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Abstract 25 

Psychiatric disorders are complex and influenced by both genetic and environmental factors. 26 
However, studying the full spectrum of these disorders is hindered by practical limitations on 27 
measuring human behavior. This highlights the need for novel technologies that can measure 28 
behavioral changes at an intermediate level between diagnosis and genotype. Wearable devices 29 
are a promising tool in precision medicine, since they can record physiological measurements over 30 
time in response to environmental stimuli and do so at low cost and minimal invasiveness. Here 31 
we analyzed wearable and genetic data from a cohort of the Adolescent Brain Cognitive 32 
Development study. We generated >250 wearable-derived features and used them as intermediate 33 
phenotypes in an interpretable AI modeling framework to assign risk scores and classify 34 
adolescents with psychiatric disorders. Our model identifies key physiological processes and 35 
leverages their temporal patterns to achieve a higher performance than has been previously 36 
possible. To investigate how these physiological processes relate to the underlying genetic 37 
architecture of psychiatric disorders, we also utilized these intermediate phenotypes in univariate 38 
and multivariate GWAS. We identified a total of 29 significant genetic loci and 52 psychiatric-39 
associated genes, including ELFN1 and ADORA3. These results show that wearable-derived 40 
continuous features enable a more precise representation of psychiatric disorders and exhibit 41 
greater detection power compared to categorical diagnostic labels. In summary, we demonstrate 42 
how consumer wearable technology can facilitate dimensional approaches in precision psychiatry 43 
and uncover etiological linkages between behavior and genetics. 44 
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Introduction 45 

Psychiatric disorders of childhood and adolescence currently affect 1 in 7 youths in the United 46 
States and globally1,2. Externalizing disorders such as attention-deficit/hyperactivity disorder, and 47 
internalizing disorders such as anxiety, are among the most prevalent and represent a wide 48 
spectrum of dysfunctional behavior patterns3. Treatment barriers are complex and multifaceted but 49 
major contributors include our limited understanding of psychiatric phenotypes and difficulty 50 
identifying youth individuals that experience these disorders.  51 
 52 
Traditionally, psychiatric disorders have been conceptualized as categorical macrophenotypes, 53 
based on clinical manifestations of a disease which are defined according to the number and type 54 
of symptoms, and the presence of distress or impairment4-6. While this has practical benefits in 55 
terms of reliability and ease of diagnosis, it poses several challenges to the research of these 56 
disorders, and consequently to the development of treatments. In fact, psychiatric disorders are 57 
complex and often comorbid, and this high degree of heterogeneity is not always accurately 58 
translated into categorical diagnosis labels, which may be defined by arbitrary cut-offs. Instead, 59 
intermediate phenotypes (i.e., quantitative traits that are positioned between genotype and 60 
macrophenotype) may better capture the heterogeneity potentially missed by existing diagnostic 61 
categories7-9. Additionally, genetic penetrance is expected to be higher for these intermediate 62 
phenotypes compared to macrophenotypes, enabling improved dissection of the genetic 63 
architecture underlying psychiatric disorders10. Nevertheless, many genome-wide association 64 
studies (GWAS) aimed at identifying genetic variants or biomarkers for psychiatric disorders do 65 
not consider these intermediate phenotypes and instead rely on dichotomised (i.e., binary) traits. 66 
In fact, identifying intermediate phenotypes with clinical and biological relevance remains a 67 
challenge11. 68 
 69 
Therefore, to improve our understanding of psychiatric disorders it is important that we identify 70 
intermediate phenotypes that not only offer a more comprehensive representation of an 71 
individual’s behavior with respect to their environment, but also relate well with existing clinical 72 
definitions and aid in diagnosis. Once identified, these intermediate phenotypes can then be also 73 
used to guide more comprehensive studies to identify genetic associations and biomarkers that 74 
may ultimately improve precision treatments. 75 
 76 
To achieve this goal, it is important to leverage new emerging technologies that can quantitatively 77 
assess an individual’s behavioral patterns12. Wearable sensors such as smartwatches collect data 78 
that reflect physical and physiological processes (e.g., movement, pulse, metabolic intake), and 79 
can be used to infer higher-order behavioral events (e.g., sleep, exercise) and their temporal 80 
dynamics. Because of the documented relationship between such higher-order behavioral events 81 
and mental health, and given their low cost and minimal invasiveness, wearable devices have 82 
emerged as promising tools for mental health monitoring and psychiatric evaluation13-15. 83 
 84 
Therefore, wearable sensors have the potential for capturing intermediate phenotypes relevant to 85 
behavior and psychiatric disorders, ultimately enabling improved GWAS. However, significant 86 
computational challenges remain in generating intermediate phenotypes from wearable-derived 87 
data that describe the full spectrum of a given psychiatric disorder. Moreover, further curation of 88 
these intermediate phenotypes is necessary to identify genetic associations that have clinical and 89 
biological relevance. 90 
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To address these limitations, we developed an AI modeling framework that flexibly leverages data 91 
from wearable devices to generate intermediate phenotypes in the form of static and dynamic 92 
digital features. We establish the validity of these digital features as intermediate phenotypes by 93 
classifying externalizing and internalizing disorders with an accuracy beyond baseline expectation, 94 
and even surpassing the performance of some other gold-standard intermediate phenotypes such 95 
as fMRI measurements16-19. Interpretability modules in our AI framework enable us to identify 96 
key temporal and physiological insights between clinical diagnosis and digital features, further 97 
supporting the validity of using these wearable-derived features as intermediate phenotypes. We 98 
further curate these intermediate phenotypes and employ them in GWAS models to identify 99 
genetic associations and biomarkers that capture the continuous spectrum of psychiatric disorders 100 
and behavioral patterns. Finally, we identify 29 significant loci, several of which overlap 101 
previously reported genetic variants associated with behavioral traits and mental illnesses and are 102 
proximal to genes with a documented role in neurodevelopmental and psychiatric disorders.  103 
 104 
In sum, this work shows how wearable devices can advance our understanding of psychiatric 105 
disorders by establishing a more objective and dimensional approach that can ultimately lead to 106 
improved treatments in precision psychiatry. 107 

Results 108 
Leveraging the Adolescent Brain Cognitive Development cohort 109 
To improve our understanding of psychiatric disorders, we leveraged and analyzed a dataset from 110 
a cohort of US adolescents recruited by the NIH Adolescent Brain Cognitive Development 111 
Consortium (ABCD) project, consisting of clinical, wearable, and genetic data (Fig. 1). The ABCD 112 
cohort consists of a total of 11,878 adolescents (5682 males and 6196 females), of age between 113 
nine and fourteen years and belonging to four different ethnicities (Suppl. Fig. S4.1). We 114 
identified nine categories of psychiatric phenotypes (Suppl. Table S1.1), which were established 115 
using a gold standard parent diagnostic semi-structured interview (Kiddie Schedule for Affective 116 
Disorders and Schizophrenia-5)20. The healthy controls represented adolescents who did not meet 117 
the criteria for any of those nine psychiatric disorders. We defined these clinical labels as the 118 
categorical macrophenotypes in the study (Fig. 1A-B). Our modeling framework also utilized data 119 
from cognitive tests (e.g., NIH Toolbox) and behavioral checklists (Fig. 2A, Suppl. Fig. S2.1). 120 
 121 
Generating intermediate phenotypes from wearable-derived data 122 
We processed data obtained from FitBit smartwatches, which comprise measurements of heart 123 
rate, calories, activity intensity, steps, metabolic equivalents, sleep level and sleep intensity (Fig. 124 
1C, Suppl. Table S1.2)21. These measurements quantify an individual’s physiological processes 125 
and their real-time changes in response to environmental stimuli, and can thus provide key 126 
information about an individual’s behavior.  127 
 128 
To reconstruct the full spectrum of an individual’s behavioral functioning from these data, we 129 
applied two different feature engineering techniques, allowing us to generate wearable-derived 130 
dynamic and static features, which we consider as intermediate phenotypes. The dynamic features 131 
preserve the time-varying nature of the original data as a time series, enabling sequential and 132 
temporal patterns of the data to be retained. In contrast, the static features summarize patterns of 133 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.23.24314219doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.23.24314219
http://creativecommons.org/licenses/by-nc-nd/4.0/


Healthy
Controls

Macrophenotype

Psychiatric Diagnosis

Intermediate Phenotype

Digital Data

Genotype

Genetic Data

Diagnostic Tool / Construct Validity Wearable GWAS

Traditional Case-Control GWAS

An
xi

et
y

AD
H

D
O

C
D

Pa
ni

c
Sl

ee
p

Bi
po

la
r

Ea
tin

g
D

ep
re

ss
iv

e
PT

SD

n = 11,878

ABCD Cohort

... ...

H
ea

lth
y 

C
on

tro
ls

In
di

vi
du

al
s 

w
ith

 
Ps

yc
hi

at
ric

 D
ia

gn
os

is

Heart Rate

Calories

Activity Intensity

Steps

METs

Sleep Level

Sleep Intensity

n = 5,339

Static
Features

1 2

FitBit Biosensor

Dynamic Features (Time Series)

Diagnostic Category

C
ou

nt

A

B C D

ABCD

Time

Filtering Genotype Array Imputation

Pr
oc

es
si

ng
 a

nd
 Q

C

Filter

482K var.
11K indiv.

EUR
AFR
AMR
EAS
Mix

Smokescreen Array

C
on

so
rti

um
 c

ol
le

ct
ed

GWAS

QC

157K var.
9K indiv.

Genotype PCs

0

800
400

1200

Figure 1. Leveraging clinical, digital, and genetic data of the ABCD cohort to improve characterization of psychiatric disorders.
A) Framework schematic describing how intermediate phenotypes from wearable-derived data are leveraged to better understand the association between macrophenotype and genotype. The 
link between intermediate phenotype and macrophenotype serves as construct validity and aid in diagnostics. Wearable GWAS is performed through genotype-to-intermediate-phenotype 
association studies. B) The Adolescent Brain Cognitive Development (ABCD) cohort contains 11,878 individuals spanning nine different categorical macrophenotypes based on clinical 
diagnosis from the Kiddie Schedule for Affective Disorders and Schizophrenia-5. A breakdown of the counts of each disorder is shown in the bottom bar graph, with anxiety disorder and 
ADHD being the most prevalent. “Bipolar” refers to bipolar or psychotic disorders. C) Digital data from FitBit biosensors are collected for 5,339 individuals. The collected time series data 
are then processed into dynamic and static features, with information spanning various physiological and higher order processes. D) Genetic data are collected by the ABCD consortium 
through Smokescreen genotyping array. Imputed genotypes are used for downstream GWAS analyses. The genotype arrays are subjected to best-practice processing and QC to ensure 
included individuals and SNPs are of high quality. PCA performed on 8,791 individuals and 157,556 genotyped SNPs reveals distinct ancestral clusters across the cohort and the inferred 
genotype principal components (PCs) are used as covariates in downstream analyses.
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the digital data to produce time-invariant, quantitative features that are commonly used in 134 
downstream modeling14,22. 135 
 136 
To generate dynamic features, we performed signal imputation and processing after filtering the 137 
individuals with sparse data, and obtained 48 channels of time series (Figure 2B, Suppl. Fig. 138 
S2.3). Compared to the static features, this further processing allowed us to preserve both local 139 
and global temporal patterns potentially relevant to characterizing behavior and neurological 140 
response to stimuli8,23.  141 
 142 
To generate static features, we first collected a total of 49 FitBit summary-based features (Suppl. 143 
Table S2.1a-b). We next applied descriptive statistics (e.g. mean, median, etc.) to each of these 144 
features and generated a total of 258 static features for each individual (Fig. 2C, Suppl. Table 145 
S2.2)14,24. We then grouped these static features into seven main clusters, each of which 146 
summarizes different aspects of physiological and behavioral processes, such as heart rate, sleep 147 
duration and quality, metabolic intake or physical activity (Fig. 2D).  148 
 149 
Altogether, static and dynamic features represent the physiological and behavioral profiles of the 150 
adolescents, and can be leveraged as intermediate phenotypes in a wide range of analyses to better 151 
characterize psychiatric phenotypes, such as generating disorder-specific probability risk scores, 152 
macrophenotype classification, model interpretability, and biomarker identification via wearable 153 
GWAS. 154 
 155 
Predicting psychiatric phenotypes from wearable-derived intermediate phenotypes 156 
To demonstrate the validity of static and dynamic features as clinically relevant intermediate 157 
phenotypes and to evaluate their utility as a diagnostic tool, we employed these features in an array 158 
of classification tasks to identify individuals with either an externalizing (ADHD) or internalizing 159 
(anxiety) disorder from their typically developing peers. We selected ADHD and anxiety due to 160 
their high prevalence in adolescents, which is mirrored in the cohort (Fig. 1B)25. 161 
 162 
We applied a gradient boosting machine learning algorithm, XGBoost, for classification tasks 163 
using static features (Fig. 2C-D)26. On the other hand, to fully leverage the time series nature of 164 
the dynamic features, we used a convolutional neural network for time series, featuring depthwise 165 
separable convolution, called Xception (Fig. 2E)27. Variable convolutional filters and residual 166 
(skip) connections, coupled with efficient parametrization, allow information encoded in both 167 
small and large receptive fields to be more optimally leveraged. Practically, this framework takes 168 
into account local and global patterns of physiology and behavior when performing downstream 169 
classification of psychiatric disorders. In both modeling approaches we included covariates that 170 
accounted for demographic features, family history of disorders, and other clinical information 171 
(Fig. 2A, Suppl. Table S1.2). To assess the benefit, in terms of model performance, of including 172 
wearable-derived data, we also trained a baseline model using just the covariates, which served as 173 
a comparison to the models including static or dynamic features. In practice, this comparison 174 
allowed us to determine whether wearable-derived features can improve diagnostic accuracy 175 
relative to that achievable using only a widely used broadband behavior rating scale. 176 
 177 
After data filtering, we first used static features to classify 216 individuals with ADHD (an 178 
externalizing disorder) versus 1,737 of their typically developing peers (healthy controls) (Fig. 3A 179 
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and Suppl. Fig. 3.1). Using static features with XGBoost, we achieved an average area under the 180 
receiver operating characteristic curve (AUROC) of 0.87 and precision of 0.79. When using the 181 
dynamic features and Xception, we were able to achieve an average AUROC of 0.89 and precision 182 
of 0.83. The baseline model consisting of only the covariates achieved an average AUROC of 183 
0.83, suggesting that the inclusion of wearable-derived features facilitates a clinically meaningful 184 
improvement in diagnostic accuracy. This improvement between the baseline and dynamic 185 
features model demonstrates statistical significance (one-sided t-test between baseline and 186 
dynamic features model, p value = 0.0022).  187 
 188 
Second, we evaluated the performance of our model using static or dynamic features in the 189 
classification of 666 individuals diagnosed with anxiety disorder (internalizing disorder) versus 190 
1,737 of their typically developing peers (healthy controls) (Fig. 3B and Suppl. Fig. 3.2). Here, 191 
we again repeated the use of the same modeling framework, i.e., static features with XGBoost and 192 
dynamic features with Xception, and compared it to the baseline covariate model. We found that 193 
static and dynamic features achieve an average AUROC of 0.69 and 0.71 and precision of 0.64 194 
and 0.68, respectively. In both models, the performance was greater than that of the baseline model 195 
(average AUROC of 0.67), with the dynamic features model showing the most significant 196 
performance improvement (one-sided t-test between baseline and dynamic feature model, p value 197 
= 0.00016). Overall, the fact that the models using dynamic features achieved the highest 198 
performance suggests the usefulness of the temporal patterns intrinsic to wearable-derived data 199 
towards understanding behavior.  200 
 201 
Interpreting wearable features prioritized by the deep learning model 202 
Deep learning methods are typically characterized by complex internal structures that cannot be 203 
easily interpreted by humans. While maximizing the classification accuracy is one crucial aspect 204 
for characterizing complex phenotypes, understanding which features are most important in terms 205 
of their individual contribution to performance is also critical. To this end, we utilized ablation 206 
techniques to determine the relative contribution of each individual feature to model performance. 207 
For the ADHD classification task, heart rate was the most important feature (largest change in 208 
AUROC), followed by other dynamic features (i.e., sleep, steps, METs) as well as covariates such 209 
as demographics, family history, and cognitive scores from picture memory and stop-signal 210 
reaction time tests (Fig. 3C, Suppl. Fig. S3.3).  211 
 212 
On the other hand, the ablation study for the anxiety classification task revealed a different set of 213 
important features. In this case, sleep quality and stage, calories, and step count were the most 214 
important dynamic features, whereas heart rate features, which were extremely important for 215 
classifying ADHD, were not prioritized in the anxiety model (Fig. 3D, Suppl. Fig. S3.5). 216 
Additionally, while the anxiety model prioritized some covariates that were relevant also for the 217 
ADHD model (e.g., sex, family history, and family divorce), cognitive scores from tests such as 218 
picture memory did not appear to be important for the identification of individuals diagnosed with 219 
anxiety, consistent with theory-driven accounts of neurocognitive aspects of anxiety disorders28. 220 
 221 
Additionally, we assessed the importance for model performance of dynamic features at various 222 
times throughout the day by adapting gradient-weighted class activation mapping (Grad-CAM) 223 
strategies29. We calculated the relative importance of each time point in our dynamic features. For 224 
ADHD, we observed enriched significance of the heart rate dynamic feature around the early 225 
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Figure 3. Performance and interpretability of psychiatric phenotype classification models. 
A-B) Model performance for baseline, static, and dynamic models employed for classifying individuals with ADHD (blue, top) or individuals with anxiety disorder (green, bottom) versus 
healthy controls. P values were calculated using one-sided t-test. C-D) Feature importance based on ablation studies for the dynamic model for ADHD (blue, top) and anxiety disorder (green, 
bottom) classification. Wearable-derived dynamic features are shown in red font and clinical features (covariates) are shown in black font. Feature importance is equivalent to the decrease in 
model performance (AUROC) after removal of the given feature. E-F) Temporal importance during a 48-hour period for dynamic features in ADHD (blue, top) or anxiety disorder (green, 
bottom) classification based on the GRAD-CAM interpretability module. Importance is represented as the GRAD-CAM score, based on each time points contribution towards model 
performance.
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afternoon, potentially suggesting stronger behavioral differences between adolescents with ADHD 226 
and their typically developing peers (healthy controls) during this time of day (Fig. 3E, Suppl. 227 
Fig. S3.4). This is consistent with clinical research demonstrating time-of-day effects on ADHD 228 
symptom expression30. In contrast, sleep-related dynamic features during the night are much more 229 
informative in classifying anxiety, consistent with clinical expectations (Fig. 3F, Suppl. Fig. 230 
S3.6)31. Together, the ablation studies suggest a role for wearable-derived features to not only 231 
serve as quantitative intermediate phenotypes, but also to more closely reveal insights into the 232 
behavioral and physiological temporal patterns related to categorical macrophenotypes. 233 
 234 
Using wearable-derived features as intermediate phenotypes for wearable GWAS 235 
Our accurate classification of both internalizing and externalizing psychiatric phenotypes based 236 
on wearable-derived features suggests that these features can serve as useful intermediate 237 
phenotypes and may be leveraged to identify genetic associations with psychiatric conditions (Fig. 238 
4, Suppl. Fig. S4.1-S4.6). To this end, we first focused specifically on ADHD, given the higher 239 
predictive power observed with our models (Fig. 3A-B) and its higher estimated heritability 240 
compared to anxiety (77-88% vs. 30-60%)32,33. We selected 1,191 individuals (137 individuals 241 
with ADHD and 1,054 healthy control individuals) with genetic and wearable data available, and 242 
performed a GWAS using the continuous prediction scores obtained from our wearable modeling 243 
framework. In practice, these scores represent risk probabilities for ADHD34,35. We identified 10 244 
genome-wide (p value < 5·10-8) significant loci and 21 psychiatric or brain-related genes (Fig. 4B, 245 
Table 1, Suppl. Fig. S4.7-S4.9, Suppl. Table S4.1). Three of the identified genes (ADORA3, 246 
PSMD11 and DLG4) have been previously associated with ADHD, bolstering the overall 247 
functional significance of the results36-38. Furthermore, several of these loci overlap with 248 
previously reported GWAS SNPs related to ADHD, neuroticism, sleep disruption and other 249 
clinically relevant traits (Fig. 4B, Suppl. Fig. S4.10, Suppl. Table S4.2). Note that here we used 250 
a continuous risk score as a univariate response variable for the GWAS. In comparison, when 251 
performing a traditional case‒control GWAS for ADHD on the same set of individuals using the 252 
binary diagnostic label (presence/absence of disorder) as response variable, we did not identify 253 
any significant loci (Fig. 1A, Fig. 4A, Suppl. Fig. S4.7-S4.9). This result is consistent with the 254 
higher statistical power of continuous measurements over dichotomized (i.e., binary) traits (Suppl. 255 
Fig. S4.11), and with the findings that intermediate phenotypes show higher genetic penetrance 256 
compared to macrophenotypes7,39-41. 257 
 258 
While the analysis above collapses wearable-derived features into a single continuous variable that 259 
summarizes the risk score for a particular disorder (i.e., GWAS with a univariate response), it is 260 
also possible to directly use the full set of wearable-derived features as a more comprehensive and 261 
richer phenotype to represent the continuum of psychiatric disorders and their latent manifestations 262 
(i.e., GWAS with a multivariate response). In fact, these features can collectively capture 263 
behavioral patterns by measuring physiological processes and their real-time changes in response 264 
to environmental stimuli, and unlike disease risk scores, are not restricted to a specific cohort of 265 
individuals42,43. In what follows, we employed a multivariate nonparametric test of association to 266 
regress the vector of wearable-derived features on the genotype of each genetic variant, employing 267 
a larger cohort that spans healthy controls and individuals with any psychiatric disorder (n = 268 
2,410)44. From this novel type of GWAS we identified 19 significant loci and 31 genes with a 269 
documented role in neurodevelopmental and psychiatric disorders (Fig. 4C, Table 1, Suppl. Fig. 270 
S4.12-S4.14, and Suppl. Table S4.3). Many of these loci overlap previously identified GWAS 271 
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Figure 4. Manhattan plots summarizing the results of the univariate and multivariate wearable GWAS. 
A) Left panel: Case-control GWAS on 1,191 individuals from the ABCD cohort. We employed the clinical diagnosis label as the univariate binary 
response variable for the GWAS (1 = “individual with ADHD”, n = 137; 0 = “healthy control individual”, n = 1,054). Right panel: Manhattan plot 
showing the -log10 p value of association between the genetic variants and the univariate binary response variable. No genetic variants passed the 
genome-wide significance threshold (p value < 5·10-8; blue line). Genetic variants with a suggestive p value (< 10-5) are represented as green dots. 
B) Analogous representation to panel A) using the wearable-derived risk scores for ADHD as univariate continuous response variable. The GWAS 
was performed on the same set of 1,191 individuals and using the same set of covariates as in panel A). 10 and 427 loci passed the p value 
thresholds of 5·10-8 and 1·10-5, respectively. A detailed list of genome-wide significant loci is provided in Table 1 and Suppl. Table S4.1. Loci 
chr1:111,372,165-111,482,359, chr17:7,101,607-7,101,608, and chr17:32,256,997-32,283,356 are proximal to genes ADORA3 (72 Kb), DLG4 (86 
Kb) and PSMD11 (174 Kb) (highlighted in dark blue) respectively, which have been previously associated with ADHD. Other proximal genes 
related to other psychiatric disorders are highlighted in pink (evidence obtained from OpenTargets). Brain-related traits associated with genetic 
variants overlapping the ten genome-wide significant loci are highlighted in orange. GWAS associations were obtained from the EBI-NHGRI 
GWAS catalog. C) Analogous representation to panel A) using the 258 wearable-derived static features as multivariate continuous response 
variable. The GWAS was performed on a set of 2,410 individuals (both healthy controls and individuals with any disorder). 19 and 314 loci passed 
the p value thresholds of 5·10-8 and 1·10-5, respectively. A detailed list of genome-wide significant loci is provided in Table 1 and Suppl. Table 
S4.3. Neuropsychiatric-related genes proximal to the identified loci are shown in pink. Brain-, heart-, and sleep-related traits with associated variants 
overlapping the 19 loci are highlighted in orange. 
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GWAS Method Locus Chr Start End Lead Variant Position p value Genes

Univariate continuous 1 1 111,372,165 111,482,359 rs114081965 111,372,166 1.11E-08
TMIGD3, ADORA3,

RAP1A, CHI3L2

Univariate continuous 2 3 161,873,055 161,927,820 rs79203233 161,909,261 3.89E-08 -

Univariate continuous 3 4 184,417,766 184,424,056 rs1425551 184,421,904 2.15E-08
IRF2, CASP3,

PRIMPOL

Univariate continuous 4 10 121,524,611 121,582,200 rs140794722 121,524,612 2.31E-09 FGFR2

Univariate continuous 5 11 38,982,793 39,384,610 rs151239852 39,273,497 3.80E-08 -

Univariate continuous 6 14 26,214,683 26,216,532 rs149074469 26,216,532 2.95E-08 NOVA1

Univariate continuous 7 14 62,903,677 63,014,798 rs143225169 63,014,798 3.89E-08 KCNH5, RHOJ

Univariate continuous 8 17 7,101,607 7,101,608 rs11653054 7,101,608 8.51E-09 CLEC10A, DLG4

Univariate continuous 9 17 32,256,997 32,283,356 rs6505293 32,270,863 1.12E-08
RHBDL3, RHOT1,
C17orf75, ZNF207,

PSMD11, LRRC37B,
CDK5R1, MYO1D

Univariate continuous 10 19 4,495,610 4,495,611 rs150855276 rs150855276 2.75E-08 -

Multivariate continuous 11 2 65,047,524 65,158,021 rs147959551 65,140,366 4.47E-08
RAB1A, ACTR2,

SLC1A4, SPRED2

Multivariate continuous 12 7 1,789,321 1,791,353 rs113525298 1,791,353 5.10E-09
MAD1L1, ELFN1,
PSMG3, MAFK

Multivariate continuous 13 14 23,392,601 23,418,974 rs365990 23,392,602 5.33E-09
MYH6, CMTM5,

IL25, BCL2L2-PABPN1,
BCL2L2

Multivariate continuous 14 16 79,283,253 79,302,474 rs8051625 79,288,217 5.98E-09 WWOX

Multivariate continuous 15 X 10,444,818 10,481,837 rs73492938 10,467,098 1.03E-08 MID1, CLCN4

Multivariate continuous 16 X 16,350,347 16,647,557 rs149504239 16,454,383 1.09E-09 -

Multivariate continuous 17 X 22,606,616 22,606,617 - 22,606,617 7.23E-12 PHEX

Multivariate continuous 18 X 27,164,449 28,601,484 rs200021485 27,782,503 7.89E-10 -

Multivariate continuous 19 X 30,757,116 30,896,124 rs150685307 30,831,630 1.70E-08 TAB3, GK

Multivariate continuous 20 X 40,530,738 40,530,739 rs149441354 40,530,739 3.17E-08 ATP6AP2

Multivariate continuous 21 X 45,687,487 45,858,851 - 45,819,973 8.04E-09 -

Multivariate continuous 22 X 62,901,143 64,518,530 rs7883352 63,935,445 1.09E-08 ARHGEF9

Multivariate continuous 23 X 67,188,492 68,693,105 rs180773472 68,693,105 9.82E-11 OPHN1, AR

Multivariate continuous 24 X 96,759,291 96,961,667 - 96,759,292 4.40E-10 -

Multivariate continuous 25 X 102,017,055 103,738,764 - 102,017,056 1.99E-10 RAB40AL, GPRASP2

Multivariate continuous 26 X 124,254,095 124,260,611 rs12012355 124,254,420 2.08E-10
TEX13D, SH2D1A,

TENM1, STAG2

Multivariate continuous 27 X 143,176,627 143,212,922 rs12011450 143,190,440 1.69E-08 SPANX4

Multivariate continuous 28 X 146,722,378 146,739,375 rs5966302 146,729,545 6.26E-09 -

Multivariate continuous 29 X 148,716,235 148,915,910 rs57168704 148,907,585 5.71E-09 AFF2

Table 1. Results for the 29 genetic loci identified by the univariate and multivariate continuous wearable GWAS. 
For each locus we report the GWAS Method (univariate or multivariate continuous) that identifies the locus, the genomic 
coordinates in human assembly GRCh38, and the lead variant rsID with corresponding genomic position and p value. Brain-
related or neuropsychiatric genes proximal to the locus are also listed (Suppl. Tables S4.1 and S4.3).
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SNPs related to heart, sleep, metabolism, and brain traits (Fig. 4C, Suppl. Fig. S4.15). This aligns 272 
with the close association between physiological functions, the central nervous system, and 273 
individual behavior. 274 
 275 
Functionally dissecting and interpreting novel wearable GWAS loci 276 
To further investigate the loci identified by the behavioral GWAS, we dissected the variants using 277 
a battery of publicly available genomic resources45,46. Many of these loci overlap either GTEx 278 
expression quantitative trait loci (eQTLs) or ENCODE candidate cis-regulatory elements (cCREs), 279 
suggesting a link between the biochemical activity of these variants and their functional impact on 280 
macrophenotype (Suppl. Table S4.3). We also explored the impact of these loci beyond 281 
behavioral traits and their relationship with clinical psychopathology. For example, behavioral 282 
traits significantly associated with a specific genetic variant may correlate with clinical symptoms 283 
of a specific psychiatric cohort. Indeed, in some cases we show that the genetic variant in question 284 
is also differentially enriched between that specific psychiatric cohort and healthy individuals.  285 
 286 
For instance, we found the minor allele (G) at rs365990 to be significantly associated with an 287 
increase in mean heart rate and a decrease in interday heart rate variation (Fig. 5A, left). The 288 
variant, missense for MYH6, had been previously linked to atrial fibrillation, ventricular 289 
tachycardia and resting heart rate, and the entire locus shows a significant enrichment of chromatin 290 
features in heart samples compared to other tissues and organs (Suppl. Fig. S5.1)47-50. We also 291 
found the same allele to be enriched in the bipolar/psychotic disorder cohort compared to healthy 292 
controls (Fig. 5A, right). This cohort included youth meeting criteria for bipolar or unspecified 293 
psychotic spectrum disorder, and such severe pathology is known to be associated with 294 
characteristic irregularities in heart activity51-53. SNP rs365990 is also a GTEx eQTL for the 295 
CMTM5 gene (Suppl. Fig. S5.2), which is highly expressed in brain subregions and has been 296 
implicated in stress response and childhood adversity, further supporting the relevance of this locus 297 
for psychiatric conditions in addition to heart pathophysiology46,54.  298 
 299 
In a similar fashion, we explored variants rs113525298 and rs147959551. The minor allele at 300 
rs113525298 is associated with prolonged periods in bed and shorter vigorously active time during 301 
the day, and appears at a lower frequency in the ADHD cohort compared to healthy individuals 302 
(Fig. 5B). This suggests a potential protective role of the allele against hyperactivity disorders, 303 
further supported by the proximity of the SNP to ELFN1, previously implicated in the 304 
pathophysiology of ADHD55,56. On the other hand, we found the minor allele at rs147959551 305 
associated with shorter sedentary time at night and a shorter period of time identified as sleep based 306 
on heart rate, two features suggestive of sleep disruption (Fig. 5C). The same allele is also enriched 307 
in individuals with depression disorder, consistent with growing evidence implicating sleep 308 
impairment as a transdiagnostic feature of many forms of adolescent psychopathology (Fig. 5C, 309 
right)57,58. 310 
 311 
Overall, these results highlight how wearable-derived features can be leveraged as intermediate 312 
phenotypes in GWAS and enable the identification of genetic variants relevant to clinical 313 
psychiatry with significant effects on exhibited behavior in adolescents. 314 
  315 
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Figure 5. Exploring the genetic-physiological-psychiatric axis with wearable GWAS. 
A) Left panel: rs365990 (chr14:23,392,602, A/G) is located in exon 25 of MYH6, and is associated with changes in wearable-derived heart rate features 
(multivariate GWAS p value = 5.33·10-9). The boxplots show distributions of covariate-adjusted mean and interday coefficient of variation (CV) for heart 
rate across genotype groups at rs365990 (AA n individuals = 1,228; AG n individuals = 1,509; GG n individuals = 519). P values (two-sided Wilcoxon 
Rank-Sum test) for each pairwise comparison are also displayed, encoded as follows: *** (p ≤ 0.001), ** (0.001 < p ≤ 0.01), * (0.01 < p ≤ 0.05), n.s. (p > 
0.05). For visualization purposes, outliers are not shown. Right panel: enrichment, displayed as odds-ratio (log2 OR; y axis) of the minor allele (G) in 
individuals with different psychiatric disorders (x axis) compared to healthy controls. OR estimates and 95% confidence interval (error bar) are displayed. 
The red horizontal dashed line indicates no enrichment. The G allele is significantly more enriched in individuals with bipolar/psychotic disorder compared 
to healthy controls (two-sided Fisher test p value: 8.00·10-3; FDR-adjusted p value: 7.00·10-2). B) Similar representation for rs113525298 (chr7:1,791,353; 
AA n individuals = 2,294; AG n individuals = 101; GG n individuals = 15). rs113525298 is located 125 Kb from ELFN1, a gene that encodes a postsynaptic 
protein involved in the temporal dynamics of interneuron recruitment65,66. Elfn1 mutant mice exhibit hyperactivity that is treatable by psychostimulant 
medication55,56. The G allele at rs113525298 is associated with increased minimum number of first-out-of-bed minutes and decreased minimum number of 
total-vigorously-active minutes (multivariate GWAS p value = 5.10·10-9), and is significantly more enriched in healthy controls compared to individuals 
with ADHD (two-sided Fisher test p value: 9.00·10-4; FDR-adjusted p value: 6.00·10-3). C) Similar representation for rs147959551 (chr2:65,140,366; AA n 
individuals = 2,279; AG n individuals = 117; GG n individuals = 14), located near a cluster of genes relevant for several psychiatric disorders, such as 
ACTR2 (schizophrenia; 87 Kb), SLC1A4 (schizophrenia, bipolar disorder, major depressive disorder; 117 Kb) and SPRED2 (schizophrenia, OCD; 170 
Kb)67-77. The G allele of rs147959551 is associated with decreased mean number of sedentary-time-at-night minutes and decreased maximum number of 
sleep-based-on-heart-rate minutes (multivariate GWAS p value = 4.47·10-8), and is significantly more enriched in individuals with depressive disorder 
compared to healthy controls (two-sided Fisher test p value: 9.74·10-3; FDR-adjusted p value: 7.80·10-2).
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Discussion 316 

Psychiatric disorders have been traditionally described with diagnostic categories based on 317 
retrospective self-report of symptom sets. However, current efforts in the field are increasingly 318 
leveraging novel technologies to transition from retrospective self-reporting and fixed symptom 319 
sets to more dimensional conceptualizations, aiming to capture the complex and heterogeneous 320 
nature of psychiatric disorders for more accurate research into their underlying structure6. One 321 
approach to enhancing dimensional models is the use of intermediate phenotypes—quantitative 322 
traits linked more closely to a disorder’s underlying molecular pathways. Although intermediate 323 
phenotypes have been derived from cellular, tissue, and organ levels of information, computational 324 
strategies that generate useful intermediate phenotypes in the behavioral domain are currently 325 
limited. Wearable biosensors such as smartwatches offer a unique opportunity to objectively study 326 
psychiatric disorders in a non-invasive way by measuring their underlying physiological 327 
foundations of behavior over time. 328 
 329 
Towards this end, we used wearable data to generate static and dynamic features that were 330 
employed by our AI modeling framework as intermediate phenotypes to distinguish between 331 
adolescents with and without psychiatric disorders. Models utilizing these wearable-derived 332 
intermediate phenotypes performed comparably to those based on more expensive data sources 333 
such as fMRI measurements18,59. To gain critical theoretical insights and inform treatment 334 
development efforts, we augmented the modeling framework with interpretability modules, 335 
allowing us to pinpoint temporal and functional regions of the time series that were highly 336 
correlated with overall disease state60. These interpretability modules have the potential to 337 
facilitate mechanistic studies that offer deeper insight into the underlying complexities of these 338 
disorders. For example, our interpretability modules revealed that heart rate time series held high 339 
importance in predicting ADHD. This finding aligns with the clinical manifestation of ADHD – 340 
affected children are characterized by episodes of heightened arousal that are often incongruent 341 
with environmental demands61. Conversely, the interpretability modules identified sleep intensity 342 
and quality as key predictors in our anxiety disorder models, in line with known disruptions in 343 
sleep patterns and circadian rhythms commonly seen in youth with anxiety disorders62.  344 
 345 
Wearable-derived intermediate phenotypes are not just effective for detecting the presence of 346 
psychiatric disorders in individuals; they also serve as a valuable research tool for understanding 347 
the correspondence between behavior patterns and molecular attributes. This comprehensive 348 
approach helps to uncover the foundational elements of pathological behavior patterns. In this 349 
context, we focused on establishing links with genetics. Specifically, we showed that these 350 
intermediate phenotypes can serve as response variables in GWAS models. Their continuous 351 
nature enhances statistical power compared to categorical diagnostic labels. Furthermore, we took 352 
advantage of the features’ correlated structure to create multivariate response variables for GWAS. 353 
This strategy is statistically advantageous because it mitigates the multiple testing burden 354 
associated with evaluating the numerous (>250) independent features. Conversely, from a 355 
biological standpoint, these wearable GWAS allowed us to explore triaxial associations 356 
encompassing genetic, physiological, and psychiatric factors. Utilizing our framework, we 357 
successfully identified a significant association between a missense variant of the MYH6 gene, 358 
which encodes the cardiac muscle myosin, and heart rate patterns. Heart activity receives complex 359 
inputs from the CNS, which implies behavioral influence and, in combination with our GWAS, 360 
supports the notion of a gene-behavior-disorder pathway63. Building on this finding, we discovered 361 
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enrichment of the same genetic variant among individuals with bipolar/psychotic disorders, 362 
psychiatric conditions known to be associated with characteristic irregularities in heart activity51. 363 
While additional research is needed to confirm such associations, our findings resonate with the 364 
objectives of the RDoC initiative6. Specifically, wearable-derived intermediate phenotypes serve 365 
as objective markers of behavior, bridging lower-level biological systems like genetics to broader 366 
psychiatric disorders.  367 
 368 
While we have employed these wearable-derived intermediate phenotypes in a targeted research 369 
context (i.e., to enhance a psychiatric GWAS), their broad applicability make them promising for 370 
other domains of health research. For example, the risk scores generated by our AI-modeling 371 
framework could be used to assess disorder severity, and the genetic variants identified by our 372 
wearable GWAS could be employed to construct more comprehensive polygenic risk scores for 373 
behavioral and psychiatric disorders. Unlike other diseases (e.g., cancer) where objective 374 
biomarkers are more common, psychiatry faces a significant barrier in treatment due to the lack of 375 
objective and sensitive screening methods64. Therefore, these physiological and genetic features 376 
could be leveraged as objective biomarkers to more accurately subtype patients within diagnostic 377 
categories, which in turn could help move towards precision treatment delivery in psychiatry. 378 
 379 
Although the results presented in this study require further experimental validation, they illuminate 380 
the transformative potential of wearable devices combined with AI modeling frameworks for 381 
deepening our understanding of complex behavioral and psychiatric traits. We anticipate that 382 
further development of our AI modeling framework, coupled with an expanded array of wearable 383 
devices, could fundamentally transform how psychiatric disorders are measured and understood 384 
in both research and clinical settings. This could lead to more nuanced digital intermediate 385 
phenotypes and open new avenues for the study of human behavior.  386 
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Methods 420 

Dataset Description 421 
 422 
ABCD Dataset 423 
The Adolescent Brain Cognitive Development (ABCD) study is a comprehensive longitudinal 424 
project initiated in 2015 with the purpose of characterizing the neural, cognitive, and behavioral 425 
aspects of adolescent development. Commissioned by a consortium of U.S. federal agencies, 426 
ABCD investigators deeply phenotyped a large and representative sample of children aged 9-14 427 
with plans to track their development into early adulthood. The ABCD dataset incorporated 428 
multimodal brain imaging data, substance use history, behavioral and psychological measures, 429 
genetic data, and an all-encompassing collection of demographic, physical health and activity, 430 
mental health, and environmental information, including data derived from wearable devices. 431 
 432 
Clinical Diagnoses 433 
Clinical diagnoses were operationalized using the parent report version of the Kiddie Schedule for 434 
Affective Disorders and Schizophrenia (KSADS). The KSADS is a gold standard semi-structured 435 
diagnostic interview that is used to establish a broad range of clinical diagnoses in children and 436 
adolescents. It has been used previously to define clinical groups in case/control studies conducted 437 
with data from the ABCD study59.  438 
 439 
Cohort Definitions 440 
We identified several clinical groups of interest in order to evaluate our framework across different 441 
forms of psychopathology. The nonclinical comparison cohort was composed of youth who did 442 
not meet any current diagnostic criteria for any disorder on their most recent administration of the 443 
parent report KSADS. Similar diagnostic categories, based on ICD10 diagnostic codes, were 444 
combined to create cohorts with sufficient sample sizes for our modeling framework. Each clinical 445 
cohort was composed of the following diagnostic groups, based on the current reported symptom 446 
sets (Suppl. Table S1.1). Some codes were included in multiple categories to balance the need for 447 
sufficient sample size and homogenized cohort definitions.  448 
  449 
Preprocessing and Quality Control of Wearable Device Data 450 
We commenced by combining data from seven distinct wearable-derived modalities (heart rate, 451 
calories, intensity, steps, METs, sleep level, and sleep intensity) for 5,339 individuals into a single 452 
dataframe, resulting in highly sparse data structures. We excluded individuals with at least one 453 
missing wearable modality, leaving us with 3,538 participants. To address the impact of missing 454 
values on further analysis, we implemented a rigorous quality control procedure. In the initial 455 
phase, we examined all potential time windows for two selected days each week per data modality. 456 
Our objective was to balance the maximization of data inclusion with the assurance of its quality. 457 
We pinpointed the time window that offered the best alignment - that is, the period which had the 458 
highest number of valid measurements across all modalities. This procedure enabled us to 459 
determine the most suitable time window for downstream analysis, taking into account both the 460 
richness of the data and the necessity for top-quality inputs. In the next stage, we established a 461 
criterion that each day must have at least 60% valid measurements within the identified optimal 462 
window for an individual. Participants who did not meet this standard were removed from our 463 
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dataset. We provided a visual representation of the data processing and QC steps in Suppl. Fig. 464 
S2.3.  465 
 466 
Imputation 467 
Missing values are still existent in the resulting QC-controlled time windows. To approach the 468 
data missingness, we devised an imputation strategy for categorical and quantitative data 469 
modalities, respectively. For the categorical data, we introduced a 'Not Recorded' category into the 470 
frame for imputation and subsequently applied label encoding. For the quantitative data, we used 471 
the 'drift' method from the sktime package (v0.19.1) with its default settings78. Recognizing that 472 
these imputation strategies may not be adept at capturing non-polynomial dynamics, we further 473 
included an indicator time series for each data modality: 474 
 475 

                                                   476 
where  is the indicator function and  indicates the data at time step  is missed. 477 
We concatenated the indicator time series with the imputed time series along the channel 478 
dimension. The indicator time series serves as a mask that shows where imputations have been 479 
made, while the imputed time series contains both the actual and imputed data. By including this 480 
additional indicator time series, we are effectively providing the model with the flexibility to learn 481 
an adaptive imputation strategy, where the model can learn how to treat imputed data points based 482 
on the surrounding, non-imputed data.  483 
 484 
Machine Learning Classifier 485 
 486 
Problem Formulation 487 
We first formulated the phenotype classification as a canonical machine learning task with 488 
manually engineered features, which is outlined as follows. Given an input for a set of features,489 

, machine learning classification (MLC) targets an output value  which represents the 490 
macrophenotype of the subject: 491 
 492 

 493 
Here,  is the number of individuals and  is the number of features. Specifically, we chose the 494 
curated XGBoostRegessor model implemented in xgboost package (v1.7.5) as our backbone ML 495 
models, i.e.: 496 

 497 
 498 
XGBoost (eXtreme Gradient Boosting) has emerged as an effective machine learning framework, 499 
noted for its optimized speed, scalability, and robustness26. As a variant of gradient boosted 500 
decision trees, XGBoost is tailored for efficiency and demonstrates consistent performance across 501 
diverse machine learning applications. Central to XGBoost is its adeptness at engineering trees 502 
which pinpoint and rectify residuals from prior iterations, continually refining model accuracy. In 503 
this work, we take advantage of the strengths that XGBoost offers, guided by a carefully crafted 504 
set of features. 505 
 506 
Feature Engineering 507 
Our feature engineering for the XGBoost model is elaborated below. Specifically, the time-508 
invariant wearable features  were primarily derived from summary statistics of the time-series 509 
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wearable. We identified seven clusters of time-invariant wearable features from a total of 258 510 
features. We further included curated covariates  as additional features to supplement the time-511 
invariant wearables features. Covariates used for machine learning model include demographic 512 
background (sex, race, age at second-year follow-up, divorced parents, parents’ level of education, 513 
parent income, adoption) family history of psychiatric illness (bipolar disorder, schizophrenia, 514 
antisocial behavior, nervous breakdown, psychiatric treatment, hospital admission, suicide), 515 
cognitive scores (flanker test, picmemory, process speed, reading score, stop reaction time, etc.), 516 
and child behavioral checklist (CBCL internalizing and externalizing scores). Our complete 517 
features set encompasses both static wearable features and covariates: 518 
 519 

 520 
where  denotes concatenation on the feature dimension. This enabled us to characterize 521 
a nuanced interplay of wearable features with individual covariates, substantially accentuating the 522 
power of our model. 523 
 524 
Clustering of Wearable Static Features 525 
We considered the 258 wearable static features in a subset of 2,410 ABCD individuals with 526 
complete genetic, wearable and covariate information (see Methods section “Multivariate 527 
wearable GWAS”). We computed Pearson’s r correlation coefficients between all possible pairs 528 
of features, and used these correlation values as distance measures to perform hierarchical 529 
clustering (R function “hclust” & clustering method “Complete”). We also performed k-means 530 
clustering of the correlation matrix by varying the number of clusters from two to twenty (R 531 
function “kmeans”, with nstart = 10), and chose an optimal number of seven clusters based on the 532 
elbow curve of the total within-cluster sum of squares. A heatmap representation of the seven 533 
clusters is shown in Figure 2D, and the list of static features for each cluster is provided in Suppl. 534 
Tables S2.3-S2.4.  535 
 536 
Class Balancing 537 
Imbalanced training labels, where one class substantially outnumbered the other (e.g. 1,737 control 538 
individuals versus 216 ADHD individuals), pose a substantial impact on the model performance. 539 
To address this issue and ensure a more robust model, we implemented stochastic downsampling 540 
techniques on classes with higher representation in each run of the model. To formalize this, we 541 
assume two classes,  and , where  and  represent the number of instances in each class. 542 
Assuming , we calculate the ratio  : 543 
 544 

 545 
We then randomly select a subset  from  such that: 546 
 547 

 548 
The downsampled dataset will then consist of  and : 549 
 550 

 551 
 552 
 553 
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Multichannel Time Series Classifier 554 
 555 
Problem Formulation  556 
We formulate the phenotype classification as a multichannel time series classification problem 557 
which is described as follows. Given an input multichannel time series : 558 
 559 

 560 
 561 
where . Here,  is the 562 
number of samples, ,  the number of wearable modalities,  the number of measurements,  563 
the multichannel wearables data,  the multichannel indicator data (See section 564 
Imputation), and  covariates (detail in next section). The multi-channel time series 565 
classification (MCTSC) targets an output value  which represents the macrophenotype of the 566 
subject: 567 
 568 

 569 
 is the number of input time-series channels. We further define a 570 

parameterized model which maps  to the output : 571 
 572 

 573 
represents the mapping function, which is parameterized by . To optimize , we employed cross-574 

entropy loss with label smoothing as the objective function, which is defined as: 575 
 576 

 577 
where  denotes the number of classes. We employed a label smoothing regularizer to the ground 578 
truth label: 579 

 580 
Here,  is a smoothing parameter (we chose 0.1). This label smoothing technique helps to prevent 581 
the model from becoming too confident about the class labels, which could potentially bolster its 582 
generalization ability. 583 
 584 
Covariate Integration 585 
In order to integrate both covariates and time-series data for classification, we adapted the same 586 
covariates described in XGBoost feature engineering into a time-series format. Essentially, we 587 
transformed these variables into time-invariant sequences, where the value for each covariate 588 
remains the same at every time step. The transformed time-series covariates were then merged 589 
with wearable sensor data along the channel dimension. This approach allows the model to capture 590 
potential interactions between covariates and wearable measures, wherein the model can adjust its 591 
weights accordingly if a certain covariate influences the interpretation of the wearable data.  592 
 593 
Xception Encoder 594 
The XceptionTime encoder harnesses the power of one-dimensional convolutional neural 595 
networks (1d-CNNs) as its underlying architecture27. The model is structured with convolutional 596 
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filters of various sizes, which are sequentially followed by MaxPooling, Batch Normalization, and 597 
ReLU activation functions, which form residual connections. Formally: 598 

 599 
 600 

 601 
 602 

 603 
 604 

 605 
 606 
Here,  denotes 1d convolution,  represents depthwise 607 
separable convolution,  represents Batch Normalization,  represents 608 
ReLU activation function, and  aggregates feature maps from convolution filters of different 609 
sizes. A visual representation of the model could be found in Suppl. Fig. S2.4. In summary, the 610 
input feature maps are first projected to a bottleneck features map where the number of input 611 
channels is much larger than the number of output channels. A sequential operation of max pooling 612 
and 1d convolution is then performed on the input features maps to increase the expressivity of the 613 
model. The variation in the size of Xception convolutional filters gives rise to multi-level receptive 614 
fields, allowing the model to aggregate and process information at different levels of granularity 615 
or resolution. Such a property is particularly advantageous when dealing with data from wearable 616 
devices, as wearable data often exhibits both local patterns (i.e., minute-by-minute changes) and 617 
global trends (i.e., hourly or daily rhythms).  618 
 619 
The XceptionTime encoder introduces a modification to the vanilla 1d convolution model by 620 
substituting the 1d convolution with a 1d depth-wise separable convolution. The operation can be 621 
broken down into two steps: 622 
 623 

 624 
 625 
In contrast to the traditional convolution operation, the depth-wise separable convolution first 626 
applies a convolutional filter to each channel individually. This is followed by a 1x1 pointwise 627 
convolution module, which performs a linear combination of the outputs across channels. This 628 
process reduces the computational complexity of the model while still allowing for complex 629 
feature extraction. These steps are described in detail below:  630 
 631 
Depthwise Convolution: This applies a single filter to each input channel which can be expressed 632 
as: 633 

 634 
where  is the output feature map for channel  after the depthwise convolution,  is the input 635 
feature map for channel , and  is the depthwise filter (or kernel) for channel .  denotes the 636 
convolution operation. 637 
 638 
Pointwise Convolution: This operation combines the outputs from the depthwise convolution 639 
across channels: 640 

 641 
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where  is the output feature map after the pointwise convolution,  is the input feature map 642 
for channel ,  is the pointwise filter, which has a spatial dimension of 1x1 and operates across 643 
all channels, and  is used to denote the aggregation of feature maps from all channels. 644 
 645 
Model Training and Evaluation 646 
 647 
Training Details 648 
We split the dataset into 70% training set and 30% test set. We ran different experiments with 10 649 
random seeds, and the final results were calculated as the mean of the 10 runs. This helps to 650 
mitigate the risk of overfitting on a specific split, and provides a more robust estimate of the model 651 
performance. We used ADAM as the optimizer for training, with 1x10-3 as the initial learning rate. 652 
The neural network model is trained on an NVIDIA V100 32GB graphical processing unit using 653 
the PyTorch and tsai deep learning libraries79,80. 654 
 655 
Risk Scores 656 
In our study, we computed risk scores  by extracting the final layer of the deep 657 
learning model, specifically the softmax probability. For the XGBoost model, we leverage the 658 
pred_prob method implemented in the XGBoost library. Specifically: 659 
 660 

 661 
where  is either the XceptionTime logits in the XceptionTime model, or the sum of 662 
outputs from all trees in the XGBoostRegressor model. The softmax function, used in the final 663 
layer of the deep learning model, returns probabilities for each category in a multi-class problem 664 
that sum up to 1. Similarly, XGBoost's predict_proba method generates class probabilities as 665 
output. These scores can serve as a measure of the 'risk' or likelihood associated with each class or 666 
outcome. We utilized these risk scores as the response variable in our subsequent GWAS study 667 
(see Methods section “Univariate Wearable GWAS”). This approach not only bridged the gap 668 
between deep learning modeling and GWAS but also significantly enhanced the power of our 669 
GWAS studies. 670 
 671 
Model Interpretability 672 
 673 
Ablation Method for Step and Feature Importance 674 
The ablation method we present was used to measure the importance of features in a dataset. 675 
Ablation methods are based on randomly rearranging the values of a feature or a group of features 676 
across all subjects in the dataset, and then calculating an importance score based on the decrease 677 
in a chosen metric. In our case, we utilized the Area Under the Receiver Operating Characteristic 678 
curve (AUROC) as the metric to calculate this score. The rationale behind this method is that if a 679 
feature is important for model predictions, shuffling the values of that feature should disrupt the 680 
model’s ability to make accurate predictions, leading to a decrease in the chosen performance 681 
metric. The larger the decrease, the more important the feature is considered to be. 682 
 683 
The ablation importance score can be applied to calculate both feature importance and step 684 
importance. For step importance, the implementation is slightly different. Instead of shuffling 685 
individual features, we shuffled the values within selected windows of the time series. The time 686 
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series was divided into windows of a chosen length (in our case, 1 hour), and these windows were 687 
then shuffled across all subjects, allowing us to assess the importance of information at different 688 
time steps or periods. If the model performance significantly decreases when the values within a 689 
certain time window are shuffled, the information within that time window is important for the 690 
model predictions. 691 
 692 
Grad-CAM 693 
The weighted class activation mapping (CAM) method is a well-established technique for 694 
examining how a trained model makes its predictions29. In the context of time-series data, it can 695 
highlight which time steps are particularly influential in the model's decision-making process.  696 
 697 
We first computed the gradient of the score for the predicted class y with respect to the feature 698 

map of the first layer activations  of a convolutional layer. This gradient, denoted as ,  699 
provides a measure of how a small change in the activation of the convolutional layer could affect 700 
the final prediction of the model. To convert these gradients into a measure of importance for each 701 
channel (indexed by ), we employed a global average pooling, which calculates the average of all 702 
gradients across the sequence length (indexed by ). This resulted in a set of channel-wise gradient 703 
averages, denoted as . Mathematically, this is expressed as: 704 
 705 

 706 
where  is a normalization constant, typically the total number of elements in the layer, and  is 707 
the length of the sequence. 708 
 709 
We next generated the Gradient-weighted Class Activation Mapping (Grad-CAM). This is a visual 710 
representation of the importance of each time step for the model's predictions. The Grad-CAM, 711 
denoted as , is defined as: 712 
 713 

 714 
where the ReLU (Rectified Linear Unit) function is used to ensure that only features with a positive 715 
influence on the class of interest result in high activation. Essentially, this means that only the time 716 
steps that positively contribute to the model's decision will have high importance scores. 717 
 718 
Finally, for each time step, we computed the average Grad-CAM scores across the entire test set. 719 
This allowed us to determine which time steps in the input data were most influential in the model 720 
predictions. 721 
 722 
Genome-wide Association Studies (GWAS) 723 
 724 
Quality Control of Genetic Data 725 
We obtained genotyped and imputed genetic data for 11,099 individuals as part of the ABCD Data 726 
Release 3 (https://abcdstudy.org/scientists/data-sharing/). We used the genotyped data to infer 727 
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population stratification and the imputed data to perform the different GWAS described below 728 
(see Methods sections “Univariate wearable GWAS” and “Multivariate wearable GWAS”). 729 
We applied a quality control (QC) protocol on the genotyped data81. Specifically, we performed 730 
the QC steps described in 731 
https://github.com/MareesAT/GWA_tutorial/blob/master/1_QC_GWAS.zip (file 732 
“1_Main_script_QC_GWAS.txt”) using PLINK v1.90b6.2182. Briefly, of the initial set of 516,598 733 
variants, we kept those with a missingness rate across individuals < 0.02 (n = 481,920). Of the 734 
initial set of 11,099 individuals, we kept those with a missingness rate across variants < 0.02 (n = 735 
10,660). Next, we considered only variants located on autosomal chromosomes (n = 470,076), 736 
those with Minor Allele Frequency (MAF) > 0.01 (n = 427,704), and those that did not deviate 737 
from Hardy-Weinberg equilibrium (p value ≥ 10-10; n = 370,002). These variants were pruned to 738 
a final set of 156,556 variants (window size = 50; number of variants to shift the window at each 739 
step = 5; multiple correlation coefficient 0.2). We computed the heterozygosity rate for each 740 
individual using the pruned set of variants, and kept individuals with a heterozygosity rate 741 
deviating less than 3 standard deviations from the mean (n = 10,467). We also used pruned variants 742 
to assess cryptic relatedness by identifying groups of individuals with Proportion Identity-By-743 
Descent (pi_hat) > 0.2. For every group of related individuals, we then selected the individual with 744 
the lowest variant missingness rate, leaving a total of 8,816 individuals. We used PLINK2 to 745 
perform a Principal Component Analysis (PCA) on the 156,556 pruned genotyped variants from 746 
the 8,816 selected individuals. We integrated the PCA results with the ethnicity score group 747 
information provided by the ABCD metadata, which was available for 8,791 individuals (Fig. 1D 748 
and Suppl. Fig. S4.1-S4.4). 749 
 750 
We filtered the imputed genetic variants for MAF > 0.01 and estimated imputation accuracy (R2) > 751 
0.3, and obtained a final set of 11,954,686 variants for the GWAS analysis (Suppl. Fig. S4.5). We 752 
also computed distributions of R2 for all (genotyped and imputed) variants, and of empirical leave-753 
one-out R2 (ER2) for genotyped variants (Suppl. Fig. S4.6). 754 
 755 
Covariates included in the GWAS 756 
We considered five different groups of covariates: basic (sex, age at second-year follow-up, first 757 
five genotype PCs), behavioral (CBCL internalizing and externalizing scores, DSM internalizing 758 
and externalizing scores), family history of psychiatric illness (bipolar disorder, schizophrenia, 759 
antisocial behavior, nervous breakdown, psychiatric treatment, hospital admission, suicide), 760 
family situation (divorced parents, parents’ level of education, family income, adoption), and other 761 
(ACS raked propensity score, DNA extraction batch). 3,579 of the previously selected 8,791 762 
individuals reported complete information for these 24 covariates. 763 
 764 
Univariate Wearable GWAS 765 
For this analysis, we focused on a subset of 1,191 individuals that were either diagnosed with 766 
ADHD (n = 137) or belonged to the non-clinical control group (n = 1,054). We performed a GWAS 767 
testing for association between genetic variants and ADHD diagnosis, encoded as a binary 768 
outcome (ADHD = 1, control = 0; univariate binary GWAS; Figure 4A). We also obtained, for 769 
each individual, ten different ADHD risk scores based on the XGBoost and Xception predictive 770 
models (see Methods section “Risk Scores”). Specifically, we used risk scores from the following 771 
six models: baseline model using CBCL externalizing score (“CBCL ext.”); baseline model using 772 
CBCL internalizing score (“CBCL int.”); XGBoost model using wearable features (“XGB”); 773 
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XGBoost model using wearable features and CBCL scores (“XGB + CBCL”); Xception model 774 
using wearable features (“Xception”); and Xception model using wearable features and CBCL 775 
scores (“Xception + CBCL”). For models “XGB”, “XGB + CBCL”, “Xception” and “Xception + 776 
CBCL”, we also implemented the “liability-CC” trait methodology35. This methodology consists 777 
of converting the predictive modeling risk score of the cases (individuals with ADHD) to a value 778 
of 1, while keeping the original risk scores for the controls. These four additional types of scores 779 
are labeled as “XGB v2”, “XGB + CBCL v2”, “Xception v2” and “Xception + CBCL v2”.  780 
 781 
We performed ten different GWAS to test for associations between genetic variants and each of 782 
these ten scores (univariate continuous GWAS; Figure 4B). We used PLINK2 to perform both 783 
binary and continuous univariate GWAS, and the FUMA platform for loci definition (reference 784 
panel population: “1000G Phase3 ALL”)83,84. We first ran all GWASs using only the set of basic 785 
covariates (sex, age, first five population structure PCs), as these were also used in previous GWAS 786 
for ADHD85,86. These results and the corresponding p value quantile-quantile plots are shown in 787 
Figure 4A-B, Table 1 (GWAS Method: “univariate continuous”), Suppl. Fig. S4.7-S4.8 (“Basic 788 
covariates”), and Suppl. Table S4.1. We also repeated both continuous and binary GWAS to 789 
include all covariates described in Methods section “Covariates included in the GWAS”, apart 790 
from the CBCL and DSM behavioral scores, which were employed as features for the predictive 791 
models that generated the risk scores (Suppl. Fig. S4.7 and S4.9 - “All covariates”). 792 
 793 
Statistical Power of Binary vs. Continuous Traits 794 
To compare the statistical power of genetic association testing using binary and continuous traits, 795 
we simulated a cohort of 1,500 individuals. In each individual i, we generated biallelic SNPs with 796 
a binomial model (i.e., the genotype at each SNP followed a binomial distribution, with the number 797 
of trials equal to 2 and probability of success on each trial equal to a given MAF). We chose the 798 
cohort size to approximate the number of individuals (n = 1,191) in the univariate GWAS for 799 
ADHD described above (Methods section “Univariate wearable GWAS”). For each individual i, 800 
we then simulated a continuous trait (Ci) as the sum of the genotype effect (b) at a given SNP with 801 
genotype xi (0, 1, or 2) and random noise (ei):  802 

 803 
Ci = xi·b + ei 804 

where 805 
b ~ U(0,1)   806 
e ~ N(0,1) 807 

 808 
 809 
We also simulated a binary trait for each individual i (Bi), following 810 
 811 

Bi = 1 if Ci > median(C), otherwise 0  812 
 813 
where C is the vector of simulated continuous traits for the entire cohort. 814 
 815 
For a particular genotype effect b, we ran 10,000 simulations. Under this scenario, we estimated 816 
the power of the simulated continuous and binary traits as the fraction of significant (i.e. 817 
Benjamini-Hochberg adjusted p value < 0.05) linear and logistic regression tests, respectively. We 818 
employed linear and logistic regression as implemented in the R functions “lm” (library “stats”) 819 
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and “glm” (family = binomial; library “MASS”), respectively. Overall, we simulated 50 different 820 
values of b across nine different MAFs (Suppl. Fig. S4.11). 821 
 822 
Multivariate Wearable GWAS 823 
This second type of GWAS consists in testing the association between genetic variants and a multi-824 
trait (multivariate) phenotype. In this case, we define the multivariate phenotype as the vector of 825 
static summary features obtained from an individual’s wearable device (see Methods section 826 
“Clustering of Wearable Static Features”). For this analysis, we considered all individuals with 827 
complete genetic, wearable, and covariate data independently of their diagnosis.  828 
 829 
We first conducted a wearable GWAS using the 14 static features related to heart rate as the 830 
multivariate response variable, which were available for 3,256 individuals (features: InterdayCV, 831 
InterdaySD, IntradayCV_mean, IntradayCV_median, IntradayCV_sd, IntradayMean_mean, 832 
IntradayMean_median, IntradayMean_sd, IntradaySD_mean, IntradaySD_median, 833 
IntradaySD_sd, Mean, Median, STD). We next aimed to include all 258 static features, which were 834 
available for 2,410 individuals, and applied two different strategies to reduce the dimensionality 835 
of the multivariate response. In one case, we performed a PCA of the individuals based on their 836 
values for the 258 features, and used the first five PCs as the multivariate response. In the second 837 
case, we considered each of the seven clusters of static features as a separate multivariate response, 838 
and performed a GWAS for each cluster (see also Methods section “Clusters of static summary 839 
features” below). Therefore, we ran a total of nine multivariate GWAS (one for heart rate features, 840 
one for the first five PCs of all features, and one for each of the seven clusters of features). For all 841 
multivariate GWAS, we defined a model that included the genotype and 24 covariates as 842 
independent variables (see Methods section “Covariates included in the GWAS”).  843 
 844 
We used the Multivariate Asymptotic Non-parametric Test of Association R package (MANTA, 845 
https://github.com/dgarrimar/manta) to test for association between genetic variants and the 846 
multivariate wearable trait, and performed all the analyses within a containerized Nextflow 847 
pipeline, available at https://github.com/dgarrimar/mvgwas-nf44,87. Since MANTA is a non-848 
parametric method, normalization of the GWAS traits was not required. After performing the 849 
different GWAS runs, we used FUMA for loci definition (reference panel population: “1000G 850 
Phase3 ALL”)84. These results and the corresponding p value quantile-quantile plots are shown in 851 
Figure 4C, Table 1 (GWAS Method: “multivariate continuous”), Suppl. Fig. S4.12, and Suppl. 852 
Table S4.3. As MANTA p values do not come from a normal distribution, we employed 𝛌X 853 
(instead of the commonly used 𝛌G) to estimate the genomic inflation factor88. 854 
 855 
Genome-wide vs. Study-wide Significance 856 
We selected the conventional genome-wide significant p value threshold of 5·10-8 to identify 857 
significant loci from all GWAS runs. However, in line with previous GWAS studies, we also 858 
considered a study-wide significance threshold to account for the fact that multiple GWAS were 859 
performed89. In our case, the study-wide significant thresholds are 5·10-9 (5·10-8 / 10 GWAS runs) 860 
for the univariate continuous GWAS for ADHD, and 5.56 · 10-9 (5·10-8 / 9 GWAS runs) for the 861 
multivariate wearable GWAS. Based on these thresholds, one locus from the ADHD GWAS and 862 
nine loci from the wearable GWAS would pass the study-wide significance threshold. Similar to 863 
other GWAS, we also considered a suggestive p value threshold of 1·10-5 (Figure 4 and Suppl. 864 
Fig. S4.7)89.  865 
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Chromosome X  866 
Because the multivariate GWAS (specifically in runs corresponding to feature clusters 2 and 7) 867 
reported a large number of significant loci on chromosome X (Table 1 and Suppl. Table S4.3), 868 
we implemented additional quality controls to account for potential bias in chromosome X 869 
variants. First, we tested whether chromosome X variants showed systematically lower p values 870 
compared to variants located on autosomal chromosomes. To do this, we computed the proportion 871 
of variants with p value < 10-4 from each autosomal chromosome, and performed a one-sided 872 
Fisher’s exact test to evaluate whether this proportion was significantly lower compared to variants 873 
on chromosome X for the same GWAS run. We found that this was the case only in GWAS runs 874 
for clusters 2, 4, and 7 (Suppl. Fig. S4.13). We reasoned that if an unknown systematic bias related 875 
to chromosome X was truly present (e.g., genotyping issues), we would observe the same situation 876 
for every cluster of features. Given that we did not identify significant loci on chromosome X for 877 
cluster 4, this analysis ruled out any unaccounted systematic bias related to chromosome X, and 878 
confirms that wearable features in clusters 2 and 7 indeed show stronger association with variants 879 
located on chromosome X. We also checked for imputation bias in chromosome X variants that 880 
could systematically differentiate female and male individuals. To do this, we performed a PCA 881 
of the 2,410 individuals based on their imputed genotypes at chromosome X variants, and did not 882 
observe a separation between female and male individuals (Suppl. Fig. S4.14). 883 
 884 
Neuropsychiatry-related Proximal Genes and eGenes 885 
For each genome-wide significant locus, we retrieved the ten closest genes when considering a 886 
window of ± 250 Kb from the center of the locus, using the GENCODE human genome annotation 887 
version 4190. Next, we labeled as “neuropsychiatric-related” those proximal genes that are 888 
associated with psychiatric disorders according to OpenTargets (https://platform.opentargets.org/) 889 
(Suppl. Tables S4.1 and S4.3)91. We further intersected our catalog of genome-wide significant 890 
loci with previous eQTL catalogs using BEDTools intersect (v2.30.0), and identified a subset of 891 
proximal neuropsychiatric-related genes with eQTLs overlapping our list of loci46,92-95. We labeled 892 
these genes as “neuropsychiatric-related proximal eGenes” (Suppl. Tables S4.1 and S4.3). 893 
 894 
Chromatin Dissection of locus chr14:23392601-23418974 895 
We first performed an exploratory analysis by intersecting our two lists of significant loci with the 896 
ENCODE4 registry of candidate cis-regulatory elements 897 
(cCREs)(https://www.encodeproject.org/search/?type=Annotation&encyclopedia_version=curre898 
nt&annotation_type=candidate+Cis-899 
Regulatory+Elements&annotation_type=chromatin+state&annotation_type=representative+DNa900 
se+hypersensitivity+sites&status=released&encyclopedia_version=ENCODE+v4) (Suppl. 901 
Tables S4.1 and S4.3)45. Given the documented role of locus chr14:23392601-23418974 in heart-902 
related traits and diseases, we next evaluated the enrichment of heart-specific epigenetic features 903 
(nucleosome positioning, histone modifications, and transcription factor (TF) binding) at this 904 
locus. We downloaded peak calling files for DNase-seq, ATAC-seq, ChIP-seq (histone marks & 905 
TFs) and Mint-ChIP-seq for histone marks available for human biosamples from the ENCODE 906 
portal 907 
(https://www.encodeproject.org/metadata/?control_type%21=%2A&status=released&perturbed=908 
false&assay_title=Histone+ChIP-seq&assay_title=TF+ChIP-seq&assay_title=DNase-909 
seq&assay_title=ATAC-seq&assay_title=Mint-ChIP-910 
seq&files.file_type=bigBed+narrowPeak&replicates.library.biosample.donor.organism.scientific911 
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_name=Homo+sapiens&type=Experiment&files.analyses.status=released&files.preferred_defaul912 
t=true; access date: 09/27/2022)45,96. We then grouped human biosamples based on their 913 
“biosample ontology organ slim” 914 
(https://www.encodeproject.org/report/?type=Experiment&control_type!=*&status=released&pe915 
rturbed=false&assay_title=TF+ChIP-seq&assay_title=Histone+ChIP-seq&assay_title=DNase-916 
seq&assay_title=ATAC-seq&assay_title=Mint-ChIP-917 
seq&replicates.library.biosample.donor.organism.scientific_name=Homo+sapiens&field=biosam918 
ple_ontology.organ_slims&field=biosample_ontology.cell_slims&field=biosample_ontology.sys919 
tem_slims&field=%40id&field=biosample_ontology.term_name). To test the tissue-specific 920 
enrichment of chromatin features in a particular organ, we computed the number of times any of 921 
the five significant variants at the locus overlapped a peak from experiments in that organ 922 
compared to all other organs (two-sided Fisher’s exact test, Benjamini-Hochberg adjusted p value 923 
< 0.1). For this analysis, we counted only once those overlaps involving variants that are < 100 bp 924 
apart.  925 
 926 
Exploring the Genetic-behavioral-psychiatric Axis 927 
The multivariate wearable GWAS allowed us to first perform an exploratory analysis to identify 928 
genetic variants associated with any of the seven clusters of wearable-derived features (genome-929 
wide significant p value < 5·10-8). To identify the specific features that are driving the significant 930 
association between the cluster and the variant, we next performed unpaired Wilcoxon rank tests 931 
between all three groups of genotype individuals (i.e., AA vs. AG, AA vs. GG, and AG vs. GG) 932 
for each feature within a particular cluster. We then selected features where at least one of the three 933 
Wilcoxon tests reported a Benjamini-Hochberg-adjusted p value < 0.1, and showed examples for 934 
three SNPs in Figure 5A-C (left panel). For each of these three examples, we next evaluated the 935 
enrichment of the minor allele (in all three cases the G allele) in individuals within a specific 936 
psychiatric cohort vs. non-clinical control individuals (two-sided Fisher exact test; Figure 5A-C 937 
right panel). Given the reduced number of individuals with GG genotype for SNPs rs113525298 938 
and rs147959551 (15 and 14, respectively), in these two cases the enrichment of the minor allele 939 
was tested by merging individuals with AG and GG genotypes. For SNP rs365990, the enrichment 940 
was computed only on individuals with GG genotype. For all tests, we required at least one 941 
individual to be present in every cell of the 2x2 matrix employed for the Fisher’s exact test (a = 942 
n individuals with minor allele AND part of the psychiatric cohort; b = n individuals without minor 943 
allele AND part of the psychiatric cohort; c = n individuals with minor allele AND part of the 944 
healthy controls; d = n individuals without minor allele AND not part of the healthy controls). 945 
 946 
Intersection of genome-wide significant loci with the GWAS Catalog  947 
To assess the clinical relevance of our GWAS loci, we intersected them with variants from the 948 
NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/; access date: 05/16/2023). For the loci 949 
identified by our ADHD GWAS, we considered overlaps with brain- or neuropsychiatric-related 950 
GWAS hits (Figure 4B). Because our wearable-derived features are mostly related to heart, sleep, 951 
metabolism and physical activity, for the wearable GWAS loci we considered any overlaps with 952 
heart-, sleep-, metabolism- and physical activity-related GWAS hits. Additionally, given the 953 
presence of individuals with psychiatric disorders in the wearable GWAS cohort, we also 954 
considered intersections with brain- or neuropsychiatric-related GWAS hits (Figure 4C). We 955 
acknowledge that colocalization analysis would be the most appropriate way to compute these 956 
intersections, and we performed this analysis for ADHD GWAS loci (see Methods section 957 
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“Colocalization analysis”). However, MANTA does not provide estimates of variant effect sizes 958 
that can be directly employed in co-localization analysis. For this reason, we evaluated the strength 959 
of these intersections against a null distribution. Specifically, we computed the proportion of 960 
GWAS variants associated with a particular trait that overlap our significant loci, and compared it 961 
to the proportions observed across 10,000 random sets of genomic loci with the same size and 962 
chromosome location. We report the percentile of our GWAS enrichments compared to the null 963 
distribution in Suppl. Fig. S4.10 (univariate GWAS for ADHD) and S4.15 (multivariate GWAS). 964 
 965 
Colocalization Analysis 966 
We performed colocalization analysis using the R package coloc (function coloc.abf, default 967 
parameters) on the results obtained from the univariate continuous GWAS97. Specifically, we 968 
focused on two of the seven overlapping brain-related traits with available GWAS summary 969 
statistics (Figure 4B and Suppl. Table S4.2), and tested the hypothesis of signal co-localization 970 
between our ADHD risk scores at the intersecting loci. Locus chr17:32256997:32283356 reported 971 
a posterior probability of 0.99 for signal co-localization with a locus previously associated with 972 
chronotype measurement98. We also tested locus chr7:68219282:68338849 (suggestive 973 
association at p value < 10-5) for co-localization with a previously reported locus for ADHD85. In 974 
this case, given that the two traits being tested are the same, we set all three parameters p1, p2 and 975 
p12 equal to 1·10-5, and reported a posterior probability of 0.25. 976 
 977 
Code Availability 978 

The code for the paper is publicly available at https://github.com/gersteinlab/ABCD. 979 
 980 
Data and Materials Availability 981 

The data used in this study is available through the NIMH ABCD NDA portal 982 
(https://nda.nih.gov/general-query.html?q=query=featured-983 
datasets:Adolescent%20Brain%20Cognitive%20Development%20Study%20(ABCD)). Data 984 
used in the preparation of this article were obtained from the Adolescent Brain Cognitive 985 
DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). 986 
This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and 987 
follow them over 10 years into early adulthood. The ABCD Study® is supported by the National 988 
Institutes of Health and additional federal partners under award numbers U01DA041048, 989 
U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, 990 
U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, 991 
U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, 992 
U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, 993 
U24DA041123, U24DA041147. A full list of supporters is available at 994 
https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing 995 
of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD 996 
consortium investigators designed and implemented the study and/or provided data but did not 997 
necessarily participate in the analysis or writing of this report. This manuscript reflects the views 998 
of the authors and may not reflect the opinions or views of the NIH or ABCD consortium 999 
investigators. 1000 
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