the lack of lactose metabolism in the chosen host PhTAC125 [29] can be seen as
a possible prerequisite for a more predictable and tunable expression. As a matter of fact, the integration of
a heterologous regulatory network in a new context can provide the basis to avoid undesired autocatalytic
phenomena as the ones due to uneven and uncontrollable inducer transport [36] causing either bistable
or “all-or-none” responses [37–39]. The main prerequisite needed for the functioning of lacZ induction
in KrPL was the possibility of the internalization of its inducer. Both Hoynoux et al. [8] and our group
demonstrated that IPTG could be used as a molecule regulating LacR activity. This reinforced our idea
of implementing this recombinant system in KrPL, given the capability of this inducer to penetrate
biological membranes in a diffusive manner also in transporter-deficient strains [30,36,40].

The pP79 vector proved to be more efficient than pMAV—a D-galactose inducible plasmid
previously used in PhTAC125 [3]. In particular, with the new system, we could accumulate a 20-fold
higher quantity of β-galactosidase than pMAV-lacZ and we could detect the production of a fluorescent
reporter for the first time in this bacterium. Moreover, we demonstrated that the growth broth
composition had an impact on the levels of expression, i.e., a rich medium caused partial repression of
the IPTG mediated induction of pP79. Understanding the underlying mechanisms of this negative
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regulation (e.g., inducer exclusion or repression of the regulator) will be important in the future to
increase the extent of fine regulation that can be applied to pP79 [41,42]. However, it is worth noting
that the deeply different formulations of the two used media gave rise to drastic different behaviors of
the bacterial growths in general (Figure S2A,B). In particular, the use of TYP guaranteed the doubling
of the specific growth rate and the final biomass concentration, suggesting that diversified metabolic
networks are activated in this “feast” condition. Hence, to dissect the processes that interfere with pP79
activity, slighter progressive modifications of the medium composition must be applied in the future.

Despite their promising features, KrPL pP79 recombinant strains needed high IPTG concentrations
to reach maximal expression, a demand that could be prohibitive in large scale applications requiring
induction levels as high as possible.

To approach this problem, we applied a strain engineering strategy based on the combination of the
psychrophilic regulatory elements derived from PhTAE79 with the mesophilic lactose permease LacY
from E. coli. Despite the use of plasmids with a low copy number [26] and two different constitutive
promoters with medium and high strength, the accumulation of the permease and the alteration of
membrane properties probably caused serious toxic phenomena in PhTAC125 [43]. This led to the
failure of the first attempt of heterologous expression of LacY.

A further effort was made to modify the host cell to accommodate the production of the membrane
protein through the integration of the lacY gene into the KrPL genome. Emphasis was concomitantly
given to the control of the deleterious proteolysis of recombinant products with the final aim to design
a more robust cell factory with improved features for various biotechnological applications. The novel
mutant strain lacY+, constructed through a genome-scale manipulation, was characterized by a deletion
in the proteolytic domain of Lon protease and the capability to produce the lactose transporter LacY in
a functional form (Figure 7).

Previous analyses performed to characterize the truncated Lon protease suggest that it could act
as a molecular chaperone [44]. Indeed, mutations in the active site abolish proteolysis but not ATPase
activity, resulting in a protease that is still able to bind its substrates without degrading them [44].
The occurrence of the same phenomenon in KrPL mutant strains has to be proved by analyzing the
production of more complex and unstable proteins than the ones studied in this work.

The functional characterization of the lacY+ mutant highlighted great differences in the levels of
the reporter protein produced in comparison to its isogenic control, lon strain (Figure 8A). Despite no
changes in the growth behavior and kinetics were observed between the two strains (Figure S3),
a 5-fold increased protein accumulation was observed for lacY+, showing a higher slope of the direct
proportionality between the production level and the inducer concentration. Owing to the cost and
the possible cytotoxic effect of high concentrations of IPTG, this feature remarks the potentiality
of lacY+ strain as a cell factory given the advantage to use less inducer to reach the same level of
recombinant production.

Furthermore, our novel mutant succeeded in the production of the mesophilic membrane protein
in a functional form also at 0 ◦C, allowing the enhancement of the production levels of a reporter in
comparison to its counterpart lon strain (Figure 9). This result is quite impressive, considering that
the expressed lactose permease is naturally used to work at 37 ◦C and the known effects of the low
temperatures on the membrane structure and composition [45].

Additional evidence to support the functionality of the transporter in lacY+ strain was then gained
by inducing the recombinant production of theβ-galactosidase with lactose. This experiment confirmed
that little or no lactose molecule penetrates inside lon cells by either other facilitated transport systems or
diffusion and LacY is required for the disaccharide internalization (Figure 10A). However, a deleterious
effect on cell viability was observed in lacY+ cells, resembling a “lactose killing” phenomenon [46].
Surprisingly, the comparison of the growth behaviors of recombinant KrPL lacY+ bearing pP79-lacZ
and pP79 highlights that the cause of the observed stress is not related to the de-energization caused
by elevated transmembrane lactose transport. Instead, a toxic accumulation of its catabolic products
likely takes place (Figure 10B). As a matter of fact, the only difference between the two used strains
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consists of the production of the β-galactosidase which is causative of the conversion of lactose to
catabolic intermediates. For this reason, these experiments carried out with lactose must be taken as
proof of LacY functioning in KrPL, rather than as an example of its actual use for induction purposes.
PhTAE79 LacR is predicted to be an AraC-type protein and we experimentally demonstrated that its
activity is regulated by IPTG, an allolactose analog. Considering that we used a β-galactosidase as
a reporter and that allolactose is a product of the reaction catalyzed by this enzyme [47], it is very
likely that part of the observed lactose-mediated induction is due to the peculiar activity of this protein
(see Appendix A and Figure A1). Accordingly, when we used the same approach for the expression
of other genes than lacZ in KrPL lacY+ pP79, we could observe a lactose-mediated induction, but it
was considerably lower than the one achievable with IPTG (data not shown), suggesting again that
allolactose is probably the main inducer of this system. Our analysis of KrPL mutants demonstrated
that LacY contributes to improving the recombinant production yield in PhTAC125 when the lacZ
promoter is employed. This finding is in agreement with most studies performed in E.coli and other
Gram negative bacteria [30] and is noteworthy given that the IPTG uptake mechanism can be mediated
by lactose permease, passive diffusion, or other types of permeases [40].

Altogether, our data certify that in both KrPL lon and KrPL lacY+ strains an average graded production
is possible upon IPTG induction (Figure 8B). Depending on the particular application, the two strains can
be differently employed. As with the E. coli Tuner(DE3) strain (Novagen, [33]), either KrPL or KrPL lon
could be successfully used for those studies requiring low production levels with a clear linear response
over a wide IPTG concentration range, as in the case of metabolic engineering and of the production of
toxic proteins. On the other hand, KrPL lacY+ can be useful for those processes where an average graded
response is still guaranteed, though not always linear (Figure 8B), and high production is triggered by a
low concentration of the inducer [39]. This might be the case of the synthesis of non-problematic proteins
and of low added value products requiring the containment of the production costs. However, one has
to keep in mind that all our studies recorded the average expression levels of the cultures, and certain
conclusions about the homogeneity of the induction cannot be deduced. Nevertheless, the introduction of
the GFP as a reporter in PhTAC125 for the first time opens to the possibility of single-cell studies as FACS
screenings that can address this question.

Finally, although it is beyond the scope of this study, it is worth drawing some considerations
about the selection of reporter genes to study promoter strengths at 15 ◦C. The PhTAE79 β-galactosidase
and R9-GFP were the main tools used to study pP79. Despite they both demonstrated a higher protein
accumulation in pP79 recombinant strains than pMAV bearing cells, the production of the fluorescent
reporter was way more inefficient than the β-galactosidase and this phenomenon was not related to
transcriptional efficiency. More reasons can justify this difference. First, in pP79 the β-galactosidase
encoding sequence is directly fused to its natural 5′ UTR, while the R9-GFP CDS is artificially joined
with the psychrophilic 5′ UTR. Different groups have widely reported how the 5′ UTR composition
and the fusion with heterologous translated sequences can cause translational issues [48–50]. In this
sense, even the comparison of pMAV and pP79 relative strengths might be partially biased by the fact
that they harbor the galT and lacZ 5′ UTR sequences, respectively.

Nevertheless, in the past a similar disparity in terms of protein accumulation was also observed when
the production of the psychrophilic β-galactosidase and a mesophilic α-glucosidase were compared in
recombinant PhTAC125 pUCRP strains [2]. Also, in that case the synthesis of the cold-adapted enzyme was
higher that the mesophilic one, indicating that even when fused to a heterologous 5′ UTR, the lacZ CDS is
efficiently translated. Hence, the remarkable accumulation of PhTAE79 β-galactosidase may be strictly
related to either a high translation efficiency or protein stability at low temperatures. This hypothesis is
corroborated by a study effectively demonstrating that the PhTAE79 β-galactosidase showed a particularly
high activity when produced in a heterologous bacterium at low temperatures, despite the low levels
of transcription [51]. Collectively, these observations may suggest that even if PhTAE79 lacZ can be a
useful tool for comparative studies, as done in this work, it might not reliably represent the absolute
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achievable amounts of other proteins at low temperatures using the same system, especially in the case of
mesophilic proteins.

On the other hand, the production of fluorescent reporters in KrPL was so low not to allow the
detection of the expression starting from weak promoters, as the one of pMAV vector. Originally, we used
an R9-GFP variant, possessing an N-terminal oligoarginine peptide and the mutations characteristic of
the eGFP [19] and of Cycle 3 GFP [27]. We intended to combine the enhanced fluorescence of eGFP and
improved folding features of Cycle 3 mutations to the aggregation-prone polyarginine peptide [18,52].
In this way, we wanted to confer an increased in vivo stability to the protein, typical of full-protein
nanoparticles [53]. However, all these modifications were predicted to improve the GFP properties at
37 ◦C with no further information about their consequences at lower temperatures. That is why we
also produced a plain codon optimized eGFP—called pGFP—with neither R9 nor Cycle 3 mutations.
The R9-gfp gene has a Codon Adaptation Index (CAI) of 0.66, while the pGFP gene has a CAI equal to
0.73 [20], but R9-GFP derived fluorescence was considerably higher. This indicates that at least some
of the modifications introduced in R9-GFP had a positive effect. Nevertheless, the actual necessity to
use the R9 peptide has still to be tested, considering the translational and degradation issues possibly
deriving from N-terminal oligoarginines [50,54] and that GFP nanoparticles can sometimes show
worsened fluorescent properties [55]. To make this fluorescent system more sensitive, other approaches
have to be pursued, such as the shift of the emission spectrum to a wavelength for which PhTAC125
experiences a lower autofluorescence and the application of protein mutations that improve the
fluorophore maturation at low temperatures. However, both pGFP and R9-GFP are already detectable
in combination with pP79, allowing for new kinds of study.

5. Conclusions

There is still a significant number of predicted protein products whose recombinant production in
conventional gene expression systems is unsuccessful, making their structural/functional characterization
and their biotechnological application impossible. Almost 20 years ago, our research group suggested
the use of PhTAC125 and its derived genetic tools for the setup of a novel cell factory working at low
temperatures [14]. Till then, much evidence highlighted the notable skills of the Antarctic bacterium
in the high quality production of human and/or eukaryotic complex proteins, reinforcing our original
idea [2,3,5,6,11,34,35].

In this paper, we achieved a further considerable improvement toward the actual application of
PhTAC125 as an industrial cell factory. Based on the study of the regulated genetic elements in the
psychrophilic bacterium PhTAE79, we developed pP79, a novel IPTG-inducible plasmid. By using this
expression system, we obtained about 20-fold higher production of the recombinant β-galactosidase in
comparison to pMAV, the previous best inducible genetic system exploited in PhTAC125 [3]. For the
first time, the detection of a fluorescent protein was achieved in PhTAC125 pP79 recombinant cells,
paving the way for a variety of sensitive and innovative approaches of study.

Another essential aim of this work was to demonstrate the feasibility of a rational approach
toward the host improvement. The inducer internalization and the control of proteolytic events were
addressed, constructing the engineered strain lacY+ capable of producing a mesophilic lactose permease
and a truncated form of Lon protease. This mutant strain allowed a 5-fold higher production than
its isogenic lon mutant using a lower IPTG concentration. Furthermore, the heterologous permease
showed its positive contribution to induction at 0 ◦C, widening the applicability of KrPL lacY+ also as
a host for the recombinant protein production at ultra-low temperatures.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/10/1466/s1,
Figure S1: Production levels of R9-GFP and pGFP using pP79 expression plasmid, Figure S2: Growths of KrPL
pP79-lacZ and β-galactosidase production in GG and TYP, Figure S3: Growths curves of KrPL wt, lon and lacY+

strains, Table S1: Strains used in this study, Table S2: Oligonucleotides used in this study, Table S3: Plasmids used
in this study.
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Appendix A. Allolactose-Dependent AraC-Like Transcriptional Regulators Predicted on the Basis
of β-galactosidases Features

The only AraC-type transcriptional regulator of a β-galactosidase gene that has been characterized
at the molecular level is BgaR of the gram positive Clostridium perfringens [56–58], which has been
demonstrated to be regulated by lactose and partially lactulose, but not by IPTG. On the other hand, we have
clearly demonstrated that pP79 induction is mainly mediated by IPTG. The different regulatory mechanisms
influencing the β-galactosidase production in Clostridium and Pseudoalteromonas genera are probably
ascribable to the different capacities of the two enzymes of catalyzing intramolecular transglycosylation.

β-galactosidases are known to catalyze two main reactions: the hydrolysis of lactose into D-galactose
and D-glucose, and the allolactose synthesis using the two monosaccharides as substrates [47].
While intermolecular allolactose synthesis is a common feature to all β-galactosidases, only a restricted
class of these enzymes is capable of intramolecular transglycosylation, a process requiring that the
same glucose moiety produced upon lactose hydrolysis remains entrapped in the catalytic site of the
enzyme and is used to attack a galactose molecule for the generation of allolactose [59]. Only when
intramolecular transglycosylation takes place, ~50% of the initial product of β-galactosidase-mediated
reactions is made of allolactose. In the other cases the allolactose production is so inefficient that
D-galactose and D-glucose release becomes instantaneously predominant. Wheatley and co-workers
suggested for the first time that intramolecular allolactose synthesis could be a property typical of those
β-galactosidases whose expression is regulated by this disaccharide [59]. They, indeed, demonstrated
that β-galactosidases harboring at least 7 of the 14 residues required for glucose binding in E. coli
β-galactosidase are in proximity of LacI-GalR family repressor sequences, statistically in 60% of the cases.

The β-galactosidase from PhTAE79 possesses 9/14 of the residues included in this motif (asterisks
in Supplementary Figure S1). It is worth noting that all the amino acids directly involved in the
interaction with glucose are preserved, while only some residues predicted to form the catalytic loop
are divergent (798-802 in the E. coli enzyme). On the other hand, β-GaL from C. perfringens—the other
well-characterized β-galactosidase whose expression is regulated by an AraC-type transcriptional
regulator—is evolutionarily distant from E. coli and PhTAE79 enzymes (~30% identity with the E. coli
enzyme) and harbors only 3/14 of the residues of the motif defined for β-galactosidases classification.

In their analysis, Wheatley et al. already recognized that various β-galactosidases from marine
Gammaproteobacteria are potentially capable of synthesizing allolactose, but they found that in most
cases their genes are not coupled with LacI canonical regulators. They hypothesized that this feature could
be the outcome of horizontal gene transfer and that the allolactose synthesis might be a vestigial feature
of enzymes whose expression might no more be induced by allolactose. Nevertheless, considering that
PhTAE79 lacZ is IPTG-inducible, as mentioned by Hoyoux et al. [8] and by us, and C. perfringens β gal
gene is regulated by lactose but not by IPTG, we might deduce that Wheatley’s considerations can be
further extended to other regulatory systems. This hypothesis is limited by the little information available
about AraC-like transcriptional regulators of lacZ genes. However, it is tantalizing to consider that part
of those genes encoding β-galactosidases with an allolactose synthetic activity originally considered
to be orphan of an allolactose-dependent regulation (40% of the genes belonging to this category at
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the time of Wheatley’s analysis), might still be induced by this disaccharide through the action of less
explored regulators.
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