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Abstract

Post-translational modifications (PTMs) add a further layer of complexity to the proteome

and regulate a wide range of cellular protein functions. With the increasing number of known

PTM sites, it becomes imperative to understand their functional interplays. In this study, we

proposed a novel analytical strategy to explore functional relationships between PTM sites

by testing their tendency to be modified together (co-occurrence) under the same condition,

and applied it to proteome-wide human phosphorylation data collected under 88 different

laboratory or physiological conditions. Co-occurring phosphorylation occurs significantly

more frequently than randomly expected and include many known examples of cross-talk or

functional connections. Such pairs, either within the same phosphoprotein or between inter-

acting partners, are more likely to be in sequence or structural proximity, be phosphorylated

by the same kinases, participate in similar biological processes, and show residue co-evolu-

tion across vertebrates. In addition, we also found that their co-occurrence states tend to be

conserved in orthologous phosphosites in the mouse proteome. Together, our results sup-

port that the co-occurring phosphorylation are functionally associated. Comparison with

existing methods further suggests that co-occurrence analysis can be a useful complement

to uncover novel functional associations between PTM sites.

Author summary

In addition to gene expression and translation control, post-translational modifications

(PTMs) represent another level to regulate proteins functions. Different PTM sites within

a protein usually co-operate to fulfill their functional roles. Recent advances in high-

throughput mass spectrometry (MS) technologies have facilitated the proteome-wide

identification of PTM sites, giving rise to both challenge and opportunity to understand

their functional relationships. Previously, several data mining approaches have been

developed to explore the global PTM interplays. In this study, we proposed to infer func-

tional associations between PTM sites from the correlation of their modification status

across many biological conditions, which was not exploited before. In practice, we tested
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if a pair of sites are modified together under the same condition significantly more often

than expected (co-occurrence). As a proof of principle, we applied this analytical strategy

to human phosphorylation because we could collect data sets of proteome-wide coverage

under 88 different conditions. We demonstrated that sites with co-occurring phosphory-

lation status are functionally associated from several lines of evidence. The co-occurrence

analysis can also uncover functionally connected phosphosites with clear biological evi-

dence which are missed by other approaches. With increasing proteome-wide data for

other types of PTMs under different conditions, the co-occurrence analysis can be inte-

grated with other methods to identify novel PTM associations.

Introduction

In addition to gene expression and translation, post-translational modification (PTM) repre-

sent another level of regulation that expands the functional capacity of proteins. It play a cru-

cial role in a plethora of biological processes including regulation of gene expression [1],

modulation of enzymatic activity [2, 3], and control of protein-protein interaction (PPI) [4].

More than 400 different types of PTMs have been discovered, including phosphorylation, acet-

ylation, methylation, ubiquitination and SUMOylation, with phosphorylation at serine/ threo-

nine/ tyrosine (S/T/Y) residues being the most abundant and well characterized type [5].

Different types of PTMs usually cooperate with each other to carry out specific functions.

PTM at different sites of the same protein can physically interact with each other or jointly

carry out a specific biological function, referred to as PTM cross-talk [6]. For example, in the

human p53 protein, phosphorylation of S37 promotes phosphorylation of S33 which together

activate p53’s transcriptional activity [7]. In the human CDC25C (cell division cyclin 25 homo-

log c) protein, phosphorylation at S214 prevents phosphorylation at its nearby site S216 and

promotes cells to enter mitosis under cancerous conditions [8]. PTM cross-talks are not lim-

ited to within the same protein. For instance, ubiquitination of histone H2B forms the basis

for the methylation of K79 of histone H3 [9–11]. Residue-specific cross-talk has also been

shown between phosphorylation of S21 in EZH2 (enhancer of zeste homolog 2) and methyla-

tion of L27 in histone H3 [12].

Thanks to the recent advances of mass spectrometry (MS) technology, the number of

known PTM sites has increased rapidly [13]. It motivated several computational studies to sys-

tematically characterize their functional relationships. Functional associations between PTM

types could be revealed by statistical enrichment of different PTM type combinations observed

within proteins [14], although it did not delineate relationships between individual PTM sites.

At individual site level, target sites modified by more than one types of PTM is the simplest

case of cross-talk [15].Apart from that, PTMs occurring in proximity were presumed to inter-

act and used to identify motifs [16]. Indeed, phosphor-acceptor residue nearby a modified

lysine (L) was found significantly more likely to be phosphorylated [17]. And the sequence and

spatial distances between phosphosites are closer than expected [18]. Some disordered protein

regions with very dense PTM aggregation were recently highlighted as important for combina-

torial PTM regulation [15]. There was also statistical evidence supporting co-operation among

locally clustered phosphorylations [19]. In addition to sequence distance, residue co-evolution

between PTM sites represent another type of surrogate for their functional associations, and

was used to establish a proteome-wide PTM type association network [20]. Previously, we

developed a naive Bayesian classifier for PTM cross-talk prediction, which integrated sequence

and structural distances, co-localization within same disordered region, as well as residue and
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modification co-evolution [21]. Based on a manually curated cross-talk data set, we demon-

strated that integration of different features achieved better performance for cross-talk predic-

tion than relying on individual features.

In addition, cross-talk between PTM sites can also be revealed from specialized MS experi-

ments. For example, “top-down” or “middle-down” MS strategy can be used to directly iden-

tify PTMs co-existing within the same peptide segments [22, 23]. Quantitative MS data can

also be exploited to infer co-existing PTMs based on their co-varying modification levels that

change interdependently across different experimental conditions [24, 25]. However, both

strategies cannot scale to the entire proteome, and were only applied to study the interactions

among various modifications on histones. Another recent study investigated the co-modifica-

tion of phosphorylation and ubiquitination in the entire proteome by developing a novel MS

experimental strategy that enrich both modification types at the same time [26]. But it is

unclear if similar methods can also be developed to study other PTM combinations. Further-

more, this strategy cannot verify if two distant co-modification exists on the same peptide

sequence, and it falls short of identifying PTM cross-talks between different proteins.

Publicly available proteome-wide PTM data are mostly generated by “bottom-up” MS strat-

egies that allow high throughput protein identification but lose connections between modifica-

tions [13, 27]. Such data are not quantitative only providing binary modification on-off status

for each PTM site. Motivated by those early studies, we hypothesized that the correlation of

binary modification status between two PTM sites can also suggest functional association. Fol-

lowing [20], functional association here is a broad concept that not only stands for cross-talk

but also describes general association like involvement in the same signaling pathway or bio-

logical function. We benchmarked this idea on human phosphorylation data, because it was

the only PTM type with proteome-wide coverage over large number of conditions by the time

of this study. We showed that co-occurrence of phosphorylation can be used to distinguish

known functionally connected phosphosite pairs from negative ones. Then we applied method

to all pairwise combinations of phosphosite sites, either within proteins or between interacting

partners, to identify pairs that tend to be modified under the same condition (co-occurrence).

We systematically compared the observed co-occurrence with randomized data set. Site pairs

showing significant co-occurring phosphorylation status were then characterized by their loca-

tion preference, sharing of functional annotations and catalytic kinases, and residue co-evolu-

tion. We also compared predictions with other existing methods to highlight differences.

Results

Collection of condition-specific human phosphorylation data

To make use of the phosphorylation status at different conditions, we assembled human phos-

phorylation identified from high-throughput MS analyses across 88 different conditions from

PhosphoSitePlus [28]. They include 16 human tissues as well as 28 cultured cell lines, 44 of

which are disease cells (S1 Table). The conditions were selected with a minimal 1000 modifica-

tion sites proteome-wide to ensure coverage. In total, the collected data contains 165,201

potential phosphosites (58.7% S, 23.6% T and 17.8% Y) of 17,819 proteins, along with their

modification status across all conditions (S1 Dataset). They include 55,145 sites of 10,868 pro-

teins (56.2% S, 18.5% T and 25.3%Y) that are phosphorylated in at least 3 different conditions

(high-frequency sites). Compared with the sites phosphorylated in less than 3 conditions (low

frequency sites), high-frequency sites are preferentially located in disordered protein regions

(79.8% vs. 75.0%, p-value<1E-5 by permutation test), evolutionary more conserved (median

Residue Conservation Score (RCS): 0.87 vs. 0.82, p-value<1E-5 by permutation test), and

showed 3-fold increase of annotated functional terms (p-value<1E-5 by permutation test).

Analysis of co-occurring phosphorylation
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The results suggest high-frequency phosphosites may be functionally more important, consis-

tent with the previous study that suggested higher proportion of functional phosphorylations

among high abundance sites [29].

Phosphorylation sites of known functional connections are more likely to

show co-occurring phosphorylation status

To measure the tendency of two sites being phosphorylated at the same condition, we cross-

tabulated the times that a pair of sites are phosphorylated across different conditions by a con-

tingency table and calculated p-value from one-sided Fisher’s exact test (FET). Since low-fre-

quency sites are unlikely to show statistically significant co-occurrence with other sites, we

only included high-frequency sites in the co-occurrence analysis. As a known example, tran-

scription factor c-Jun is phosphorylated at four high-frequency sites in our data (Fig 1A), three

Fig 1. Co-occurrence of phosphorylation status can reflect known functional associations. (A) An example co-

occurrence analysis on transcription factor c-Jun. There are four phosphosites (S58, T239, S243 and S249) on c-Jun. Their

phosphorylation status (red: on, green: off) across 88 conditions are shown. For each pairwise combination of phosphosites, their

joint phosphorylation status is summarized into a contingency table with four entries nij (i,j 2 {0,1}), where nij denotes the number

of times the site 1 is in state i site 2 is in state j. One-sided FET is used to test if two sites are phosphorylated together more often

than expected. Consistent with the previous study that three sites (T239, S243 and S249) tend to be phosphorylated together to

inhibit c-Jun’s activity in epithelial resting cells, their pairwise FET p-values are lower than their combination with S58. The most

significant co-occurring pair is highlighted. (B) Cumulative distribution of co-occurrence FET p-values for 22 known cross-talk

examples (red) are superimposed onto the p-values of all within-protein phosphosite pairs (blue). (C) Comparing the distribution

co-occurrence FET p-values between 380 homo-functional pairs and 35 hetero-functional pairs.

https://doi.org/10.1371/journal.pcbi.1005502.g001
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of which (T239, S243 and S249) are clustered in a short segment upstream of its DNA binding

domain. They are usually phosphorylated together by GSK-3 in epithelial or fibroblast cells to

inhibit c-Jun activity in resting cell states [30]. Consistent with their functional cross-talk,

phosphorylation status at T239, S243 and S249 are more likely to occur together (pairwise FET

p-values: 1.8E-4 to 6.4E-6) than their combinations with S58 (FET p-values: >1E-3).

As a proof of principle, we first examined the phosphosites which showed experimental

validated evidence of cross-talk which were collected from literature as part of our previous

study [21]. Twenty-two of them are composed of high-frequency sites in our collected data.

Compared with all phosphosite pairs within proteins, their FET p-values are predominantly

distributed at the lower end (median p-value: 5.0E-5; Fig 1B). We also made use of curated

functional annotations for phosphosites and defined homo-functional (hetero-functional) pair

as two sites that execute the same (different) biological function(s) within the same protein

(Materials and Methods). The homo-functional pairs defined in this way are expected to en-

rich with functional associations; whereas the hetero-functional pairs are more likely function-

ally unrelated. Consistent with the expectation, the FET p-values of 380 homo-functional pairs

are similar as known cross-talk pairs and significantly lower than those of 35 hetero-functional

pairs (median: 9.74E-5 vs. 1.30E-2; Fig 1C). Since homo-functional pairs have only five over-

laps with the known cross-talk set, we then combined known cross-talk and homo-functional

pairs to form the positive set, and used hetero-functional pairs as the negative set (S2 Table).

The co-occurrence test can be used to distinguish the two classes (Table 1), achieving an area

under the ROC curve of 0.713 (S1 Fig).

The above analyses suggest that we can identify functionally associated phosphosite pairs by

using the co-occurrence of their modification status across conditions.

Proteome-wide identification of co-occurring phosphorylation pairs

within proteins

We applied co-occurrence test to all pairwise combinations of high-frequency phosphosites

within proteins, resulting in a total of 521,321 site pairs in 10,868 proteins. At different p-value

thresholds to define co-occurring pairs, we consistently observed higher proportions among

all pairs than hetero-functional pairs (Table 1), suggesting that the identified co-occurring

pairs enrich true functional associations.

We also noted higher than expected proportions of co-occurrence in hetero-functional

pairs. It can be explained by our incomplete knowledge of functional associations between

phosphosite and/or due to confounding factors. For example, different protein abundances

across conditions due to biological reasons can induce artificial co-occurrence of phospho-

rylation states. When a peptide segment is at high abundance level in certain conditions, its

phosphorylation sites are likely to be all detected. In some other conditions, when it is at low

abundance, none of the phosphorylation sites could be detected. The major effect is to inflate

Table 1. Comparison between known cross-talk/homo-functional pairs (positive set) and hetero-functional pairs (negative set) across different p-

value threshold.

p-value

cutoff

Number (%) of co-occurring pairs in the

positive set

Number (%) of co-occurring pairs in the

negative set

Fold increase positive/negative

set

1E-6 146 (36.78%) 2 (5.71%) 6.44

1E-5 168 (42.32%) 4 (11.43%) 3.70

1E-4 198 (49.87%) 7 (20.00%) 2.49

1E-3 247 (62.22%) 10 (28.57%) 2.18

1E-2 295 (74.31%) 16 (45.71%) 1.63

https://doi.org/10.1371/journal.pcbi.1005502.t001
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the significance level of association test by erroneously taken missing data as non-modification

status. Although one can address this issue by incorporating protein abundance levels, this

information is only available for less than 20% conditions used in the co-occurrence analysis

(based on PaxDB). Furthermore, the data set we collected were generated by heterogeneous

MS experiments, which employed different enrichment strategies and could introduce further

variations to the digested peptide segments. The technological issue may be the major con-

founding factor, because we did not observe higher proportions of co-occurring pairs within

housekeeping proteins [31] which are highly expressed in all tissues (S3 Table).

To evaluate the effect of confounding factors, we compared the observed proportions of co-

occurring pairs in the original data under different p-value cutoffs to those of randomized data

in which the number of phosphorylations at the protein level or within short peptide segments

were kept the same as observed.

We first shuffled phosphorylation states among all potential phosphosites of each protein

under each condition. The procedure was repeated 100 times, resulting in 135,954,681 high-

frequency within-protein phosphosite pairs. We found consistent enrichments of co-occurring

pairs in the original data across different p-value thresholds (Table 2). For example, at the

most stringent threshold of 1E-6, 6.68% (34,835) pairs in 3,722 proteins of the original data

show co-occurring phosphorylation as compared with only 0.12% (169,617) pairs in random-

ized data. The fold increase of co-occurring pairs in the original data decrease with relaxing p-

value thresholds (Table 2).

We next examined protein sub-sequences that range from 10 to 100 amino acids long and

contain at least 5 potential phosphosites across conditions. We treated those short segments as

individual proteins and generated randomized data sets as above. Again, consistent enrich-

ment of co-occurrence can be seen in the original data. The enrichment level generally de-

crease with shorter fragment length (S4 Table). For example, at the fragment length of 10

and p-value cutoff 1E-5, we identified 2,357 (37.6%) co-occurring pairs compared to 147,290

(15.9%) in the randomized data. By contrast, at the length of 100 with the same p-value cutoff,

the corresponding proportions in the original and randomized data are 21.3% and 2.1%. How-

ever, phosphorylation sites at proximity are known a priori to have functional association, so

randomized data in this case are not devoid of functional association. Nevertheless, we still

observed higher fold increase of co-occurrence especially at more stringent p-value thresholds

(S4 Table).

Our permutation test procedures above fixed the observed number of phosphorylation sites

at the protein level or within peptide segments. It can give a rough estimate of false discoveries

if confounding factors mainly influences the observed number of phosphorylations, which

may not be true in the process of generating real data. Despite of the caveat, we believe the

observed co-occurring phosphorylation pairs can capture the functional association given the

results on the known positive and negative sets. And we opted to use a stringent p-value

threshold of 1E-5 to define co-occurring pairs for further functional characterization. This

Table 2. Comparison between the original and randomly permuted data in which the total number of phosphorylations at each condition kept

fixed across different p-value threshold.

p-value

cutoff

Number (%) of co-occurring pairs in the

original data

Number (%) of co-occurring pairs in the

randomized data

Fold increase Original/random

data

1E-6 34,835 (6.68%) 169,617 (0.12%) 55.67

1E-5 63,760 (12.23%) 760,188 (0.56%) 21.84

1E-4 106,815 (20.49%) 2,996,345 (2.20%) 9.31

1E-3 168,250 (32.27%) 9,014,645 (6.63%) 4.87

1E-2 251,781 (48.30%) 29,953,551 (22.03%) 2.19

https://doi.org/10.1371/journal.pcbi.1005502.t002
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threshold recovers 42.3% of known cross-talk and homo-functional pairs and 11.4% of hetero-

functional pairs; achieving a proper tradeoff between sensitivity and specificity.

Functional characterization of co-occurring phosphorylation pairs within

proteins

At the p-value threshold 1E-5, we identified 63,760 (12.23%) co-occurring pairs in 5,109

human proteins (S2 Dataset). For comparison, we also defined 94,391 within-protein phos-

phorylation pairs as controls whose FET p-values are no less than 0.5.

Compared with control pairs, sites in co-occurring pairs tend to be located closer to each

other in primary protein sequences (median: 166 vs. 415, p-value<1E-5 by permutation test;

Fig 2A). Using the protein structure data from the PDB database [32], we were able to calculate

the 3D structural distances for 1,251 co-occurring pairs and 2,022 control pairs. Phosphosites

in co-occurring pairs also situated significantly closer in 3D space than control pairs (median:

13.58 Å vs. 28.21 Å, p-value<1E-5 by permutation test; Fig 2B). The results are consistent with

the fact that modification sites that are closer to each other are more likely to have physical

interactions and functionally associated.

We then retrieved expert curated annotations from literatures for selected phosphosites.

Those include 4,971 terms of biological process for 3,133 sites, 8,434 terns of molecular

Fig 2. Characterization of the co-occurring phosphorylation pairs within proteins. The co-occurring and control phosphorylation

pairs identified within proteins are compared on their sequence distances (A), 3D structural distances (B), scores that measure sharing

annotations of biological processes (C), molecular functions (D), and catalytic kinases (E), and residue co-evolution (nMI) (F). To

control for the sequence distance in comparing annotation sharing and co-evolution, co-occurring pairs were also compared with a

subset of control pairs with matched distribution of sequence distances (S2 Fig).

https://doi.org/10.1371/journal.pcbi.1005502.g002
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function for 5,186 sites, and 364 different kinases for 7,119 sites. Compared with controls, co-

occurring pairs are more likely to contain both sites with annotations (1083 vs. 256, FET

p-value <1E-5). Among pairs with both sites annotated, co-occurring pairs tend to share at

least one annotation (biological process: 93.80% vs. 64.62%, FET p-value = 1.2E-6; molecular

function: 92.59% vs. 79.63%, FET p-value = 1.2E-4), and are more likely catalyzed by the same

protein kinase (74.72% vs. 28.43%, FET p-value <1E-5). The top enriched functions among

co-occurring pairs include protein degradation, induced cell growth, and cell mobility. We

devised a score to measure the sharing of annotations (kinases) that accounts for the number

of terms (kinases) annotated to each site and information content of each term (kinase) (Mate-

rials and Methods), and demonstrated the increased levels of function sharing among co-

occurring pairs (p-values<1E-5; Fig 2C–2E). To account for the sequence distance when

comparing annotation sharing, we selected a subset of control pairs with similar distribution

of sequence distances as co-occurring pairs (S2 Fig), and found the difference between co-

occurring and distance matched controls remained significant (p-values <1E-5; Fig 2C–2E).

Together, the results suggest co-occurring pairs contains more sites of known functions, tend

to be involved in the same biological pathways, and catalyzed by similar kinases, which cannot

be fully explained by their physical proximity.

Because only a small proportion of phosphorylation sites had literature annotations, the

functional sharing can only be analyzed for a limited number of phosphosites. To extend the

functional analysis, the co-evolution of a pair of modified residues can be used as a proxy for

their functional association [20]. We mapped all high-frequency phosphorylation sites to the

orthologous positions across vertebrates using sequence alignments from eggNOG database

[33]. Residue co-evolving scores as measured by normalized mutual information (nMI; Mate-

rials and Methods) could be calculated for 51,370 co-occurring pairs and 63,400 control pairs.

Co-evolving scores of the co-occurring pairs were significantly higher than those of the control

pairs (median nMI: 0.422 vs. 0.312, permutation test p-value < 1E-5; Fig 2F). Similarly, the

increasing level of co-evolution in co-occurring pairs remained significant after accounting for

their sequence distances (median nMI: 0.422 vs. 0.346, permutation test p-value < 1E-5; Fig

2F). We also compared evolutionary conservation of the co-occurring and the control pairs.

As expected, modification sites within co-occurring pairs are slightly more conserved than

control pairs (median RCS: 0.573 vs. 0.557, p-value = 2.4E-3 by permutation test; S3A Fig).

The differences in conservation levels increases after excluding sites shared by the co-occur-

ring and the control pairs (median RCS: 0.623 vs. 0.571; p-value<1E-5 by permutation test;

S3B Fig).

In addition to residue co-evolution, we also tested if mouse orthologous phosphosites of

human co-occurring pairs show tendency of co-occurrence of phosphorylation status. To this

end, we collected 67,555 mouse phosphosites in 10,237 proteins across 34 different conditions.

After removing low frequency sites (phosphorylated in less than 3 conditions), 32,887 phos-

phosites remained for co-occurrence analysis. We could map 23,918 (37.5%) co-occurring and

5,147 (5.45%) controls pairs from human phosphoproteins to the mouse orthologous phos-

phosites. Co-occurrence analysis in the mouse data shows FET p-values for mouse orthologs

of the co-occurring pairs are significantly lower than that of control pairs (p-value < 1E-5 by

permutation test; S4 Fig). It suggests that functional association between phosphosites cap-

tured by the phosphorylation states co-occurrence tends to be conserved from human to

mouse provided their phosphorylation status are conserved.

Together, the results above lend further support to the notion that co-occurrence of phos-

phorylation status can be used to infer functional association between phosphosites. We note

in passing that all the above results are quantitatively similar when the p-value threshold used

to define co-occurring pairs was changed to 1E-4 (S5 Fig) or 1E-6 (S6 Fig).
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Identification of co-occurring phosphorylation pairs between interacting

proteins

Functional associations between phosphorylation sites not only exist within same protein, but

also between different proteins. Phosphorylation and other types PTMs are known to mediate

the binding between PPI partners [34]. And recent studies have shown that phosphoproteins

had more PPI partners than non-phosphorylated ones and both interacting proteins tend to

be phosphorylated [35, 36]. It is also well characterized in signal transduction pathways that

phosphorylation activates kinases to phosphorylate their substrates (kinase cascade). Some sta-

ble kinase-substrate relationships can also be captured by PPI. So we extend the co-occurrence

analysis to the phosphosites between interacting proteins. We used 13,944 experimental vali-

dated high quality PPI pairs from CCSB Human Binary Interactome database [37].

A total of 55,145 high-frequency sites could be mapped to the CCSB PPI set, resulting in

132,360 pairs between 2,959 interacting partners. One-sided FET was performed to test the

tendency of co-occurrence of modification status between each phosphosite pairs.

As within-protein analyses, we first contrast phosphosite pairs that have higher chances of

functional associations with those most likely unrelated. One recent computational study

found that phosphorylations are selectively accumulated in protein complexes, and some com-

plexes tend to integrate phosphorylation signals on distinct subunits [15]. So we examined

the co-occurrence between phosphorylations from different sub-units of phosphorylation

enriched complexes reported by that study. A total of 3,654 phosphosite pairs can be mapped

to 30 protein pairs within same complexes (positive set); and 124,594 phosphosite pairs

mapped to 4,719 protein pairs that are not part of the complexes (negative set). Phosphosite

pairs in the positive set are enriched with small FET p-values as compared with the negative

set (Fig 3A, Table 3). It is consistent with the functional associations between phosphosites

within some of these complexes.

Phosphorylation states co-occurrences between interacting proteins may also be confounded

by the co-varying abundance level of interacting proteins or their digested peptides across con-

ditions. Using the same permutation approach in which the total number of phosphosites of

each protein was kept fixed, we also observed a significant excess of observed co-occurring pairs

compared with randomized data, with decreasing level of fold increase at relaxing p-value

thresholds (Table 4). We also examined short peptide fragments (10–100 amino acids) contain-

ing at least 5 potential phosphosites. By controlling the observed number of phosphorylations

within each short segment, we can observe a higher proportion of co-occurring pairs from

short segments between interacting proteins than random expectations (S5 Table). The same

caveat as in the within-protein analysis applies to interpret the result of randomization.

Compared to within-protein analysis at the same p-value threshold, the observed propor-

tion of co-occurring pairs between interacting proteins is much lower. For example, at the p-

value cutoff 1E-5, 2.73% of all high-frequency phosphosite pairs (and 7.17% of those within

same phosphorylation enriched complexes) were identified as co-occurring pairs, whereas

12.23% were found within proteins. Notably, the proportions of identified co-occurring pairs

among all pairs are consistently higher than those of the negative set (Table 3), although phos-

phosite pairs in the negative set defined above are not fully unrelated in functions, suggesting

that co-occurrence analysis can still uncover some functional associations.

Functional characterization of co-occurring phosphorylation pairs

between interacting proteins

For further functional characterization, we defined co-occurring phosphorylation pairs

between interacting proteins by FET p-value less than 1E-5 and control pairs by p-value no
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less than 0.5. A total of 3,610 co-occurring pairs (S3 Dataset) and 53,016 control pairs are iden-

tified and used in the following comparisons.

To evaluate if two phosphosites of co-occurring pairs tend to be closer in space, we test

whether two sites of co-occurring pairs are more likely to co-localize at the interaction inter-

faces of interacting proteins. Structurally resolved interactions for 6,585 human protein pairs

were obtained from the INstruct database [38]. A total of 427 co-occurring pairs are found

between protein pairs with interaction domain information, and 56.44% of them are in the

interacting interfaces. By contrast, among 1872 control pairs mapped to Instruct, only 32.32%

of them are in the interfaces (Fig 3B).

To test if co-occurring pairs tend to be catalyzed by similar kinases, we used a computa-

tional approach (Materials and Methods) to link phosphosites to 39 different kinases. In total,

Fig 3. Characterization of co-occurring phosphorylation pairs between interacting proteins in the

CCSB PPI set. (A) Co-occurring pairs located in phosphorylation enriched protein complexes [15] are

enriched with small FET p-values. Compared with control pairs, co-occurring pairs are more likely to co-

localize in the PPI interfaces (B), and be catalyzed by the same predicted kinases (C). (D) The mouse

orthologous phosphosites of human co-occurring pairs also show the tendency of being modified under same

conditions.

https://doi.org/10.1371/journal.pcbi.1005502.g003

Table 3. Comparison between the positive and negative sets between interacting proteins across different p-value thresholds. The positive set is

defined as phosphosite pairs in which both sites are located within phosphorylation enriched protein complexes [15]. The negative set is defined as phospho-

site pairs in which at least one site cannot be mapped to those complexes.

p-value

cutoff

Number (%) of co-occurring pairs in the positive set Number (%) of co-occurring pairs in the negative set Fold increase

Positive/negative set

1E-7 93 (2.55%) 444 (0.36%) 7.14

1E-6 163 (4.46%) 1,359 (1.09%) 4.09

1E-5 262 (7.17%) 3,230 (2.59%) 2.77

1E-4 422 (11.48%) 7,171 (5.76%) 2.00

1E-3 699 (19.13%) 14,052 (11.28%) 1.69

https://doi.org/10.1371/journal.pcbi.1005502.t003
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kinase information could be obtained for both sites of 882 co-occurring pairs and 6,446 con-

trol pairs. Co-occurring pairs are more likely to share at least one kinase (34.92% vs. 14.71%,

p-value<1E-5 by FET) and have higher kinase sharing scores (Fig 3C). Together, the above

results can be interpreted that physically binding proteins tend to be phosphorylated by the

same enzyme, and their structural proximity would facilitate this process.

We also analyzed residue co-evolution and conservation of co-occurrence in mouse prote-

ome. For phosphosite pairs whose co-evolving score can be calculated (54,46% co-occurring

pairs and 57.88% control pairs), the co-occurring pairs have slightly higher nMI scores than

controls (nMI: 0.2 vs. 0.19, p-value = 0.019). For phosphosites whose phosphorylation status

are conserved in the mouse orthologous positions, they contain 625 co-occurring and 1,442

control pairs. FET p-values of the co-occurrence test in mouse proteome were significantly

lower for the orthologs of co-occurring pairs than control pairs (median: 0.00193 vs. 0.409,

p-value<1e-5 by permutation test; Fig 3D). The results resemble those of within-protein pairs

showing co-occurring phosphosite pairs are more likely to co-evolve and their co-occurrence

states are conserved in mouse.

Comparison with PTMcode

The PTMcode database (http://ptmcode.embl.de) contains PTM associations of different PTM

types collected based on multiple evidence channels. Among phosphosites, their functional

relationships were computationally predicted based on residue co-evolution and space prox-

imity in 3D structure [39], with the overwhelming majority (>99%) based on co-evolution.

To compare with PTMcode, we focus on the common set of 4,617 proteins on which the

functional relationship between phosphosites can be analyzed by both PTMcode and our

study. On these genes, 504,849 phosphosite pairs were annotated by PTMcode as functionally

associated, and 30,779 phosphosite pairs were identified as co-occurring pairs (defined by FET

p-value <1E-5). The much higher number of pairs identified by PTMcode mainly because co-

occurrence analysis is limited to high-frequency phosphosites. Indeed, only 62,732(12.43%)

of pairs identified by PTMcode are composed of both high-frequency sites. Intersecting PTM

code and co-occurring pairs results in an overlap of only 9,809 pairs.

We further compared 495,040 pairs specific to PTMcode with 20,970 pairs specific to co-

occurrence analysis. Co-occurrence specific predictions contain higher proportion of pairs

with both functional annotated sites than PTMcode specific predictions (313 (1.49%) vs. 2,378

(0.48%), p-value<1E-5 by FET), and higher proportion of pairs with kinase information (334

(1.59%) vs. 4,478 (0.90%), p-value<1E-5 by FET). Among pairs with functional annotations,

co-occurrence specific pairs more likely to share functional annotations (286 (91.37%) vs.

1,736 (73.00%), p-value<1E-5) and at least one catalytic kinase (263 (78.74%) vs. 2,761

(61.66%), p-value<1E-5), and have slightly higher functional sharing scores (S7A–S7C Fig).

PTMcode v2 also predicted functional associations for PTM sites between high-confidence

interacting proteins annotated by the STRING database [40], which comprehensively catalogs

Table 4. Comparison between the original and randomly permuted data in which the total number of phosphorylations of each protein of the inter-

acting pair at each condition keep fixed.

p-value

cutoff

Number (%) of co-occurring pairs in the original

data

Number (%) of co-occurring pairs in the randomized

data

Fold increase

Original/random

data

1E-7 556 (0.42%) 1,434 (0.003%) 132.49

1E-6 1,575 (1.19%) 12,367 (0.027%) 44.07

1E-5 3,610 (2.73%) 81,611 (0.18%) 15.17

1E-4 7,809 (5.90%) 415,653 (0.92%) 6.41

1E-3 15,231 (11.51%) 1,420,678 (3.14%) 3.67

https://doi.org/10.1371/journal.pcbi.1005502.t004
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known and predicted interacting proteins. Given the difference of PPI sets and data require-

ment for different methods, comparison between them is difficult. Here we focus on the 102

protein pairs that were analyzed by both PTMcode and by our study. On these protein pairs,

9,177 were annotated as functionally associated by PTMcode, 219 were identified as co-occur-

ring pairs, with only 68 pairs in common. Bioinformatics analysis predicted kinases for 31

(14.16%) of co-occurrence specific pairs and 214 (2.33%) PTMcode specific pairs. Co-occur-

rence specific pairs are more likely to be catalyzed by the same predicted kinase (11 (35.48%)

vs. 46 (21.50%)), and have higher kinase sharing scores (S7D Fig).

The results indicated that although the application of co-occurrence is limited by the avail-

ability of the data which will continue to expand in the future, it can be complementary to the

existing method like residue co-evolution in predicting functionally associated phosphoryla-

tion. And co-occurrence analysis is more likely to identify site pairs with share functional

annotations and catalyzed by the same kinase.

Discussion

More than half of all human proteins can be phosphorylated. And phosphorylation dynami-

cally regulates enzymatic activity, protein stability, subcellular localization, and transmit

signals to downstream pathways, etc. [41]. Its function can be fine-tuned by multiple phos-

phorylation sites within protein or protein complex [42]. To better understand function rela-

tionships between different phosphosites, in this study, we exploited co-occurrence of

phosphorylation status across conditions from public available high-throughput MS data.

To mitigate the influence of confounding factors, we opted to use a stringent p-value

threshold in statistical test. And a series of simulations were performed to systematically

compared the number of identified co-occurring phosphosite pairs with random expectation

controlling for the number of phosphorylations within protein or short peptide segments.

Although we consistently observed higher proportion of co-occurring pairs than random per-

mutation, we did not derive false discovery rates from this comparison because randomization

may not fully capture the effect of confounding factors and would most likely under-estimate

false positives. In the future, incorporating protein abundance information and applying uni-

form MS protocols across conditions can better address this issue. We also benchmarked the

discriminative performance of the co-occurrence p-value in classifying the positive set that

are enriched for known functional associations and the negative set that are more likely to be

functionally unrelated. The performance based on this type of analysis should be interpreted

as a lower bound, given the lack of golden standard for the positive and negative sets. Taken

together the method’s ability to distinguish the positive and negative sets, higher discovery

rates in the original than randomized data, and high a priori functional association between

phosphosites within proteins, we believe the identified co-occurring pairs within proteins are

enriched for functional associations.

We then sought additional evidence to support the functional relevance of the identified

co-occurring pairs by their sequence/structural proximity and residue co-evolution, which are

also two commonly used measures of functional association [16, 20]. Phosphorylations closer

to each other have higher chance of physical interaction. Indeed, for more than two thirds of

known cross-talk pairs, two phosphosites are within 20 amino acids. Common mechanisms of

functional association include that phosphorylation at one site facilitate the phosphorylation

the other site (e.g., S33 and S37 of p53 [7]), or several phosphosites need to be simultaneously

phosphorylated to fulfill a molecular function (e.g., T239, S243, S249 of c-Jun [30], Y342 and

Y346 of Sky [43]). Functional associations are certainly not limited to nearby phosphosites.

Among 63,760 significant co-occurring pairs within proteins, the primary sequence distance is
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less than 20 amino acids for 26.77% of all pairs, and more than 57.63% of them are separated

by at least 100 amino acids. A similar proportion (60.27%) were also observed for functionally

associated phosphosite pairs in PTMcode [39] identified by the co-evolution method. Our

comparison with PTMcode showed limited overlap and suggested co-occurrence analysis can

be used as a complement. Identified co-occurring pairs include several well characterized

long-range functional cross-talks, including Y707 and Y806 of CDCP1 that are phosphorylated

by Src family kinases (SFKs) and activate CDCP1 to promote cell growth and SFK activities

[44], S22 and S390 of lamin-A that are phosphorylated by BGLF4 and promote the reorganiza-

tion of the nuclear lamina [45], and S612 and T365 of Rb protein which function together to

prevent its association with E2F transcription factor [46]. Notably, the first two examples were

not uncovered by PTMcode.

While it is plausible that those long range functional cross-talks play roles in allosteric and

orthosteric regulation of proteins [47], another possibility could be that a group of phospho-

sites in a protein region contributes to the modification collectively through an aggregate

property irrespective of precise locations [48, 49], e.g. through bulk electrostatics [50]. Under

this model, natural selection would act to maintain the total number of phosphosites but indi-

vidual phosphosites may not be conserved [51]. Co-evolution may fail to identify the func-

tional association in such cases. A well-studied example is pre-replication complex: several

sub-units in human (CDC6, CDT1, MCM2, MCM4, and ORC1) contain cluster of phos-

phosites that are phosphorylated by CDKs. Those phosphosites showed rapid evolutionary

turnover even when the local cluster of site is preserved. Co-occurrence analysis identified

functional associated pairs in all five proteins, notably no evidence of co-evolution for phos-

phosites of ORC1 and CDT1. Other examples of clustered co-occurring phosphorylations

include DNA repair protein ERCC5, DNA polymerase subunit RFC1, RNA polymerase sub-

unit POLR2A, etc.

Throughout this manuscript, we focus on co-occurrence or positive correlation of modifi-

cation status, because we found few negative correlations in the original and randomized data

(S6 Table). Although most known cross-talks between phosphorylations are positive (activat-

ing or co-operative), negative (inhibit or steric hindrance) example does exist, for example the

mutual inhibitory between phosphorylation of S214 and S216 of CDC25C [8]. In other cases,

phosphorylations at different sites in the same protein can have opposite effects on protein

activity causing activation or inhibition of downstream function [52]. We examined the modi-

fication status for the CDC25C example and 35 hetero-functional pairs in which one site has

activating function and the other has inhibiting function (S7 Table), but found none of them

show negative correlation trend. There are two possible reasons. First, the steric hindrance

case cannot be revealed in the data because we observe both sites are phosphorylated under

multiple conditions. In the case of CDC25C, we indeed observed moderate evidence of co-

occurrence between S214 and S216 (p-value = 1.1E-4). It is because the phosphorylation status

detected by the “bottom-up” MS technology reflects the stoichiometry of phosphorylation in a

pool of multiple isoforms, even if two sites are mutually exclusive on one isoform, they can still

be detected under the same condition because both isoforms exist. This issue can be address

by “top-down” or quantitative MS approaches. Second, sites with opposite functional catego-

ries cannot also be identified as negative correlation because in many conditions neither site is

phosphorylated due to biological (low protein abundance) or technical reasons (low enrich-

ment of digested peptides). Indeed, over 80% of phosphosites analyzed in this study are

phosphorylated in less than 10 conditions and over 60% are phosphorylated in less than 5 con-

ditions (S8 Fig). After removing conditions when neither sites are phosphorylated, we found

that hetero-functional pairs tend to be phosphorylated in only one site, consistent with their

opposite functions. The two reasons above can be unified under the same statistical principle
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that the presumed negative correlation is indeed conditional association. For mutual inhibi-

tory pairs, negative correlation is conditional on being on the same protein isoform; for het-

ero-functional pairs, negative correlation is conditional on at least one site is phosphorylated.

The co-occurrence analysis of binary phosphorylation status can only identify marginal associ-

ation which is not necessarily the same as conditional association.

We also applied co-occurrence analysis to interacting protein pairs. Given lower a priori
of functional association for sites between proteins and issues of confounding, we expect to

observe higher rate of false positives. Despite of this, the observed global trends support the co-

phosphorylation of interacting proteins by the same kinase [35, 53], and the role of signal inte-

gration in phosphorylation enriched protein complex [15]. We found several between co-

occurring pairs with suggestive functional evidence. For example, GRB2 and one of its interac-

tion partner GAB2 contain more than 20 inter-protein co-occurring phosphosite pairs. GRB2

is an adaptor protein involved in signal transduction and cell communication [54, 55], and

GAB2 is a multi-site docking protein and serve as the gateway into GRB2 activation [56]. The

co-occurring phosphosite pairs between these two proteins may play roles in mediating inter-

action between different signaling pathway and signal integration. As another example, Y705 of

STAT3 and Y323/Y352 of SYK show co-occurrence under more than half of biological condi-

tions consistent with the established genetic and biomedical evidence that STAT3 is a substrate

of SYK [57], so the co-occurrence in this case may represent part of signal cascading. In this

study, interacting proteins are defined by a set of experimentally validated high-quality PPI. One

limitation is that PPI may not include many kinase-substrate relationships [58]. We collected

8,666 known kinase-substrate pairs from PhosphoSitePlus and only found 10 overlap with the

CCSB PPI, possibility because kinase usually interact with phosphosites in a transient manner.

When applying the co-occurrence analysis to kinase-substrate pairs, the identified proportion of

co-occurring pairs are similar as the PPI set (S8 Table). The enrichment of co-occurring pairs in

phosphorylation enriched complexes and in interaction interfaces are also observed (S9 Fig).

For the co-occurrence analysis between interacting proteins, we suggest it be applied to the cases

in which there is strong evidence for functional association between phosphorylations, and

interpretation should be made by considering the function of interacting proteins.

Together our study shows that co-occurring phosphorylation are functionally associated,

and suggests the utility of mining co-occurrence of modification status to reveal functional

association between PTM sites. With the increasing coverage of other PTM types, the co-

occurrence can potentially be integrated with other methods to identify novel functional asso-

ciations between different PTMs. We also found that phosphosites of the co-occurring pairs

are more likely to contain functional annotations and evolutionary conserved, suggesting they

are more likely to be functional. While previous studies to prioritization functional phosphory-

lations focus on individual sites [17, 29, 59], the functional associations identified by the co-

occurrence analysis in our study can provide further lines of evidence for this purpose.

Materials and methods

Compilation of phosphorylation sites under different conditions

We downloaded all experimentally observed human phosphorylation sites from the Phos-

phoSitePlus database (http://www.phosphosite.org, last access: 2016–02) [28]. The observed

modification sites were further stratified into different laboratory (cell line vs. tissue) and phys-

iological (disease vs. non-disease) conditions, resulting in a total 656 data files. To ensure pro-

teome-wide coverage, we only retained 88 different conditions with at least 1000 modification

sites. The final data set used in the analysis contains 55,145 sites of 10,868 proteins and their

binary phosphorylation status under the 88 conditions (S1 Table).
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To investigate if the observed functional association between phosphorylation sites in the

human proteome were conserved in mouse, we also downloaded all mouse phosphorylation

sites and processed with the same criteria as human. The final data set includes 67,555 sites of

10,237 mouse proteins along with their phosphorylation status under 34 different conditions.

Orthologous proteins of human and mouse were downloaded from InParanoid database v8

[60]. Only the 1-to-1 orthologs with confidence scores greater than 0.9 were kept. To map

human phosphorylation sites to the orthologous positions in mouse, human and mouse pro-

tein sequences from the UniProt database were aligned by MUSCLE 3.8.31 [61].

We mapped phosphosites to the disordered protein regions predicted by DisEMBL [62].

The 3D structural positions were obtained from PDB database [32]. And structural distance

between phosphosites was defined as the distance between the two α-carbon atoms adjacent to

the carboxyl group of amino acids.

Identification of co-occurring phosphosites pairs

For each pair of phosphorylation sites, we cross-tabulated the times that two residues are phos-

phorylated under different conditions into a 2-by-2 contingency table. The p-value of one-sided

FET was used to evaluate the tendency of phosphorylation to co-occur under the same condi-

tions. The procedure applied to phosphosites within proteins or between pre-specified protein

pairs. In the main text, we chose the threshold of 1E-5 to define co-occurring pairs. Residue sites

that are phosphorylated in less than 3 conditions were removed prior to the calculation because

pairs with one rarely phosphorylated site cannot not reach the desired significance level.

To explore how many co-occurring phosphorylation pairs can be identified in the random-

ized data sets, we performed a series of permutation tests in the following way. For each pro-

tein, we first identified its potential phosphosites which were modified at least once across

conditions. Then we randomly introduced the same amount of phosphorylation status as

observed at each condition among those potential sites. The process was repeated 100 times;

and one-sided FET was performed as above to identify co-occurring pairs within proteins

or between protein pairs. The above procedure generated randomized data sets by fixing the

total number of modification sites within protein, we also considered controlling the number

modification sites within a short peptide segment. To do this, we identified all non-overlap-

ping windows of 10, 20, 50, 70 or 100 amino acids long which contain no less than 5 potential

phosphorylation sites, treated them as individual proteins and then applied the same permuta-

tion procedure as above to generate randomized data.

Co-evolving and conservation scores

We downloaded multiple sequence alignment (MSA) and the species tree of vertebrates non-

supervised orthologous groups (veNOG) from the eggNOG database (v4.5) [33]. Human

phosphorylation sites were mapped to the orthologous positions across vertebrates. The nor-

malized mutual information (nMI) [63–65] was used to measure the co-evolution of residues

at two modification sites:

nMIðX; YÞ ¼
MIðX; YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x2AX

pðxÞlogðpðxÞÞ
X

y2AY

pðyÞlogðpðyÞÞ
r ð1Þ

MIðX; YÞ ¼
X

y2AY

X

x2AX

pðx; yÞlogð
pðx; yÞ

pðxÞpðyÞ
Þ ð2Þ

Analysis of co-occurring phosphorylation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005502 May 1, 2017 15 / 23

https://doi.org/10.1371/journal.pcbi.1005502


where x and y represent amino acids or alignment gaps at the orthologous positions of human

phosphosites X and Y across species; p (x) and p (y) are the marginal frequencies, and p (x, y) is

the joint frequency of x and y across MSA. Only sites with at least three non-conserved resi-

dues across species were included in the nMI calculation.

Residue conservation score (RCS) was used to measure the conservation of phosphorylation

sites, and was calculated using the method of [20]. Briefly, for each site we first determine the

maximum branch length (MBL) in the species based on residues the species that have the same

amino acid as human. MBL is calculated as the ratio relative to the two most distant species.

Then we built a sub-tree containing the most common ancestor of species with the same

amino acid as human, and calculated the ratio of conserved residues (RCR) among species in

the sub-tree. Finally, RCS was obtained by the product of MBL and RCR. Given both MBL and

RCR are defined as ratios, RCS will take values from 0 to 1.

Functional annotations of phosphosites

We retrieved experts curated annotations about biological process, molecular function, and

catalyzing kinases for phosphosites from the PhosphoSitePlus database. For sites with annota-

tions, they were classified into three board functional categories (activate/ inhibit/ dual). We

defined homo-functional pair as two phosphosites that belong to the same category and share

at least one annotation term, and hetero-functional pair as those that belong to different cate-

gories and do not share any annotation term.

To measure the sharing of functional annotations between two phosphorylation site, we

devised a score that account for the information content (specificity) of annotation terms

which is defined as:

1

NA � NB

X

Ai2A;Bj2B

½IfAi ¼¼ Bjg �
1

FðAiÞ
� ð3Þ

where A and B denote the sets of annotation terms for two modification sites, NA and NB are

the cardinality of the sets, and Ai and Bj are individual terms. F(Ai) is the frequency of the term

Ai that appear in the entire database; I{Ai == Bj} is an indicator function taking value of 1 only

if Ai and Bj are the same. Effectively, this formula accounts for the number of annotations of

each site and puts higher weights to the sharing of specific (low frequency) terms than the gen-

eral (high frequency) terms.

Predicting the catalytic kinases of phosphorylated sites

We used position weight matrix (PWM) to represent kinase-specific substrate motifs defined

as the 15 amino acids sequence context centering on the modification site:

M ¼

MA;1;MA;2; . . . ;MA;14;MA;15

MC;1;MC;2; . . . ;MC;14;MC;15

MD;1;MD;2; . . . ;MD;14;MD;15

. . .

MY;1;MY;2; . . . ;MY;14;MY;15

2

6
6
6
6
6
6
6
6
4

3

7
7
7
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5
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ð5Þ
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where k 2 {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} i,j2 {1,2,. . .,15}. qk,j and bk,j denotes the

frequency of amino acid k at motif position j in the foreground and background set respectively.

To derived the foreground set, we downloaded all known kinases-substrate relationships

from the PhosphoSitePlus database, and selected 39 kinases with at least 50 different site-spe-

cific substrates. Then for each kinase, the sequences of 15 residues centering on the substrate

phosphorylated sites were extracted and positional frequencies of amino acids were calculated.

For the background set, we retrieved 15 amino acid context centering on S, T, or Y sites of all

human proteins.

To predict whether one phosphosite was catalyzed by a kinase, we made use of this kinase’s

PWM and score the phosphosite given its sequence context:

Score ¼
X15

j¼1

Msj;j

where sj is the amino acid at motif position j for this phosphosite. For each kinase, we first

scored all its known substrates, and took the median score as the cutoff for prediction. Then

for phosphorylation sites with unknown kinase, if its score by the kinase’s PWM exceeded the

cutoff, the site was predicted to be catalyzed by this kinase. Note, in this way one phosphosite

can be predicted to be catalyzed by multiple kinases.

Supporting information

S1 Dataset. Human phosphosites and their phosphorylation status under all 88 laboratory

or physiological conditions (Table S1). The data file is essentially a 2-D matrix. Each row

denotes a phosphosite; and each column represents one condition. The on-off modification

status is shown as 0s and 1s.

(TXT)

S2 Dataset. Phosphosite pairs within proteins that show co-occurring phosphorylation sta-

tus. The data file contains co-occurring phosphosite pairs identified by FET p-value <1E-4.

For each pair, its contingency table and one-side FET p-value is shown.

(TXT)

S3 Dataset. Phosphosite pairs between interacting proteins that show co-occurring phos-

phorylation status. The CCSB PPI database is used to define interacting proteins. The data

file contains co-occurring phosphosite pairs identified by FET p-value <1E-4 in the union of

two sets. For each pair, its contingency table and one-side FET p-value is shown.

(TXT)

S1 Table. The eighty-eight laboratory or physiological conditions. For each condition, it

shows a brief description, total number of phosphorylations, and literature references.

(XLSX)

S2 Table. Application of co-occurrence test to the known positive and negative sets. The

positive set is comprised of 397 known cross-talk or homo-functional pairs; the negative set is

comprised of 35 hetero-functional pairs. For each pair of phosphosite, it shows the contin-

gency table summarizing their joint modification status and one-sided FET p-value.

(XLSX)

S3 Table. Number of observed co-occurring pairs identified within proteins of housekeep-

ing genes. It compares, across different p-value thresholds, the number and proportion of co-

occurring pairs within proteins encoded by housekeeping genes and all others. Housekeeping
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genes are defined by an updated list of 3804 genes [31].

(DOCX)

S4 Table. Number of co-occurring pairs within same short peptides across different p-

value thresholds (related to Table 2). It compares the proportion of co-occurring pairs iden-

tified within short peptides (10–100 amino acids) that contain at least 5 phosphosites and ran-

domly permuted data where the number of phosphorylations of each peptide at each

condition is fixed.

(XLSX)

S5 Table. Number of co-occurring pairs between short peptides of interacting proteins

across different p-value thresholds (related to Table 4). It compares the proportion of co-

occurring pairs identified between short peptides (10–100 amino acids) of interacting proteins

which contain at least 5 phosphosites and randomly permuted data where the number of phos-

phorylations of each peptide at each condition is fixed.

(XLSX)

S6 Table. Number of negatively correlated pairs. One-sided FET is applied on both original

data randomized data to identify negative correlated pairs. The results are shown across differ-

ent p-value thresholds.

(DOCX)

S7 Table. Example of phosphosite pairs of presumed “negative correlation”. The list

includes one example of known cross-talk where phosphorylation at one site inhibit the phos-

phorylation at the other (CDC25). It also includes 35 hetero-functional pairs within proteins

with either site carrying out distinct functions under different conditions.

(XLSX)

S8 Table. Number of co-occurring pairs between known kinases and substrates across dif-

ferent p-value thresholds. A total of 18,771 high-frequency phosphosites were mapped to

known kinase-substrate pairs resulting in 503,077 phosphosite pairs between 284 kinases and

1,797 substrates. (A) Comparison between the positive and negative sets. The positive set is

defined as phosphosite pairs in which both sites are located within phosphorylation enriched

protein complexes [15]. The negative set is defined as phosphosite pairs in which at least one

site cannot be mapped to those complexes. (B) Comparison between the original and ran-

domly permuted data in which the total number of phosphorylations of each protein of the

interacting pair at each condition keep fixed.

(DOCX)

S1 Fig. The ROC curve for classifying known cross-talk/homo-functional pairs and hetero-

functional pairs based their co-occurrence of phosphorylation status. It shows true positives

(sensitivity) and false positives (1-specificity) with respect to different FET p-value thresholds.

(TIF)

S2 Fig. The distribution of sequence distances for the co-occurring pairs (A) and matched

control pairs (B) within proteins.

(TIF)

S3 Fig. Comparison of the evolutionary conservation levels between phosphosites in the

co-occurring pairs and the control pairs. Conservation level is measured by residual conser-

vation score. Comparisons are made using either all phosphosites (A), or after removing sites

that are shared by the co-occurring and the control pairs (B).

(TIF)
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S4 Fig. FET p-values of mouse phosphosite pairs orthologous to human. The mouse ortho-

logous phosphosites of human co-occurring pairs are more likely to be modified under the

same conditions than those of control pairs.

(TIF)

S5 Fig. Characterization of the co-occurring phosphorylation pairs within proteins

(related to Fig 2). The co-occurring pairs within proteins are defined by FET p-value<1E-4,

and controls p-value> = 0.5. The co-occurring and control pairs are compared on their

sequence distances (A), 3D structural distances (B), scores that measure sharing annotations

of biological processes (C), molecular functions (D), and catalytic kinases (E), and residue co-

evolution (nMI) (F). To control for the sequence distance in comparing annotation sharing

and co-evolution, co-occurring pairs were also compared with a subset of control pairs with

matched distribution of sequence distances. The co-occurring pairs defined by FET p-value<

1E-5 are also superimposed on the plots.

(TIF)

S6 Fig. Characterization of the co-occurring phosphorylation pairs defined by FET p-

value<1E-6 within proteins. The co-occurring pairs within proteins are defined by FET p-

value<1E-6, and controls p-value> = 0.5. The co-occurring and control pairs are compared

on their sequence distances (A), 3D structural distances (B), scores that measure sharing anno-

tations of biological processes (C), molecular functions (D), and catalytic kinases (E), and resi-

due co-evolution (nMI) (F). To control for the sequence distance in comparing annotation

sharing and co-evolution, co-occurring pairs were also compared with a subset of control pairs

with matched distribution of sequence distances. The co-occurring pairs defined by FET

p-value<1E-5 are also superimposed on the plots.

(TIF)

S7 Fig. Comparison with PTMcode. For phosphosite pairs within proteins, pairs that identi-

fied only by PTMcode and only from co-occurrence analysis are compared by the scores that

measure sharing annotations of molecular functions (A), biological processes (B), and catalytic

kinases (C). For phosphosite pairs between interacting proteins, PTMcode specific and co-

occurrence specific pairs are compared by the score that measures sharing of computationally

predicted kinases (D).

(TIF)

S8 Fig. Distribution of frequencies that phosphosites used in the co-occurrence analysis

are modified under 88 conditions.

(TIF)

S9 Fig. The enrichment of kinase-substrate co-occurring pairs in phosphorylation enriched

complexes (A) and in interaction interfaces (B).

(TIF)
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