
RESEARCH ARTICLE

Geographic distribution of vestibular

schwannomas in West Scotland between

2000-2015

Lisa Caulley1,2, Michael Sawada3, Kelsey Hinther4, Ya-tung Iris Ko5, John A. Crowther5,

Georgios Kontorinis5*

1 Department of Otolaryngology – Head and Neck Surgery, University of Ottawa, Ottawa, Ontario, Canada,

2 The Ottawa Hospital, Ottawa, Ontario, Canada, 3 Laboratory for Applied Geomatics and GIS Science

(LAGGISS), Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario,

Canada, 4 Undergraduate Medicine Program, University of Saskatchewan, Saskatoon, Saskatchewan,

Canada, 5 Department of Otolaryngology – Head and Neck Surgery, Queen Elizabeth University Hospital,

Glasgow, United Kingdom

* gkontorinis@gmail.com

Abstract

Background

Although the natural history of vestibular schwannomas (VS) has been previously studied,

few studies have investigated associated epidemiological factors, primarily because of the

lack of large available cohorts.

Objective

The objective of this study was to perform a multi-scale geographical analysis of the period

prevalence of VS in West Scotland from 2000 to 2015.

Methods

Adults diagnosed with sporadic VS were identified through the National Health Services of

West Scotland database and geocoded to the unit postcode. To assess whether the cohort

of VS cases could be pooled into a period prevalence measure, the locations of VS cases

were analyzed by sex using Cross-L and Difference-K functions. VS period prevalence was

examined at two aggregate spatial scales: the postcode district and a coarser scale of NHS

Health Boards. The spatial structure of period prevalence within each level of spatial aggre-

gation was measured using univariate global and local Moran’s I. Bivariate local Moran’s I

was used to examine the between-scale variability in period prevalence from the postcode

district level to the NHS Health Boards levels. Prior to spatial autocorrelation analyses, the

period prevalence at the postcode district was tested for stratified spatial heterogeneity

within the NHS Health Boards using Wang’s q-Statistic.

Results

A total of 512 sporadic VS were identified in a population of over 3.1 million. Between 2000

and 2015, VS period prevalence was highest within the NHS Health Boards of Greater
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Glasgow and Clyde, Ayrshire and Arran and the Western Isles. However, at the NHS scale,

period prevalence exhibited no spatial autocorrelation globally or locally. At the district

scale, Highland exhibited the most unusual local spatial autocorrelation. Bivariate local Mor-

an’s I results indicated general stability of period prevalence across the postcode district to

Health Boards scales. However, locally, some postcode districts in Greater Glasgow and

Clyde, Ayrshire and Arran exhibited unusually low district to zone spatial autocorrelation in

period prevalence, as did the southern parts of the Western Isles. Some unusually high

period prevalence values between the postcode district to Health Board scale were found in

Tayside, Forth Valley and Dumfries and Galloway.

Conclusion

Geographic variability in VS in West Scotland was identified in this patient population, show-

ing that there are areas, even remote, with unusually high or low period prevalence. This

can be partially attributed to links between primary and tertiary care. Potential genetic or

environmental risk factors that may contribute to geographic variation in this disease within

Scotland are also a possibility but require further investigation.

Introduction

Vestibular schwannomas (VS), also known as acoustic neuromas, are slow-growing, benign

tumors that arise from the Schwann cells lining of predominantly the vestibular component of

the eighth cranial nerve [1–12]. These tumors represent approximately 6% of all intracranial

neoplasms, and are the commonest neoplasm of the internal auditory canal and the cerebello-

pontine angle [1, 2, 4, 10, 12]. The tumor presents unilaterally in the vast majority of cases,

while rarely, when they present bilaterally they are the hallmark of a hereditary disease, Neuro-

fibromatosis type 2 (NF2) [1–8]. Several genetic alterations, including mutations in the NF2

tumor suppressor gene has been connected with the pathogenesis of NF2-related and 30–70%

of sporadic VS [13–17].

Most patients with VS present with unilateral sensorineural hearing loss (94%) and tinnitus

(83%). The incidence of vestibular symptoms, including vertigo and unsteadiness, in such

patients varies widely (17–75% of patients at the time of diagnosis) but this is probably under-

rated and under-reported [1–7, 10, 11, 18].

According to the National Health Service (NHS), one to two cases per 100,000 of VS are

reported annually. One in five patients present to the otology clinic with these symptoms, how-

ever, only 1 to 2% of the patients will be diagnosed with vestibular schwannoma [6, 19].

There is substantial spatial variation in the incidence of VS worldwide. Larjavaara et al.

(2011) evaluated the incidence of VS in Denmark, Sweden, Finland and Norway from 1987–

2007[20]. The study demonstrated variability in the incidence by country, but an overall trend

of increasing incidence of VS. The etiology of this rising trend is postulated to stem from

improvements in diagnostic technology over time and physician awareness [20].

Only one recent study in the United States has examined the association between geo-

graphic variables and differences the treatment strategy of VS using a cohort of 9761 VS cases

over an eight-year period [21]. That study, however, utilized spatially disjunct regions for anal-

ysis and did not examine the spatial distribution or pattern of VS across the US.

Geographic variation of vestibular schwannomas
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Despite the significant number of publications on VS, geographic studies are uncommon.

Our objective was to evaluate the geographical distribution of VS based on an extended cohort

from West Scotland.

Methods

This study was a geographic analysis of the period prevalence of cases of VS using geographic

information system (GIS) technology. As this study served audit purposes, ethical approval or

patients’ consent were not required. A detailed description of the statistical code utilized in the

study design is available in the appendix (S1 Appendix).

Data source

The demographic and clinical data were accrued from the NHS of West Scotland. Subjects

included all individuals diagnosed with VS through the NHS of West Scotland as documented

on the West of Scotland Skull Base Multidisciplinary Meeting database. Surveillance data of

VS were collected from 2000 to 2015. Diagnosis of VS was determined based on diagnostic

imaging; particularly magnetic resonance imaging (MRI) of the internal auditory meatus with

intravenous gadolinium administration. In very few cases where MRI was contraindicated,

computed tomography of the brain with intravenous contrast was utilized.

Patients diagnosed with Neurofibromatosis type 2 were excluded from our cohort, as there

is a known causal genetic background.

The VS data comprised the location (latitude and longitude coordinates) of each case at the

unit postcode level (private residence). There are approximately 1.75 million unit postcodes in

the UK [22]. Given that 95% of our VS case unit postcodes are constrained within areas of less

than 0.5 km2, the true location of a VS case would be within a few hundred meters of the unit

postcode centroid that we use to represent the location of a VS case. We reasonably consider

the pattern of VS case locations represented by the unit postcode centroids as a point pattern

at the West Scotland scale. Unit postcode centroids representing VS cases were assigned to

their respective postcode district (hereafter referred to as districts) or to one of ten NHS Health

Boards zones (hereafter referred to as zones) that intersected the West Scotland catchment

area. Some zones in the eastern portion of the study region did not completely fall within the

study catchment of the West of Scotland. Thus, population estimates for the zones were based

on summing the populations of the districts that they contained. Within the zones, there were

312 postcode districts (hereafter referred to as districts). The zone and district represent two

levels of spatial aggregation at which we explore the spatial structure of VS and assess the sta-

bility of period prevalence between the two spatial scales. The total population West Scotland

as well as the population of each geographical area were derived from the latest national census

data available by postcode [23].

Data analysis

Mapping and data preparation were conducted with ArcGIS desktop 10.4.1 [24]. ArcGIS was

used specifically to: 1) Count the number of VS cases (unit postcode centroids) within the

zones and within each district using spatial joins; 2) Calculate period prevalence at both the

district and zone aggregate levels; 3) Assign VS period prevalence from the zones to their

nested districts using a centroid-based spatial join for purposes of exploring across scale spatial

autocorrelation and stratified spatial heterogeneity; 5) produce cartographic representations of

the spatial variation in VS. Spatial analysis packages (detailed below) and functions within the

R v3.3.1 language were used to analyze the spatial dependency of VS nationally and across spa-

tial scales, between the district and zone (district-zone) [25]. Stratified spatial heterogeneity
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between the district and zone (district-zone) level was tested using Wang’s q-Statistic in Geo-

Detector [26, 27].

Sex dependency. Before analyzing spatial dependency in the VS period prevalence, we

needed to determine whether male and female VS case locations could be reasonably pooled

into a single VS dataset. We tested for spatial interaction between male and female VS case

locations using bivariate point pattern analyses based on Ripley’s K [28]. The bivariate point

pattern analyses used the unit postcode VS case coordinates within a Cross-L function to test

for spatial independence between the locations of male and female VS cases (S1 Appendix).

This was followed by a Difference-K (Kmale-Kfemale) test to detect any sex-based conditional

clustering or dispersion in West Scotland (S1 Appendix). Both the Cross-L and Difference-K

analyses used the R language with the Spatstat package v1.47–0 (S1 Appendix)[29]. For the

Cross-L, our interest was in determining if VS cases for males and females, taken separately,

exhibit significant attraction and so a one-tailed pseudo-p value was produced. For the Differ-

ence-K analysis, our interest was whether either of the patterns of male and female VS cases

exhibited conditional independence and so a two-sided pseudo-p was calculated. We used 199

Monte-Carlo simulations for significance testing of each measure. Because the Monte-Carlo

simulations were conditional on the same geospatial polygon layer and number of points, and

there was no need to compare results with other regions, corrections for edge effects in the

point pattern analyses were deemed unnecessary. Results were represented graphically as

pointwise simulation envelopes to illustrate the possible outcomes of our hypotheses tests for

spatial interaction at any given prespecified distance [25, 29, 30]. Statistical significance of the

Cross-L and Difference-K functions across the distance interval of function evaluation (0 to 80

km at 160 m intervals) were determined via a Diggle-Cressie-Loosmore-Ford (DCLF) test (S1

Appendix) [30–32]. All K-function based analyses used Euclidean distance in a UTM Zone 30

N coordinate system.

Period prevalence and standardized period prevalence. The period prevalence (PP) was

calculated as the number of VS cases over the 15-year period, divided by the population for

each aggregated spatial unit (district and zone) [33]. All period prevalence measures were car-

ried out assuming a national Scottish population of 3.6 million (3.16 million within the ten

zones) in 2011 based on the latest census data available.

Stratified spatial heterogeneity—Wang’s q-Statistic. To calculate Wang’s q-Statistic,

district level PP values were paired with integer codes from 1 to 10 according to their contain-

ing zone using a spatial join operation in ArcGIS. The data was exported to GeoDetector and

analyzed in MS Excel.

Spatial autocorrelation-Moran’s I. Our model of spatial dependence for the districts and

zones was based on spatial interaction. We defined spatial interaction as ferry connections

between islands and the mainland or between parts of the mainland in addition to first-order

Queen’s case contiguity for mainland and/or island spatial units (Fig 1a and 1b) [34].

Our definition of interaction is a reasonable basis for exploring spatial autocorrelation in

VS PP. However, given the current lack of knowledge regarding the spatial processes govern-

ing VS in West Scotland, and recognizing the sensitivity of spatial autocorrelation measures to

definitions of spatial dependency, we also computed all spatial autocorrelation measures using

an alternate model of spatial dependence based on a k = 4 nearest neighbor adjacency matrix

(S1 Appendix). Both spatial dependence schemes were row-standardized for use in spatial

autocorrelation tests. As the processes governing the spatial distribution of VS in Scotland

become disambiguated, more appropriate models of spatial dependency that account for spa-

tial interaction along different dimensions could be formulated and these may produce differ-

ent results [35].

Geographic variation of vestibular schwannomas
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Global Moran’s I was used to test spatial autocorrelation in PP at both levels of spatial

aggregation (zone and district). The statistical significance of global Moran’s I was computed

using 999 permutations of PP values across all spatial units (S1 Appendix). Our primary inter-

est was detecting if global positive spatial autocorrelation exists in PP at each level of spatial

aggregation and so we calculated one-sided pseudo p-values. All calculations of global Moran’s

I were undertaken using the spdep 0.6–8 package in R[36, 37].

Functions were written in R to calculate univariate and bivariate local Moran’s I (S1 Appen-

dix). Univariate local Moran’s I functions were validated against output from the PySAL

python library and the bivariate measure was validated against the output from Geoda 1.4.6

[38, 39]. We used the R language for these calculations because of the flexibility it offered for

simulations and modification of spatial neighbor matrices. For these local measures, our pri-

mary interest was to identify spatial units that exhibit unusual differences of PP values from

their neighbors. A spatial unit with significant differences from neighboring values is called a

cluster center. A cluster center exhibits positive local spatial autocorrelation when PP values

Fig 1. Neighbor graphs illustrating the connectivity used at the zone (a) and district level (b) for modelling spatial interaction within the spatial

weights matrices used in calculating spatial autocorrelation measures.

https://doi.org/10.1371/journal.pone.0175489.g001
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surrounding the spatial unit are similar, for example, either a high value of PP surrounded by

high values of PP (high-high) or a low value surrounded by low values (low-low). A cluster

center exhibits negative local spatial autocorrelation when PP values surrounding the spatial

unit are dissimilar, for example, a low PP value surrounded by high PP values (low-high) or,

conversely, a high value surrounded by low values (high-low). When there is no systematic

relation between the PP value within a district and its neighbors, then there is no local spatial

autocorrelation present. In the univariate case, the value of local Moran’s I, at the cluster cen-

ter, represents the correlation between PP and itself within the surrounding spatial units at the

same spatial scale—either district PP with district PP, or zone PP with zone PP. In the bivariate

case, the value of local Moran’s I at the cluster center represents the correlation between PP at

the district scale to those PP values assigned to the surrounding districts from the zone level

(district-zone). As such, the bivariate measure illustrates if a given district exhibits stability in

PP across spatial scales. The statistical significance of the local measures were based on 9999

conditional permutations to derive the local pseudo-p values (S1 Appendix) [38, 40, 41]. We

present both univariate and bivariate local Moran’s I results at the standard Type I error rate

of α = 0.05 based on the pseudo-p values derived by conditional permutation, however, we did

not correct for multiple testing. Therefore, a locally significant result reported herein should

be considered an unusual occurrence but not necessarily a statistically significant result.

Hence, local Moran’s I analyses are used in an exploratory manner, the aim of which is to iden-

tify potential districts with outlying values of PP either at the district level or between the dis-

trict and zone. Alternatively, the univariate and bivariate global Moran’s I measures are

statistically valid tests.

The ten zones represented one of many possible geographic zonations of the district postal

geography for West Scotland. These zones are defined by the National Health Service (NHS)

in Scotland. Because of the small sample size of VS cases, zone-level PP will have the most sta-

ble estimates and these zones provide meaningful boundaries from administrative perspective.

Conversely, as with most administrative boundaries, the zone boundaries have no a priori rela-

tion to the occurrence of VS. As such, inferences based on the results of using the zones may

suffer from analytical biases induced by the modifiable areal unit problem (MAUP) [42]. Spe-

cifically, the statistical significance or lack thereof, of spatial dependency in VS PP calculated

using global Moran’s I could simply be due to the location of the boundaries and heterogenous

area distribution among the ten zones. This is collectively known as the scale and zoning effect

of the MAUP. To assess the influence of the combined scale and zoning effect of the MAUP on

the results of spatial autocorrelation in PP at the zone scale, 200 random aggregations of the

districts were created. A random aggregation was created by 1) randomly selecting ten post-

code district polygon centroids; 2) creating a Voronoi tessellation using those ten centroids; 3)

assigning the ten Voronoi polygon identifiers to the 312 district polygons; 4) aggregating the

district polygons by the Voronoi polygon identifiers to create ten new randomly aggregated

zones and at the same time, summing the population and number of VS cases in the random

zones and calculating PP (S1 Appendix). For each random zonation, global Moran’s I was cal-

culated and pseudo-p values were derived 999 Monte-Carlo simulations. By comparing our

observed pseudo-p value with the reference distribution created through this process of ran-

dom zonation, we can better understand how the MAUP influences the likelihood that our

observed spatial autocorrelation result and interpretation would have occurred due to the

choice of using the NHS Health Boards geography rather than some other ten-unit zonation.

To inform our results and interpretation of PP at the zone level, we examined where district

level PP deviated from the surrounding zone level PP. Accordingly, we used bivariate local

Moran’s I to assess the degree of scale invariance between the PP at the district and PP at the

zone level following the methods of Nelson and Brewer (2017)[42]. Using a spatial join within

Geographic variation of vestibular schwannomas
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ArcGIS, each district PP value was paired with its corresponding PP value from within the

containing zone. This process resulted in a bivariate dataset at the district scale, whereby, each

district’s PP value also had the PP value for that district extracted from the zone level. The sig-

nificance of bivariate local Moran’s I was based on 9999 conditional permutations of the zone

VS PP values while holding the district values constant. Bivariate Moran’s I calculated between

two spatial scales, in our case, allows for the identification of districts where PP is stable (scale

invariant / stationary) or unstable (non-stationary) when aggregated from the district to the

zone level [42]. Consequently, identifying those districts that are unusually different from their

surrounding analysis zone PP values, indicates where zone level reporting and interpretations

may be unduly influenced by the MAUP as a consequence of spatial aggregation.

Results

Geographic data were available for 512 individuals diagnosed with VS from 2000 to 2015. Of

these individuals, 511 met the study inclusion criteria, due to missing data in one case. Age

was available for 457 of the individuals. The mean age at the time of diagnosis of VS was 57.5

years with a minimum age of 26 years and maximum age of 88 years.

Sex dependency

Of the individuals diagnosed with VS in this sample population, 53.1% were female and 46.7%

were male. The Cross-L results indicate that the locations of male and female VS cases exhibit

spatial attraction (Fig 2a) and this is statistically significant (p< 0.005) as confirmed by a

DCLF test of the Cross-L function. The Difference-K analysis results indicate that the locations

of male VS cases are not conditionally dependent (and by compliment female cases) (Fig 2b)

at any distance, and this is confirmed by a DCLF test (p = 0.34). As such, the VS cases were

combined into a single point pattern for the calculation of period prevalence.

Calculated PP and SPP

The aggregated geography used for PP measures is shown in Table 1. At the zone level, the

Western Isles, Greater Glasgow and Clyde and Ayrshire and Arran exhibited the largest PP

(Fig 3a). The lowest PP was found in Orkney, with zero VS cases reported.

At the district level, the highest PP is observed in the south-central area of West Scotland

within the southern Inner Hebrides, in Greater Glasgow and Clyde and Ayrshire and Arron

(Fig 3b). Regions near Inverness in Highland and the Isle of Harris in Western Isles also have

high PP. Most districts within Highland and Tayside have the lowest PP.

Spatial autocorrelation

PP exhibited no significant global spatial autocorrelation at the analysis zone scale using Mor-

an’s I with our spatial dependency scheme (I = 0.125; p = 0.122) nor with a k = 4 neighbor defi-

nition (I = -0.131; p = 0.445) (S1 Appendix). From the 200 random zonations, 23% produced a

significant Moran’s I using either definition of spatial dependency tested. As such, the lack of

spatial dependency in VS at the zone level was not likely due to scale and zoning effects given

that 77% of the random zonations showed no significant spatial autocorrelation.

At the zone scale, we observed no unusual cluster centers using Local Moran’s I (S1

Appendix).

At the district level, using our definition of spatial dependency, global Moran’s I was not

significant (I = 0.041, p = 0.078), nor was significance found using a k = 4 nearest neighbor

spatial dependency scheme (I = 0.054047, p = 0.0501). However, by examining local Moran’s I

Geographic variation of vestibular schwannomas
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results, we identified several districts with high PP surrounded by low PP (Fig 4a). These dis-

tricts represented high-low cluster centers and are colored orange in Fig 4a: one centered on

the town of Killin in Forth Valley, on the western shores of Loch Tay, one in Highland, north

of Inverness, and one and one in the south in Dumfries and Galloway centered near Ecclefe-

chan. At the same time, there are many contiguous low-low clusters within western Highland

as shown by the blue districts in Fig 4a. There were some low-high cluster centers in the south-

west and central west portions of Highland (light blue in Fig 4a). Near Paisley in Greater Glas-

gow and Clyde, there was a cluster of six contiguous high-high districts (red in Fig 4a). Within

that cluster of high-high districts there was one low-high district whose population center is

Kilbarchan in Renfrewshire.

Fig 2. a) Cross-L function between the locations of male and female VS cases with pointwise simulation envelopes based on 199 simulations,

b) Difference-K functions (male-female) with pointwise simulation envelopes from 199 random labeling of 239 male VS points.

https://doi.org/10.1371/journal.pone.0175489.g002

Table 1. Period prevalence by NHS Health Boards zones.

Zone Cases Population Period prevalence Cases/10 000

Ayrshire and Arran 81 373670 2.17

Dumfries and Galloway 10 151164 0.66

Forth Valley 14 275333 0.51

Grampian 2 62370 0.32

Greater Glasgow and Clyde 261 1102686 2.37

Highland 44 340903 1.29

Lanarkshire 90 666040 1.35

Orkney 0 21349 0.00

Tayside 2 142347 0.14

Western Isles 7 27684 2.53

https://doi.org/10.1371/journal.pone.0175489.t001
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There was significant global bivariate spatial autocorrelation (I = 0.134; p = 0.005) between

the postcode district and the ten analysis zones. This significant positive bivariate spatial auto-

correlation between the district to zone scale is expected because the same variable, PP, is

being compared across two scales of spatial aggregation [42].

Wang’s q-statistic indicates no significant stratified spatial heterogeneity of the district PP

values within the zones (q = 0.023; p = 0.652). However, bivariate local Moran’s I results at the

district scale indicate areas of non-stationarity in the across-scale relation of PP (Fig 4b). For

example, the grey districts in Fig 4b indicate where district level PP values are similar to neigh-

boring zone level PP values. These cluster centers represent district-zone across-scale stability

in PP values and are evident in Tayside, Forth Valley and in parts of eastern Dumfries and Gal-

loway where low values at the district were similar to low values within adjacent districts (light

grey in Fig 4b) but at the zone scale. Conversely, in Greater Glasgow and Clyde as well as Ayr-

shire and Arran, contained mostly high-high cluster centers (dark grey in Fig 4b) but also a

large number of low-high cluster centers (magena in Fig 4b). The locations of the low-high

cluster centers within Greater Glasgow and Clyde as well as Ayrshire and Arran are suggestive

of districts with unusually lower values of PP than found at the containing zone level scale.

Moreover, within Western Isles, south Harris, North and South Uist contained low-high

Fig 3. Period prevalence (SPP) of patients presenting with VS to the National Health Services of West of Scotland a) by NHS Health Boards with

board names for reference and b) by postcode districts with settlements named within text. Note the different scales for period prevalence between

a and b.

https://doi.org/10.1371/journal.pone.0175489.g003
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cluster centers. In Tayside and Dumfries and Galloway there are a number of distinct high-low

cluster centers (green in Fig 4b) where district level PP is unusually high with respect to the

zone level PP value. The bivariate local Moran’s I results identify where, within the zones,

there are PP deviations at the district level and hence identify where aggregation from district

to zone can mask important within-zone variability.

Discussion

Key findings

This study provided an exploratory spatial analysis of the pattern of VS at two levels of spatial

aggregation in West Scotland. This is the first study to evaluate the national geographic distri-

bution of VS in the United Kingdom. Geographic information of this nature has the capacity

to identify high-needs areas and influence resource allocation and supplementation in health

policy reform.

The DCLF test of the Cross-L function results indicate that the locations of male/female

cases of VS exhibited significant attraction and the DCLF test of the Difference-K function

Fig 4. a) Univariate local Moran’s I cluster map of period prevalence (PP) at the district level; b) Bivariate local Moran’s I cluster map of period

prevalence (PP) across the district-zone level. Different color schemes are used between a and b to highlight that the univariate and bivariate local

Moran’s I are interpreted differently.

https://doi.org/10.1371/journal.pone.0175489.g004
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indicated that either male or female cases could be considered a random subset of the com-

bined pattern of VS. Therefore, male and female cases co-occur and there was no significant

conditional dependence of VS by sex in the West Scotland and so period prevalence could be

analyzed as an aggregate of male and female cases in this study.

Within the NHS Health Boards, the highest period prevalence of VS was observed in the

Western Isles, followed by the Greater Glasgow and Clyde and Ayrshire and Arran. For VS

period prevalence, most of the time, ten random zonations could not detect significant spatial

autocorrelation in PP within the NHS Health Boards in West Scotland. The results of the ran-

dom zonation analysis suggest that MAUP scale and zoning effects have negligible impacts on

our finding of a lack of global spatial structure in PP at the NHS Health Boards scale, despite

different definitions of spatial dependency. Whether the lack of significant self-similarity is

due to the small sample size of VS cases, or whether it is due to NHS administration at the

Boards level, remains to be explored. However, it would be interesting to see if other health

outcomes with similar sample sizes exhibit significant spatial autocorrelation. Moreover, there

was no significant stratified spatial heterogeneity at the West Scotland scale for postcode dis-

tricts within the zones. However, such heterogeneity could emerge with a different zonation at

the district scale and potentially lead to aggregation induced biases as a consequence of the

MAUP and this is a subject for further research.

Due to the lack of significant global spatial autocorrelation, univariate and bivariate local

spatial autocorrelation were used to explore VS PP at the district scale and identify locally

unusual values as well as unusual values between the district-zone scales. Through the univari-

ate local Moran’s I, we identified several locally unusual cluster centers that exhibited low-high,

high-high, low-low and high-low PP values when compared to neighboring districts. We found

all cluster types in Highland; a large set of low-low cluster centers can be seen surrounding the

Inner Hebrides as well as several low-high cluster centers in the south west. Bivariate local Mor-

an’s I analysis revealed that there were pockets of local non-stationarity between PP values at

the district to zone scales in Highland, Western Isles, Tayside, Forth Valley, Greater Glasgow

and Clyde as well as Ayrshire and Arran. These district level deviations represent local instabil-

ity that is masked within prevalence calculated within the larger scale NHS Health Boards. Such

information on local deviations in prevalence at smaller spatial scales could be used to target

studies on the spatial determinants of VS. Moreover, local deviations from zonal PP rates could

be used in informed decisions involving health service resource allocation or programme deliv-

ery within a given NHS Health Board. For example, within larger administrative health regions

like NHS Health Boards, highlighting small areas within the administrative zones that deviate

from larger-scale reported rates can aid in developing knowledge-based targeted interventions

or even in examining potential weak (for low-high cluster centers) or strong (for high-low clus-

ter centers) linkages between primary and tertiary care. Scale induced biases of the MAUP are

less evident within the PP measures in the central regions of West Scotland where there is less

non-stationarity. However, the results of the bivariate analyses indicate that low PP values from

district-zone are stable across scales in the majority of Tayside and Forth Valley, whereas high

values are stable in many parts of Greater Glasgow and Clyde as well as Ayrshire and Arran.

Several factors may contribute to the geographic variation of VS seen within West Scotland

including both genetic and environmental risk factors as well as the links between primary and

tertiary care.

Relation to environmental risk factors and demographics

Recently, Berkowitz et al. (2015) demonstrated evidence of environmental risk factors associ-

ated with VS, including a 4-fold increased odds of VS in individuals with a history of

Geographic variation of vestibular schwannomas

PLOS ONE | https://doi.org/10.1371/journal.pone.0175489 May 11, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0175489


environmental allergies (hay fever) and individuals working in managerial/professional occu-

pations [43]. Additionally, several studies have demonstrated similar findings in establishing

an association between VS and atopic diseases [43–46]. Interestingly, Berkowitz et al. (2015)

also demonstrated an inverse relationship between tobacco use and VS diagnosis [<20 pack-

years odds ratio (OR) = 0.10, 95% CI = 0.04–0.28;�20 pack-years OR = 0.03, 95% CI = 0.01–

0.12], postulating a possible anti-estrogenic effect of tobacco that may be protective, highlight-

ing at the same time the well-known consequences of smoking [43].

Inskip et al. (2003) examined various factors in 782 patients with brain tumours, among

them 96 with VS, showing that associations with indicators of affluence and education were

stronger for tumours that tend to grow more slowly and have less catastrophic effects, such as

VS [47]. The results of that study demonstrated a 3-fold higher odds of VS in college educated

patients and a 7-fold higher odds of VS in patient’s with household income >$75,000. It is rea-

sonable to assume that this subgroup of patients focuses more on well-being and seeks more

frequently medical help, resulting in higher diagnostic rates of such tumours.

Further studies into the patient population in Scotland are needed to determine the contri-

bution of environmental factors to the PP of VS within Scotland and give us a better insight

into the underlying pathogenesis.

Links between primary and tertiary care

Spatial variation in period prevalence of VS can also be attributed to disease surveillance prac-

tices. Stepanidis et al. (2014) demonstrated a decrease in diagnosis of VS in remote areas of

Denmark due to lower rates of reporting [48]. Better links between primary and tertiary care

might well result in higher diagnostic rates of VS. Carlson et al. (2016) found that geographic

location impacts both VS presentation and treatment because of variability in regional referral

patterns, “provider or institutional treatment preferences, and regional availability of subspe-

cialty expertise” [21]. On the other hand, one could argue that such variabilities should not be

very common within the standardized context of NHS; therefore the increased period preva-

lence observed in some predominantly rural areas of Scotland could well be real. However, in

theory, suboptimal links between primary and tertiary care may still exist within NHS and can

provide an explanation for the low-high cluster centers within certain districts found using

both univariate (districts in Highlands) and bivariate (districts in Western Isles) Moran’s I.

It is worth mentioning, though, that based on Stepanidis et al. (2014) findings, one would

expect unusually low PP in rural and remote regions of Scotland. Indeed, Orkney reported no

VS cases. On the contrary, the Western Isles has a similar population as Orkney but had the

highest PP. Moreover, consistent with Stepanidis et al. (2014), using univariate local Moran’s I,

we identified a large set of low-low cluster centers around the Outer Hebrides but, conversely,

we found several isolated high-low cluster centers within a number of rural districts [48]. Cer-

tainly, in the context of the NHS, there is more going on than, perhaps, issues related to sur-

veillance practices can explain in West Scotland. However, two of the three high-low cluster

centers at the district level were within a reasonable distance from major population centers.

For example, the cluster center in Dumfries and Galloway is well connected to Carlisle in the

England or Dumfries in Scotland by a short drive. A similar argument can be made for the

cluster center found in Highland near Inverness. This generalization is less clear for the high-

low cluster in Forth Valley. The explanation of optimal or suboptimal links between primary

and tertiary care does not seem to apply in all cases; the high-low PP clusters are highly likely

real and might be related to, for the time being, unknown factors. That being said, from a

methodological perspective, given the road connections between the high-low cluster center

districts and nearby larger population centers, an alternative model of spatial dependence,
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based on, for example, road network connections or travel time, would likely yield different

local spatial autocorrelation results. Such has been demonstrated by Matisziw et al. (2008) for

US ZIP codes [35]. Conversely, the low-low clusters identified within Highland are unusual,

mostly rural, and could represent issues related to links between primary and tertiary care.

Moreover, the factors described by Inskip et al. (2003), such as a higher level of education

resulting in higher VS diagnostic rates, can add to the possible explanation [47]; as such,

patients may wish to bypass even a suboptimal referral pathway and seek medical advice and

input at an earlier stage. That behavior can result in higher pick-up rates and consequently,

higher documented period prevalence.

Strengths and weaknesses

This first study of VS geography in the West of Scotland has provided a unique perspective on

the period prevalence of the condition. All data were derived from one tertiary center that is

responsible for the skull base service in West Scotland, ensuring a standardized diagnostic

algorithm in patient selection and documentation. However, uncovering spatial determinants

of VS is more difficult because such databases only contain the location of VS cases at the time

of diagnosis. Although patients may not have always lived at the location reported, this is prob-

ably a shared limitation for all geographical areas examined and not only for the ones with

higher/lower PP.

The primary limitation of this study stems from the relatively small number of cases for sta-

tistical analyses. However, this study identified a significant number of cases of VS compared

with the numbers in the existing literature. Given the small sample size, it was not possible to

examine the variation in VS PP at finer spatial scales of aggregation than the postcode district.

It is possible that variation in PP at smaller spatial scales could lead to different areas exhibiting

unusually high or low values of PP as has been demonstrated elsewhere [35, 49]. Analyzing the

geographic distribution of VS in West Scotland is challenging because most postcode districts

have low numbers of cases and low populations which make period prevalence estimates

somewhat unstable and spatial aggregation necessary for rate stabilization. Spatial aggregation

does, however, introduce the modifiable areal unit problem (MAUP) as a confounding factor

in the analysis and the effects of the MAUP on the robustness of the results and interpretation

requires further exploration [50]. Moreover, while we tested the MAUP scale and zoning effect

at the zone level, we utilized a crude measure of spatial dependency that may or may not be

optimal for the processes controlling VS within West Scotland.

Although our study provides a snapshot of a dynamic condition, it enhances understanding

of spatial trends in VS and helps rectify the knowledge deficit regarding period prevalence of

VS in Scotland. The findings should be interpreted with caution given the limitations of the

study analysis tools.

Conclusions

This study illustrated the spatial trends in VS period prevalence in West Scotland. This is the

first study to undertake a spatially explicit geographic analysis of VS in the United Kingdom

showing that the distribution of VS within certain areas can be unusually high or low. Our

findings demonstrated the significance of geographic analysis of the period prevalence of VS

in particular locations, with potential to enhance spatial targeting of interventions and policies.

Careful interpretation of the findings combined with input by the sector for Public Health can

help us identify factors contributing to VS and potentially other tumours.
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