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Abstract 

Background:  Tuberculosis remains a serious public health concern globally. The enormous social, economic, and 
health impacts of the diseases are attributed to the lack of updated data on the prevalence, geospatial distribution, 
population structures, and genotypic variants of the circulating M. tuberculosis.

Methods:  Structured questionnaire, mycobacterial culture, and standard 24-Mycobacterial Interspersed Repeated 
Units-Variable Number Tandem Repeats (MIRU-VNTR) were employed to collect sociodemographic characters, resi-
dence linked information, and genotype the isolates. The retrospective discrete Bernoulli model was used to identify 
the hot spot districts of sputum smear positivity, and Web-based Miru-VNTRPlus were used for the identification of 
lineages and sublineages.

Results:  Out of 832 presumptive pulmonary tuberculosis (PTB) suspects, 119 (14.3%) were smear-positive. In the 
multivariate binary logistic model, PTB suspected patients in the age groups of 7–25 and 25–34 and those from rural 
residents were 4.53 (AOR = 4.53; 95% CI 2.25–9.13), 3.00 (AOR = 3.00; 95% CI 1.41–6.35) and 1.65 (AOR = 1.65; 95% CI  
1.01–2.70) times at higher risk of turning smear-positive. Eleven (47.8%) districts of Arsi Zone were shown to have a 
high rate of clustering (RR = 2.27; 95% CI 1.62–3.2) of smear-positive PTB. Of 72 isolates queried for the lineage assign-
ment, 59 (81.9%) were classified into the previously known lineages and 13 (18.1%) were not assigned to any known 
lineages. Overall, 42 (58.3%) belong to M. tuberculosis lineage 4 (Euro-American), 16 (22.2%) M. tuberculosis lineage 3 
(Delhi/CAS), and 1 (1.4%) M. tuberculosis Lineage 1 (Indo-Oceanic/ East Africa Indian). Further classification to the sub-
lineage indicates that the predominant lineage was Delhi/CAS comprising 16 (22.2%) isolates followed by 15 (20.8%) 
isolates belonging to Haarlem. The remaining isolates were distributed as 13 (18.1%) TUR, 6 (8.3%) LAM, 4 (5.5%) URAL, 
4 (4.5%) NEW-1 and 1 (1.4%) EAI.

Conclusion:  Our study showed higher smear-positive results among PTB suspected patients and remarkable spatial 
variation across districts of Arsi Zone in smear-positive PTB. This information together with the genotypic features 
could be used as input for the efforts of designing control strategies.
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Background
Tuberculosis (TB) remains one of the major public health 
problems with an estimated 10 million new cases and 
1.6 million deaths globally [1]. Ethiopia is 7th among the 
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30 high-burden TB countries with an annual incidence 
rate of 164 cases/10,000 population. Despite the several 
efforts and achievements in the control of TB, the disease 
is among the major public health problems in the country 
with an estimated mortality of 24 cases/10,000 popula-
tion. One of the major reasons for the unabated TB chal-
lenge is the uneven distribution of the disease across the 
country [2]. Particularly, the heterogeneous prevalence of 
smear-positive TB in small geographic areas such as dis-
tricts substantially affects the transmission dynamics and 
control efforts.

Previous epidemiological and spatial–temporal stud-
ies conducted in various parts of the country showed that 
there is a significant geographic variation of tuberculosis 
burden across various administrative units of the coun-
tries such as districts and Kebeles [3, 4]. The variation 
could be associated with differences in the community 
and individual level risk factors and discrepancies in the 
implementation of control strategies [5]. Such small-area 
variations of TB may have important implications for 
local and national health policy, to target interventions 
to those areas and communities at the highest risk. How-
ever, previous spatial analyses of TB have been generally 
conducted using routinely collected TB notification data 
consisting of limited variables. Particularly those studies 
usually focus on secondary data from health facilities and 
lack integrating the defining feature of heterogenicity of 
tuberculosis burden such as bacterial genetic characters.

The geographic variability of the TB burden is asso-
ciated with host, bacterial and environmental factors 
[6]. The physiological and medical parameters of the 
host play a significant role in maintaining the transmis-
sion dynamics of TB. For example, smear-positive pul-
monary tuberculosis patients transmit M. tuberculosis 
significantly than smear-negative patients [7, 8], play-
ing a pivotal role in the epidemiology and transmission 
of tuberculosis. That is why smear microscopy remains 
the backbone to identify the most infectious individuals 
despite its limited sensitivity [9]. Subsequently, the TB 
control program places the greatest emphasis on the early 
diagnosis of smear-positive PTB to ensure prompt initia-
tion of treatment to reduce the transmission of infection.

Bacterial genetics is a powerful and well-studied fac-
tor contributing significantly to the uneven distribution 
of tuberculosis and disease outcomes. Mycobacterium 
tuberculosis complex (MTBC) is considered as clonal 
bacteria species sharing 99.9% similarity at the nucleo-
tide level. Nonetheless, recent advances in molecular 
techniques and genome sequencing approaches acknowl-
edged the existence of huge diversity among this clonal 
species and divided the MTBC into 7 main human-
adapted lineages (L1-7) (Lineage 1 (Indo-oceanic), Lin-
eage 2 (East-Asian), Lineage 3 (East-Africa-Indian), 

Lineage 4 (Euro-American), Lineage 5 (West-African 
1/Mycobacterium africanum), Lineage 6 (West African 
2), Lineage 7 (Woldia/Ethiopia) and animal-adapted line-
ages [10]. Lineage 2, 3, and 4 are called the modern line-
ages distributed across the wide geographic area whereas 
lineage 1, 5, and 6 are called the ancient lineages that are 
mainly restricted in a certain geographic area. Lineage 7 
(recently named Aethiops vetus) is discovered from the 
central highland of Ethiopia.

M. tuberculosis genotyping has several implications 
as the genetic variation could determine the phenotypic 
characteristics like disease outcomes. Genotypes of the 
strains affect the bacterial growth rates and gene expres-
sions, emergence, and distribution of drug resistance, 
vaccine efficacy, and clinical presentations. The strain 
type also influences geographic distribution patterns, 
transmission capacities, and disease-causing capacities. 
For example, lineage 2 (Beijing) and lineage 4 (Euro–
American) are the most widely distributed and virulent 
than the West African lineages [11]. Further characteri-
zation of the lineages to sub-lineage showed the distinct 
characteristics of the sub-lineages. From Euro-American 
lineage, the sub-type Haarlem strain shows higher viru-
lence than the geographically restricted lineages [12]. 
Intriguingly, the characterization of M. tuberculosis iso-
lates from different parts of the world like Ethiopia could 
also support the impact of genetic variation on disease 
outcomes, and the development and validation of novel 
diagnostic approaches.

In this study, we aimed to determine the smear positiv-
ity, the geospatial clustering, and the genetic diversity of 
M. tuberculosis isolates obtained from Arsi Zone, Ethio-
pia. Continuous investigation and detailed understand-
ing of the prevalence, geospatial distribution, population 
structures, and genotypic variants of the M. tubercu-
losis circulating in the areas could ensure the designing 
and evaluation of universally effective novel control 
strategies.

Methods
Study setting
The study was conducted at the Asella Teaching Hospital, 
University hospital of Arsi University, situated in Asella 
Town, South-East of Addis Ababa. The hospital has 297 
beds and acts as a medical referral center for a popula-
tion of 3.5 million inhabitants in the Arsi Zone and its 
surroundings. The Zone is found in the central part of the 
Oromiya National Regional State and astronomically lies 
between 60 45′ N to 58′ N and 38 32′ E to 40 50′ E. Cur-
rently, it is divided into 25 districts: Amigna, Aseko, Bale 
Gasegar, Chole, Digeluna Tijo, Diksis, Dodota, Enkelo 
Wabe, Gololcha, Guna, Hitosa, Jeju, Limuna Bilbilo, Lude 
Hitosa, Merti, Munesa, Robe, Seru, Sire, Sherka, Sude, 
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Tena, Tiyo, Ziway Dugda. Provided that Asella Teaching 
Hospitals is one of the oldest health facilities with better 
infrastructure and experienced health personnel as well 
as the only referral hospital in the Zone, most tuberculo-
sis patients particularly referral cases come to the hospi-
tal from all districts.

Samples collection and sputum smear examination
A facility-based study was conducted at Asella Teach-
ing Hospital between February 2016 and August 2016. 
Before the sputum collection, a pretested structured 
interviewer-administered questionnaire was used to col-
lect data on socio-demographic, (age, sex, residence, 
education), districts of the patients (≥ 7  years old), pre-
vious contact with TB cases, and facility service-related 
data from pulmonary tuberculosis suspected patients fol-
lowed by the collection of sputum samples at a spot and 
the next day morning for sputum smear examinations. 
Age of ≥ 7 years old was considered since they could pro-
vide sputum sample after consent was obtained from the 
parent and/or legal guardian.

Culture and DNA isolation
As depicted in Fig.  1, sputum smear positive samples 
were collected and mycobacterial culture was con-
ducted as described by Forbes et  al. [13]. Briefly, the 
samples were decontaminated and concentrated using 
N-acetyl L-cysteine (NANC)–NaOH techniques at 
Adama regional tuberculosis laboratory. The concen-
trated samples were suspended in 1–2  ml phosphate 

buffer solution (pH 6.8), thoroughly mixed and 2–3 drops 
were inoculated into the Lowenstein Jensen (LJ) media 
and incubated for 4–8  weeks with a regular check-up 
for the growth. Colonies from culture-positive samples 
were preserved in 10% glycerol freezing media until 
required for further processing. Isolation of genomic 
DNA (gDNA) was conducted on culture-positive isolates 
using the Roche Cobas Amplicor extraction kit (Roche 
Diagnostics, USA) as previously described [14]. The DNA 
samples were shipped to the Laboratory of the Health, 
Technology and Informatics, The Hong Kong Polytechnic 
University for genotyping.

Genotyping using MIRU‑VNTR
The PCR amplification of the 24 MIRU-VNTRs loci was 
conducted using 24 pairs of primers as described pre-
viously by Supply et  al. [15]. Briefly, amplification was 
conducted in 96 well plates that enabled the amplifica-
tion of eight samples per 12 loci. The target loci were 
amplified in a total of 20  µl mix containing variable 
proportion of MgCl2, 4  µl of Q-solution, 0.08  µl (5  U/
µl final concentration) HotStarTaq DNA polymerase, 
0.4 µl (10 mM) dNTP, 0.4 µl forward and reverse prim-
ers (at 20 µM final concentration), 2 µl 10X PCR buffer, 
9.1  µl, and 2  µl of DNA template. The amplification 
was conducted using Veriti thermal cycler set at initial 
denaturation at 95 °C for 15 min, 40 cycles of 94 °C for 
1 min, annealing at 59 °C for 1 min, extension at 72 °C 
for 1:30 min, and a final extension of 72 °C for 10 min. 
The amplified products were mixed with 6X loading dye 

Fig. 1  The flowchart demonstrating the number of samples processed at each step during the study
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in a proportion of 5:2 v/v, electrophoresed for 2 h using 
1.5% agarose gel (Vivantis Agarose (Molecular Biol-
ogy Grade) in 1X TBE (Tris–Borate EDTA) buffer with 
RedSafe™ Nucleic Acid Staining Solution (iNtRON Bio-
technology) and visualized under UV transillumina-
tion. The product size was compared against the 100 bp 
ladder and the copy number was determined manually 
using allele calling tables. Each locus for eight isolates 
was electrophoresed together to reduces the bias dur-
ing size determination (Additional file 1: Figure S1).

Data analysis
After the collected data were entered into the excel 
spreadsheet, it was exported to SPSS version 22 for 
descriptive and Binary logistic regression model analy-
sis. For spatial analysis, using the retrospective discrete 
bernoulli model, the data was exported to SaTScan 
version 9.6 and Quantum Geographical information 
system (QGIS) version 3.12. The binary logistic regres-
sion model was used to determine the association of 
patients’ characteristics with sputum smear positivity, 
while the retrospective discrete Bernoulli model was 
used to identify the sputum smear positivity hot spot 
districts. The maximum spatial cluster size was con-
sidered as 50% of the population at risk; the Boscoe’s 
limit on cluster risk level (relative risk) of more than 
one was used to restrict the high rate cluster. The final 
significant clusters were declared at a p value less than 
0.05 (i.e. which combined the Standard Monte Carlo, 
Sequential Monte Carlo, and Gumbel Approximation) 
with its 95% CI of relative risks and those which had 
no Geographical Overlap. The maximum replication 
was set at 999 of Monte Carlo Replication. Finally, spu-
tum smear-positive hot spot areas were presented by 
QGIS as per their level of cluster. An analysis of the 
MIRU-VNTR data was conducted using the browser-
based software (http://​www.​MIRU-​VNTRp​lus.​org) as 
described by Allix-Beguec et al. [16]. The numerical 24 
loci copy numbers of isolates were entered into an excel 
spreadsheet and uploaded. Similarity matching with the 
standard reference strains was conducted by setting the 
maximum distance of 0.17 followed by phylogenetic 
tree classification. Unweighted Pair Group Method 
with Arithmetic Mean (UPGMA) based dendrogram 
of the phylogenetic tree was constructed. A cluster rate 
was calculated as the number of isolates with identi-
cal MIRU-VNTR alleles divided by the total number of 
test isolates. The minimum spanning tree was used to 
detect the clonal complex of M. tuberculosis as well as 
to assess the genetic links and clonal complexes (CC). 
The clonal complex was defined as M. tuberculosis 
strains with only two loci differences.

Results
Sociodemographic characteristics, prevalence of smear 
positive and associated factors
A total of 832 PTB suspected patients participated in the 
study. Out of this, 451 (54.2%) were male and 589 (70.8%) 
were rural residents. The median age of the patients 
was 35  years with an interquartile range of 27 and age 
ranged from 7 up to 86 years. A total of 324 (38.9%) of the 
patients were illiterate and the majority, 658 (79.1%) had 
no previous history of hospital admission (Table 1).

Out of 832 presumptive PTB patients, 119 (14.3%) 
were smear-positive with variable tuberculosis preva-
lence among the studied sociodemographic character-
istic. Accordingly, male (15.1%), age group of less than 
or equal to 25 (22.7%), and rural residents (15.8%) had a 
higher prevalence of smear-positive PTB. Out of the vari-
ables considered in this study, only age groups stand out 
to be significantly associated with the smear-positive rate 
(X2 = 28.26, P = 0.000). Further analysis of the consid-
ered variables with the prevalence of smear-positive PTB 
showed that the age and residence of the patient were the 
risk factors for the smear positivity. Accordingly, people 
at age groups of 7–25 and 25–34 were 4.53 (AOR = 4.53; 
95% CI 2.25–9.13) and 3.00 (AOR = 3.00; 95% CI 1.41–
6.35) times at higher risk of turning smear-positive com-
pared with the old age group (≥ 55  years), respectively. 
Likewise, though the residence site of the patients was 
not identified as a risk factor on the bivariate analysis, it 
becomes a risk factor after adjusting for other confound-
ers on the multivariate analysis (Table 2).

Spatial distribution tuberculosis patients
As illustrated in Fig. 2, presumptive PTB patients visited 
the hospital from 23 (92%) of the currently 25 districts 
of Arsi Zone. The disease was significantly clustered in 
eleven (11) (47.8%) districts (RR = 2.27; 95% CI 1.62–3.2) 
of the zone while two districts (i.e. Digaluna Tijo, and 
Tiyo) were identified as potential clusters of the disease 
(RR = 1.43; 95%CI 0.95–2.16) (Table 3).

Genetic diversity of M. tuberculosis
Out of 90 culture-positive isolates, seventy-two (72 
(90%)) isolates were genotypically characterized using 
standard MIRU-VNTR. Of 72 isolates queried for the lin-
eage assignment, 59 (81.9%) were classified into the pre-
viously known lineages and 13 (18.1%) were not assigned 
to any known lineages. Overall, 42 (58.3%) belong to 
M. tuberculosis lineage 4 (Euro-American), 16 (22.2%) 
M. tuberculosis lineage 3 (Delhi/CAS), and 1 (1.4%) 
M. tuberculosis Lineage 1 (Indo-Oceanic/East Africa 
Indian). Further classification to the sublineage indicates 
that the predominant lineage was Delhi/CAS compris-
ing 16 (22.2%) isolates followed by 15 (20.8%) isolates 

http://www.MIRU-VNTRplus.org
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belonging to Haarlem. The remaining isolates were dis-
tributed as 13 (18.1%) TUR, 6 (8.3%) LAM, 4 (5.5%) 
URAL, 4 (4.5%) NEW-1 and 1 (1.4%) EAI (Table 4). The 
sub-lineages were distributed across the districts (Addi-
tional file 1: Table S1). Further, the comparative results of 
the study isolate and isolates in the MIRU-VNTR data-
base are provided in Additional file 2: Figure S2. A table 
comprising  information of MIRU-VNTR characterized 
isolates with country of origin, distrcits of each patient, 
name and order of each locus is provided as Additional 
file  3: Table  S2 (xls). The constructed phylogenetic tree 
exhibited a distinct clustering by lineages and sub-line-
ages as well as isolates were highly diverse and had deep 
branching (Fig. 3). The analysis of the clustering rate indi-
cated 17 isolates out of 72 (23.6.0%) were grouped into 
4 clusters with each cluster composed of 2–7 isolates 
belonging to the Haarlem sub-lineage. Delhi/CAS and 
LAM sub-lineages consisting of 1 cluster each composed 
of 2 isolates.

Minimum spanning tree and cluster
The minimum spanning tree (MST) was constructed to 
identify the clonal complex groups of the isolates within 
dual locus variants. As shown in Fig. 4, the lineages are 
indicated by a different color and, the size of the individ-
ual circle shows the number of clusters. All the lineages 
detected using UPGMA analysis were also detected in 
MST that further confirm genetic linkage and clustering. 
Six clonal complexes (CC1-6) consisting of a maximum 
of 6 and a minimum of 2 isolates with dual locus distance 
were identified. The largest clonal complex (CC1) (5 iso-
lates) belongs to the TUR sub-lineage.

Discussion
Smear-positive PTB is linked to the higher risk of trans-
mission from an infected individual to a health sus-
ceptible individual and hence has of great role in TB 
epidemiology and infection control. In this study, we 
investigated the prevalence of smear-positive tubercu-
losis among presumed PTB suspected patients as well 

Table 1  Sociodemographic characteristics and prevalence of smear-positive PTB February 2016, and August 2016, at Asella Hospital, 
Arsi Zone, Oromia Region, Ethiopia (n = 832)

Characteristics Total number Percent (%) Smear positive (%) Chi-square P value

Yes No

Sex

 Male 451 54.2 68 (15.1) 383 (84.9) 0.48 0.55

 Female 381 45.8 51 (13.4) 330 (86.6)

Age (years)

 7–25 264 31.7 60 (22.7) 204 (77.3) 28.26 0.000

 25–34 148 17.8 24 (16.2) 124 (83.8)

 35–44 139 16.7 13 (9.4) 126 (90.6)

 45–54 101 12.1 9 (8.9) 92 (91.1)

 ≥ 55 180 21.6 13 (7.2) 167 (92.8)

Education

 Illiterate 324 38.9 40 (12.3) 284 (87.7) 2.10 0.55

 Elementary 328 39.4 50 (15.2) 278 (84.8)

 High school 122 14.7 21 (17.2) 101 (82.8)

 College and above 58 7.0 8 (13.8) 50 (86.2)

Residence

 Urban 243 29.2 26 (10.7) 217 (89.3) 3.63 0.06

 Rural 589 70.8 93 (15.8) 496 (84.2)

Previous history of hospital admission

 Yes 174 20.9 23 (13.2) 151 (86.8) 0.21 0.37

 No 658 79.1 96 (14.6) 562 (85.4)

Previous history of imprisonment

 Yes 56 6.7 7 (12.5) 49 (87.5) 0.16 0.43

 No 776 93.3 112 (14.4) 664 (85.6)

The habit of drinking raw milk

 Yes 471 56.6 68 (14.4) 310 (85.6) 0.02 0.49

 No 361 43.4 51 (14.1) 403 (85.9
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as determined the sociodemographic and geographic 
risks associated with tuberculosis in Arsi Zone. Further, 
molecular profiling of the isolates was conducted to iden-
tify the circulating strains in the area. Genetic typing 
enhances the detection of major clones associated with 
various disease outcomes and mapping out unsuspected 
outbreaks. Further, characterization is also a founda-
tion for the study of the pathogenesis of the disease that 
affects virulence, deciphering the MTBC population 
structure and enabling the development of new diagnos-
tics, vaccines, or treatments.

Out of 832 presumptive PTB suspected patients, 119 
(14.3%) were smear-positive. This result is consistent 
with the 15.2% reported from Bahir Dar, Northwest 
Ethiopia [17], 14.2% reported from Metehara sugar fac-
tory hospital; Central Ethiopia [18], and 16.7% reported 
from Harar TB control center, Eastern Ethiopia [19]. It 
is worth noting that the relatively higher smear-positive 
PTB in the current study and similar results mentioned 

above are associated with the fact that the participants 
were presumed tuberculosis patients and/or the cases 
could be referral cases from the district health facil-
ity with a higher likelihood of turning smear-positive. 
The implication however is; those individuals could be 
highly infectious and need to be closely monitored to 
enhance the control of tuberculosis.

The higher risk of smear-positive PTB in young age 
groups (adolescent and young) compared with the 
old age in this study is concordant to several previous 
studies [20–22] and with age-stratified tuberculosis 
estimates published by the Global Burden of Diseases 
group [23]. This could be related to the fact that these 
age groups are at their active period of development 
and have wider social contact outside their household 
that could increase the chance of acquiring tubercu-
losis. Furthermore, many comorbidities relevant to 
tuberculosis emerge or are exacerbated during these 
ages including risky substance use (including tobacco 

Table 2  Crude and adjusted odds ratio for various factors that affect the smear-positive PTB during February 2016, and August 2016, 
at Asella Hospital, Arsi Zone, Oromia Region, Ethiopia (n = 832)

Bold indicate stastically significant variable

Character Smear positive Crude OD 95% CI P value Adjusted OD 95% CI P value

Yes (%) No (%)

Sex

 Male 26 (10.7) 217 (89.3) 0.14 0.78–1.70 0.488 1.25 0.82–1.92 0.29

 Female 93 (15.8) 496 (84.2) 1 1

Age (years)

 7–25 60 (22.7) 204 (77.3) 3.78 2.01–7.12 0.000 4.53 2.25–9.13 0.00
 25–34 24 (16.2) 124 (83.8) 2.48 1.22–5.01 3.00 1.41–6.35
 35–44 13 (9.4) 126 (90.6) 1.33 0.59–2.95 1.47 0.64–3.35
 45–54 9 (8.9) 92 (91.1) 1.26 0.52–3.05 1.38 0.56–3.38
 ≥ 55 13 (7.2) 167 (92.8) 1 1

Education

 Illiterate 40 (12.3) 284 (87.7) 1.23 0.81–1.99 0.553 1.40 0.56–3.47 0.775

 Elementary 50 (15.2) 278 (84.8) 1.47 0.83–2.62 1.10 0.47–2.57

 High school 21 (17.2) 101 (82.8) 1.13 0.50–2.57 1.25 0.51–3.11

 College and above 8 (13.8) 50 (86.2) 1 1

Resident

 Rural 93 (15.8) 496 (84.2) 0.64 0.40–1.01 0.058 1.65 1.01–2.70 0.048
 Urban 26 (10.7) 217 (89.3) 1 1

History of hospital admission

 No 96 (14.6) 562 (85.4) 1.121 0.68–1.83 0.64 0.95 0.57–1.59 0.852

 Yes 23 (13.2) 151 (86.8) 1 1

Previous history of imprisonment

 No 112 (14.4) 664 (85.6) 1.18 0.52–2.67 0.69 1.07 0.45–2.53 0.881

 Yes 7 (12.5) 49 (87.5) 1 1

The habit of drinking raw milk

 No 51 (14.1) 403 (85.9 0.97 0.66–1.44 0.89 1.01 0.67–1.51 0.961

 Yes 68 (14.4) 310 (85.6) 1 1
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use), infection with HIV, and mental health conditions. 
Consequently, the adolescent and young age groups 
contribute considerably to the ongoing transmission 
of tuberculosis particularly in the cases of smear-
positive PTB. Provided that these age groups are at 
higher risk of acquiring tuberculosis necessitates the 

targeted intervention strategies for effective control of 
tuberculosis.

After controlling for other factors, the place of resi-
dence also was identified as a risk factor in the multi-
variate analysis. This is contrary to previous studies [24, 
25] that identified urban residents as a determinant of 

Fig. 2  Spatial distribution of smear-positive PTB in the Districts of Arsi Zone, during February 2016, and August 2016, Oromia Region, Ethiopia. The 
map is generated using the freely accessible Quantum Geographic Information System (QGIS) Developer team (2020). Version 3.12, Open- source 
Geospatial Foundation Project. http://​qgis.​osgeo.​org”

Table 3  Spatial distribution of smear-positive PTB in districts of Arsi Zone during February 2016, and August 2016, at Asella Hospital, 
Arsi Zone, Oromia Region, Ethiopia (n = 119)

Cluster type Lists of districts within the cluster Number of 
observed 
cases

Number of 
expected 
cases

RR (95% CI) Loglikelihood Ratio P value

High rate most likely cluster Amigna, Shirka, Bale Gesger, Seru, 
Sude, Chole, Diksis, Jeju, Tena, 
Robe

38 20.39 2.27 (1.62, 3.2) 9.359710 0.00069

Most likely secondary cluster Digaluna Tijo, Tiyo 44 36.86 1.43 (0.95, 2.16) 1.450177 0.57

Low rate most likely cluster Lode Hetossa 1 4.92 0.20 (0.03, 1.37) 2.655211 0.291

http://qgis.osgeo.org
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the PTB associated with the overcrowded living style in 
the urban area. On the other hand, the current study 
is also in agreement with a study from China [26] and 
a case–control study conducted in Ambo Hospital [27] 
where being a rural resident is one of the predictors of 
smear-positive PTB. The discrepancies could be attrib-
uted to differences in the target study subject and the 
lifestyle of the studied population.

Knowledge of the spatial distribution of tuberculo-
sis could augment the control and prevention efforts 
by identifying high burden areas with low cases detec-
tion and weak public health programs. Such identifica-
tion allows the policymakers to establish priorities for 
intervention, including TB diagnosis and treatment 
service to halt the transmission. In this study, signifi-
cant clustering of smear-positive PTB was identified in 
11 (47.8%) districts that cover areas central to remote 
Eastern parts of the Arsi zone. The results could suggest 
that sputum smear-positive cases in the study districts 
were not randomly distributed but in clusters in a spa-
tial pattern. Molecular characterization of the isolates 
from the clustered districts showed that Delhi/CAS, 
LAM, and Haarlem are the most frequently identified 
sublineage (Additional file  1: Table  S1). The informa-
tion could serve as a piece of background information 
to undertake a large-scale investigation to develop 
appropriate strategies to improve tuberculosis control 
schemes.

The majority (71.1%) of the isolates belong to the 
Euro-American lineage which is consistent with the 
previous reports [10, 28] suggesting the successful and 
widespread distribution of this lineage in Ethiopia. Fur-
ther classification of the Euro-American lineage to sub-
lineages indicated the deep-branching of the lineage and 
the high diversity of the strains belonging to this lineage 

suggesting the higher M. tuberculosis genetic reposi-
tory potential of the area. We also speculate that diver-
sity could also reflect the potential distance between 
the patients from whom the samples were collected. 
M. tuberculosis Delhi/CAS and Haarlem represent the 
largest proportion (accounting for 22.2% and 20.8%), 
respectively.

A recent systematic review by Tulu and Ameni [29] 
also indicated the high prevalence of the Delhi/CAS 
and Haarlem sub-lineage among the diverse isolates and 
similarly, a study by Tessema et  al. [30] also identified 
M. tuberculosis Delhi/CAS and Haarlem as 1st and the 
3rd common sub-lineage among the isolates included in 
their study. Though Delhi/CAS is presumed to be geo-
graphically localized in Indian and Central Asia, two 
assumptions were forwarded for the distribution of this 
sub-lineage in Ethiopia. The currently growing bidirec-
tional economic and social relationship between Ethio-
pia and India might have increased the transmission 
dynamics of these strains from India to Ethiopia. Or East 
Africa, specifically Ethiopia, is assumed to be the origin 
of human tuberculosis, thus, strains of M. tuberculosis 
might have migrated to India and central Asia following 
the “Out of Africa” theory.

Mycobacterium Haarlem sublineage is ubiquitously 
distributed worldwide, and representing about a quar-
ter of mycobacterial isolates in central America, Europe, 
and the Caribbean region linked with the European 
movements during colonization [31]. Studies have also 
shown that these strains are actively transmitting in an 
urban setting and responsible for prolonged outbreaks of 
drug-resistant tuberculosis [32, 33]. Several studies have 
also proven the widespread distribution of the Haarlem 
sublineage in various parts of Ethiopia reinforcing our 
finding [34–36]. The widespread dissemination and clus-
tering of the sublineage in the study area could suggest 
the high transmission ability and the active transmission 
of this strain in the population warranting the strength-
ening of the control efforts to halt the spread.

Though M. tuberculosis TUR sub-lineage which is 
believed to predominant in Turkey and Eastern European 
countries is occasionally reported from Ethiopia, this is 
the first report that identified the considerable number 
(18.1%) of TUR sub-lineage which formed large clonal 
complexes of 7 isolates in the study area. This might be 
associated with few studies conducted using MIRU-
VNTR based genotyping as most genotyping studies in 
Ethiopia have been conducted by using a spoligotyping 
method that classifies TUR sublineage as T1 [37, 38], one 
of the most prevalent sublineages reported in Ethiopia. 
Concomitant to our finding recently Wondale et al. [34], 
using MIRU-VNTR have also identified the TUR sub-
lineage in the South-Omo region of Ethiopia which they 

Table 4  The lineage and sub-lineage placement of the M. 
tuberculosis isolates (n = 72)

L lineage

Lineage Sub-lineage Ethiopian 
isolates 
(%)

L3 (East-Africa-India) Delhi/CAS 16 (22.2)

L4 (Euro-American) Haarlem 15 (20.8)

L4 (Euro-American) TUR​ 13 (18.1)

L1 (Indo-oceanic) EAI 1 (1.4)

L4 (Euro-American) LAM 6 (8.3)

L4 (Euro-American) New-1 4 (5.5)

L4 (Euro-American) URAL 4 (5.5)

– Not assigned 13 (18.1)

Total 72 (100)
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Fig. 3  The phylogenetic classification of M. tuberculosis isolates isolated from Arsi Zone, during February 2016, and August 2016, Oromia Region, 
Ethiopia (n = 72)
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reasoned could be linked to the presence of Turkey inves-
tors in the South Omo.

The sizeable number of isolates (18.1%) were not 
assigned to any of the previously known lineage or sub-
lineage in this study. This is consistent with the previous 
studies in a different part of Ethiopia as reviewed by Tulu 
et al. [29]. This could support the fact that the East Afri-
can region in general and Ethiopia in particular, are pre-
sumed as the reservoir for the large diversity of MTBC 
ranging from ancient to new or modern TB lineages. 
The notion could be supported by the discovery of new 
mycobacterial lineage in Ethiopia [10] and isolation of the 
smooth colony tubercle bacilli (M. canettii) in East Afri-
can [39] the species which are considered as the ancestor 
of MTBC.

Owing to the airborne transmission of M. tuberculosis, 
transmission dynamic estimation using the cluster rate 
approach would significantly benefit tuberculosis control 
programs. This would help to identify the factors contrib-
uting to the increasing incidence of tuberculosis. Overall, 
a clustering rate of 26.4% was recorded in this study. The 
clustering rate for isolates in this study is noticeably lower 
than previous reports in a different part of the country 
(reviewed, [29]) which could be related to the discrete 
nature of the patients from whom the isolates were col-
lected. The Haarlem isolates were identified as the major 
cluster in Ethiopian isolates suggesting that this strain is 

responsible for the majority of the recent transmission in 
the study area.

Our works has also some limitations. We conducted 
a facility-based study to assess the prevalence of smear 
positive tuberculosis associated risk factors at Asella 
Hospital followed by further genetic characterization of 
the isolates as well as evaluated the geospatial cluster-
ing of the case. Thus, it could not be possible to estab-
lish the causal relationship between the predictors and 
the outcome variables. Further, our study only focuses 
on smear positive pulmonary cases that could limit the 
evaluation of true burden of tuberculosis in the area.

Conclusion
Our study showed higher smear-positive results among 
PTB suspected patients and remarkable spatial vari-
ation across districts of Arsi Zone in smear-positive 
PTB. This information together with the genotypic fea-
tures could be used as input for the efforts of designing 
control strategies.

Abbreviations
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Fig. 4  The minimum spanning the tree of the M. tuberculosis characterized in this study. The number along the broken line connecting individual 
circle indicates the genetic distance (number of loci differences) between each strain
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