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Abstract
In clinical trials, it is often of interest to compare and order several candidate regi-
mens based on multiple endpoints. For example, in HIV vaccine development, 
immune response profiles induced by vaccination are key for selecting vaccine regi-
mens to advance to efficacy evaluation. Motivated by the need to rank and choose a 
few vaccine regimens based on their immunogenicity in phase I trials, Huang et al. 
(Biostatistics 18(2):230–243, 2017) proposed a ranking/filtering/selection algorithm 
that down-selects vaccine regimens to satisfy the superiority and non-redundancy 
criteria, based on multiple immune response endpoints. In practice, many candidate 
immune response endpoints can be correlated with each other. An important ques-
tion that remains to be addressed is how to choose a parsimonious set of the avail-
able immune response endpoints to effectively compare regimens. In this paper, we 
propose novel algorithms for selecting immune response endpoints to be used in 
regimen down-selection, based on importance weights assigned to individual end-
points and their correlation structure. We show through extensive simulation studies 
that pre-selection of endpoints can substantially improve performance of the sub-
sequent regimen down-selection process. The application of the proposed method 
is demonstrated using a real example in HIV vaccine research, although the meth-
ods are also applicable in general to clinical research for dimension reduction when 
comparing regimens based on multiple candidate endpoints.
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1 Introduction

When developing a vaccine against a rare disease such as HIV/AIDS, efficacy tri-
als are typically large and operationally challenging to conduct, making it critical 
to select and rank candidate vaccine regimens based on their immunogenicity in 
phase I studies before the regimens can be advanced to efficacy evaluation. We and 
others in the HIV Vaccine Trials Network (HVTN) have been developing statistical 
approaches and frameworks for this process. For example, out of 15 vaccine regi-
mens studied in Phase I trials by the HVTN, combining 5 unique prime-boost types 
and 3 Env dose × adjuvant types, Huang et al. [13] described statistical approaches 
for selecting up to 3 regimens to advance for concurrent testing in a later, multi-
regimen HIV vaccine efficacy trial. For maximum operational efficiency, it is desir-
able to have a strong statistical framework for selecting the most promising regimens 
in such a process, as the maximum number of regimens allowed to be selected is 
typically pre-determined based on the budget limit. The design of one such multi-
regimen phase IIb HIV vaccine efficacy trial in Southern Africa was laid out by 
Gilbert et al. [8], to evaluate one or more qualifying prime-boost vaccine regimens 
for efficacy against a shared placebo arm. In phase I trials designed to inform down-
selection of vaccine regimens, the immunogenicity of a given vaccine (as character-
ized by multiple immune response endpoints such as T-cell or antibody responses) is 
an essential criterion in regimen selection. Moreover, vaccine-induced multivariate 
immune response biomarkers play a key role in vaccine development as potential 
correlates of a vaccine’s protective effect in preventing HIV infection; that is, a vac-
cine’s efficacy can be predicted based on the magnitude and breadth of the immune 
responses elicited by the vaccine [6, 7].

Huang et  al. [14] investigated the problem of how to rank and down-select a 
small number of vaccine regimens based on a given set of immune response end-
points. While others have also studied this type of “pick-the-winner” problem, previ-
ous work typically focused either on the selection of a single best regimen based on 
a few endpoints [19–21] or on the comparison of two regimens with respect to uni-
variate or multivariate endpoints [1, 2, 4, 16, 18, 22, 23]. The particular problem of 
selecting the best several regimens based on multivariate endpoints has unique chal-
lenges. Huang et al. [14] addressed this down-selection problem through the devel-
opment of formal superiority and non-redundancy criteria for selecting regimens. 
The formal superiority criterion states that regimens with superior immunogenicity 
are preferred. The non-redundancy criterion states that when more than one regimen 
can be advanced, it is desirable to advance regimens with diverse immune profiles 
such that different vaccines (acting via potentially different mechanisms) for HIV 
prevention can be evaluated in the efficacy trial. A rank/filtering/selection (RFS) 
algorithm based on ranking and hypothesis testing was developed [14] to select regi-
mens satisfying these two criteria, where a pre-determined set of immune response 
endpoints was used for comparison between regimens. Multi-test adjustment was 
proposed to account for the multiple pairs of regimens for comparison and the multi-
variate endpoints considered in order to control the probability of selecting regimens 
with redundant immune profiles into the final set.
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In practice, however, phase I immunogenicity studies often yield a large num-
ber of candidate immune response endpoints, evaluated over multiple laboratories. 
These immune response endpoints can involve different immune classes, such as 
cellular or humoral responses, as well as different antigens. Moreover, these immune 
response endpoints can be correlated with each other and differ in their strength as 
predictors of a vaccine’s protective effect. Entering all possible immune response 
endpoints into the down-selection algorithm would create an unnecessary meas-
urement burden and also have a negative impact on the down-selection process. 
A numeric example in Huang et  al. [14] shows that when multivariate immune 
response endpoints are highly correlated with each other, the multi-test adjustment 
implemented in the RFS algorithm can be too conservative and have reduced power 
to detect differences between regimens. How to choose a parsimonious subset of 
immune response endpoints from a larger number of candidate endpoints to enter 
into down-selection is an important open question that needs to be addressed. In 
this paper, we aim to fill this gap. We investigate and propose algorithms for select-
ing immune response endpoints to enter into down-selection, taking into account 
information about the importance of individual endpoints as correlates of a vac-
cine’s protective effect as well as the correlation structure among these endpoints. 
While this research is motivated by the down-selection problem in the HIV vaccine 
trial setting, it also has more general applications for feature selection when a large 
number of candidate endpoints are available for comparison between intervention 
groups.

In Sect.  2, we describe the problem setting. After briefly reviewing the down-
selection criteria and the RFS down-selection algorithm based on multivariate end-
points, we propose our feature selection algorithms for selecting endpoints to enter 
the RFS algorithm, based on importance weights assigned to individual endpoints 
and their correlation structure. In addition, we introduce a special risk model setting 
to (1) help interested readers understand the connection between down-selection 
based on immune response data and the ranking of vaccine efficacy and (2) provide 
guidance on the practical choice of importance weights for individual endpoints. 
In Sect. 3, we conduct extensive numerical studies to compare the performance of 
the proposed feature selection algorithms combined with RFS to that of naive RFS 
without feature selection under various settings. In Sect. 4, we apply the proposed 
methods to an immune response data example from HIV vaccine trials. We then 
complete the paper with concluding remarks.

2  Methods

We consider a phase I randomized immunogenicity trial with m vaccine arms. Sup-
pose a set of vaccine-induced immune response endpoints X of dimension p can be 
measured at a single time point for every vaccine recipient. Let j = 1,… ,m be the 
regimen indicator, with nj indicating the sample size for the jth regimen. Let k be the 
participant indicator, which takes values 1,… , nj for regimen j. Let i = 1,… , p be 
the immune response endpoint indicator. We use Xijk to indicate the value for the ith 
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immune response endpoint from participant k from regimen j and let �ij indicate the 
mean of Xijk.

The goal of the down-selection process is to select up to Q(1 ≤ Q < M) regimens 
that are superior among the set of candidate regimens and that have unique immune 
profiles. Huang et  al. [14] developed superiority and non-redundancy criteria for 
the down-selection process, as well as a rank/filtering/selection (RFS) algorithm for 
selecting regimens based on multivariate immune response endpoints to meet these 
criteria. Below, we briefly review the down-selection criteria and the RFS algo-
rithm; further details can be found in Huang et al. [14].

2.1  Review of the Down‑Selection Criteria and Algorithm

Without loss of generality, assume that for each individual immune response end-
point considered, a larger immune response is associated with a better protec-
tive effect of the vaccine and thus is desirable. In practice, it is possible for some 
immune response measures to have a “harmful” effect, in the sense that a higher 
immune response is associated with lower vaccine efficacy. In such a situation, one 
can use the negative value of the original immune response measurement as the 
endpoint of interest in the framework we will describe next. Suppose the compari-
son between regimens with respect to individual endpoints is based on mean val-
ues. That is, a regimen A is considered superior, inferior, or equivalent to another 
regimen B with respect to a particular endpoint i if the mean of the endpoint in A is 
larger ( 𝜇Ai > 𝜇Bi ), smaller ( 𝜇Ai < 𝜇Bi ), or the same ( �Ai = �Bi ) compared to that in 
B. A regimen A is defined to be superior to regimen B (or equivalently B inferior to 
A) with respect to their immune profiles if A is superior to B with respect to at least 
one endpoint and is not inferior to B with respect to any endpoint. Two regimens A 
and B are said to have equivalent immune profiles if they are equivalent with respect 
to each endpoint considered. When a set of vaccine regimens is selected, the supe-
riority criterion [13] is fully satisfied if no selected regimen is inferior to any other 
regimen that enters down-selection. The non-redundancy criterion [14] argues that 
with limited resources for conducting the efficacy trial, it is desirable to select vac-
cine regimens with diverse immune profiles, so that diverse potential mechanisms 
that mediate a vaccine’s protective effects can be investigated in the efficacy trial. A 
vaccine regimen A is defined to be non-redundant to regimen B if A is not superior, 
not inferior, and not equivalent to B with respect to its immune profile. Non-redun-
dancy is satisfied for a set of selected regimens if it is satisfied for any regimen pair 
in the set. An example illustrating the two criteria is presented in Web Supplemen-
tary Fig. 1.

Targeting these two criteria, Huang et al. [14] proposed a “ranking, filtering, and 
selection” (RFS) algorithm to down-select regimens. In RFS, all regimens are first 
ranked according to a univariate summary score across individual endpoints (such 
as the weighted mean 

∑p

i=1
wi�ij ), with a pre-determined positive weight wi for each 

individual endpoint reflecting its importance or usefulness in predicting vaccine effi-
cacy. The top-ranked regimen is selected first, after which the rest of the regimens 
are evaluated sequentially according to their rank. In each step, a new regimen is 
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compared with each regimen in the set selected earlier. Through hypothesis test-
ing, if relative to any regimen already selected, one fails to declare that the new 
regimen is superior or non-redundant, the new regimen will not be selected into the 
set; otherwise, the new regimen is selected and all regimens selected earlier that 
fail to show non-redundancy to the newly selected regimen will be filtered out. This 
process is repeated until Q regimens have been selected or until all regimens have 
been evaluated once. As HIV vaccine efficacy trials are large and operationally chal-
lenging, satisfaction of the non-redundancy criterion is of paramount importance to 
avoid wasting valuable resources by advancing redundant regimens to efficacy eval-
uation. The RFS algorithm controls the probability of selecting non-redundant regi-
mens into the final set through Bonferroni correction and uses the Holm procedure 
[10] to account for the comparison between multiple regimen pairs and the testing of 
multiple immune response endpoints. Details of the RFS algorithms are included in 
Web Supplementary Appendix A.

When the vaccine-induced immune responses are uncorrelated or have only small 
correlations between each other, the RFS algorithm performs well in selecting the 
desired regimens and excluding undesired regimens. However, as also demonstrated 
in Huang et al. [14], the presence of highly correlated immune response endpoints 
can decrease performance of the down-selection process. In particular, the multi-
test adjustment to declare a significant difference between regimens can be too con-
servative when the endpoints are highly correlated, leading to sub-optimal power for 
detecting a difference between the regimens. Moreover, in vaccine immunogenicity 
studies, many candidate immune response endpoints are typically available; some 
of them might be useful surrogate endpoints for predicting a vaccine’s protective 
effect (albeit with inherent measurement error), whereas others might have limited 
or no utility as surrogate endpoints, as they are not actually related to differential 
vaccine efficacy across regimens. Importantly, including all available candidate end-
points could potentially reduce performance of the down-selection process and lead 
to unnecessarily high measurement cost in phase I down-selection trials.

The objective of this paper is thus to develop dimension reduction algorithms for 
pre-selecting a subset of immune response endpoints most useful for down-selection 
to feed into the RFS algorithm. Next we propose two different algorithms for feature 
selection based on the correlation structure and/or relative importance of immune 
response endpoints. We also present special model settings for infection risk con-
ditional on vaccine-induced immune response endpoints to help interested readers 
understand the connection between down-selection based on immune response data 
and the ranking of vaccine efficacy and the rational for practical choices of impor-
tance weights.

2.2  Penalization‑Based Feature Selection Method

In this section, we propose a penalization-based feature selection method based on 
optimizing the reward of adding more endpoints for use in regimen down-selection. 
One way to choose a set of useful and not highly correlated endpoints is to consider 
the importance of adding immune response endpoints as a gain and the correlation 
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among immune response endpoints as a cost. We propose to write a reward function 
as

In (1), S is a subset of chosen immune response endpoints; �S = {wi ∶ i ∈ S} (with 
wi > 0 ) and �S are the vector of importance scores and the correlation matrix of 
immune response endpoints in subset S; g(.) and c(.) are the gain and the cost func-
tions corresponding to adding more immune response endpoints. Note that both 
g(�S) and c(�S) are increasing functions of |S|, i.e., the cardinality of set S. Thus, 
there should be an optimum subset of immune response endpoints that maximizes 
the reward function in (1) as

For general functions g(.) and c(.), we need to search all possible subsets of immune 
response endpoints S. For instance, with p as the number of immune response end-
points, we need to search for all 2p − 1 (empty set is excluded) possible subsets. It 
is thus desirable to choose g(.) and c(.) such as to minimize the number of searches. 
We propose a simple and efficient way of defining g(.) and c(.) as additive functions 
of �S and �

S
 as

where � controls the cost due to correlation among the chosen immune response 
endpoints in set S, and needs to be chosen carefully. If we choose a very small � , 
we allow highly correlated immune response endpoints to enter the RFS algorithm, 
which can result in a more conservative decision regarding the comparison between 
regimens. If we choose a very large � , we might discard some important immune 
response endpoints, which can result in sub-optimal performance for selecting the 
desired regimens. Here, we use a simple approach to alleviate this issue by normal-
izing the importance vector as,

Now we can find S∗ as

where b is a new tuning parameter establishing a trade-off between reward and pen-
alty of adding more immune response endpoints; we use constraint i < i′ to choose 
each correlation coefficient only one time (note that the correlation matrix is sym-
metric). Assume that we have found a subset of immune response endpoints S so far, 
the reward of adding a new immune response endpoint i� ∉ S to S is

(1)R(�S,�S) = g(wS) − c(�S).

(2)S∗ = argmax
S⊆{1,…,p}

R(�S,�S).

(3)R(�S,�S) =
∑
i∈S

wi − �
∑

i,i�∈S,i≠i�
|�ii� |

(4)wnorm
i

=
wj

max j∈{1,…,p}wj

.

(5)S∗ = argmax
S⊆{1,…,p}

(∑
i∈S

wnorm
i

− b
∑

i,i�∈S,i<i�

|𝜌ii� |
)
,
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Therefore, adding a new endpoint i′ to the chosen subset S has a reward of 
wnorm
i�

− b
∑

i∈S ��ii� � . This observation guides us to two rules: (1) choose endpoints 
with highest rewards first; and (2) exclude endpoints with negative rewards. There-
fore, we can propose a heuristic sequential algorithm, based on these two rules, that 
significantly reduces search complexity. We start with one immune response end-
point with highest wnorm (or highest importance) and choose the second immune 
response endpoint that gives the highest reward, i.e, highest ri′ in (6). We continue 
adding new immune response endpoints until there is no reward, i.e., ri′ is negative 
for all remaining i� ∉ S . Fig.  1 summarizes our proposed heuristic algorithm, the 
property of which is stated in Theorem 1 below.

Theorem 1 Assume that the proposed heuristic algorithm stops with the set S. There 
is no further increase in R(�norm

S
,�

S
) by adding any more endpoints, i.e., S gives a 

local maximum of the reward function in (3).

Proof The heuristic algorithm stops with the chosen set S, meaning that for any sin-
gle-added endpoint k ∉ S we have rk < 0 . Therefore, there is no improvement in the 
overall reward by adding just one endpoint. However, the possibility remains that 
adding a set of endpoints to the available set S might improve the overall reward. We 
show that this is not possible. Assume that after stopping with set S by our heuris-
tic algorithm, there exists S∗ such that R(wnorm

S∪S∗
,�S∪S∗ ) > R(wnorm

S
,�S) . We can then 

find S′ and k′ such that S∗ = S� ∪ k� and R(wnorm
S∪S�

,�S∪S� ) ≤ R(wnorm
S

,�S) . If not, we 
can replace S∗ with any S′ which has one less endpoint than S∗ , and continue such 
decomposition. A desired decomposition is guaranteed at least when S⋆ contains 
only two endpointS, according to the definition of S.

Note that we already showed that for S� = � (i.e., adding only one endpoint), the 
situation described above can not happen. Then assume that S′ ≠ 0 and we aim to 
add more than one endpoint. To be able to add endpoint k′ along with set S′ (i.e., at 
least two endpoints), we need to have

Since |�ik′ | ≥ 0 for any pair (i, k′ ) and b ≥ 0 , (7) at least requires that 
wnorm
k�

− b
∑

i∈S �𝜌ik� � > 0 , which means adding a single endpoint like k′ to set S can 
improve the overall reward. This is in contradiction with the stopping criterion of 
our proposed heuristic algorithm, because it was stopped at set S with no further 
improvement in the overall reward by adding a single endpoint. Thus, we conclude 
that there is not such a set S′ and that R(�norm

S
,�

S
) cannot be further improved after 

it is stopped with set S.   ◻

(6)
ri� = R(�norm

S∪{i�}
,�S∪{i�}) − R(�norm

S
,�S)

= wnorm
i�

− b
∑
i∈S

|�ii� |.

(7)

rk� = wnorm
k�

− b
∑

i∈S∪S�

|𝜌ik� |

= wnorm
k�

− b
∑
i∈S

|𝜌ik� | − b
∑
i∈S�

|𝜌ik� | > 0.
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Note that wnorm
i

∈ [0, 1] (thanks to normalization) and |�ii� | ∈ [0, 1] , and simula-
tion results for different settings suggest that b = 1 can be a legitimate choice.

2.3  Bayesian Information Criterion (BIC)‑Based Feature Selection Method

In the previous section, we dealt with an unsupervised learning problem in (5) and 
came up with a legitimate choice of the tuning parameter after re-parameterization 
of our reward function. As an alternative way to tackle this problem, we adopt clus-
tering methods to select an appropriate subset of the immune response endpoints 
based on the observed values in different regimens. We assume that the correlation 

Fig. 1  System flowchart of the 
proposed penalization-based 
algorithm. Here, w

i
 is the impor-

tance weight for endpoint i. At 
each step, let S indicate the set 
of endpoints already selected, let 
Sc indicate the set of endpoints 
to be selected from, and let I′ 
indicate the endpoint that will 
move from Sc to S. Here r

i′
 is the 

reward for moving endpoint i′ 
from Sc to S, and S∗ is the final 
set of selected immune response 
endpoints that will be used in 
regimen down-selection

Initialization
Set Sc = {1, 2, · · · , P},

Set S = ∅
Normalize wi as

wnorm
i = wi

maxj∈{1,...,p}
i

wj

Choose b (1 is a good choice)

Select first
immune re-

sponse endpoint
I′ = argmax

i′∈Sc
wnorm

i′

S = S ∪ I′

Sc = Sc − I′

Select new immune
response endpoint
ri′ = wnorm

i′ −
b
∑

i∈S∗ ρii′ , i′ ∈ Sc

I′ = argmax
i′∈Sc

{ri′}

Decision
If rI′ > 0

Update
S = S ∪ I′

Sc = Sc − I′

Stop
Report
S∗ = S

yes

no
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matrix � among multivariate immune response endpoints is available and can be 
used for clustering. We adopt the BIC-based clustering method presented by Fraley 
and Raftery [5] and use the “NbClust” R package [3] for clustering. By clustering, 
the most correlated immune response endpoints nest in the same cluster. When there 
is stronger correlation among immune response endpoints, there will be fewer clus-
ters and vice versa. Now we need to select the desired subset of immune response 
endpoints based on the clustering results. We propose to choose one endpoint per 
cluster that has the highest importance value (i.e., w) in that cluster. Note that our 
proposed BIC-based selection method tends to choose fewer immune response end-
points when immune response endpoints are highly correlated, since there are fewer 
clusters from which to choose one endpoint. Figure  2 shows the flowchart of the 
BIC-based selection method.

2.4  Importance Weights for Immune Response Endpoints

To implement the proposed feature selection methods, we need an importance 
weight wi reflecting the importance of each immune response endpoint i to a 
vaccine’s protective effect. The importance weight is also used later in the RFS 
algorithm to compute a weighted average across endpoints for ranking vaccine 
regimens. In practice, the assignment of these importance weights would require 
biological knowledge and/or data-driven hypotheses about the importance of 
individual immune response endpoints; sensitivity analyses based on a range of 
choices for weights are always helpful to evaluate the robustness of feature selec-
tion to different weight choices. For example, expert opinions could be elicited 
from lab scientists regarding the putative predictive clinical importance to vac-
cine efficacy of each immune response endpoint. When there are preliminary vac-
cine trial data available for modeling the risk of HIV as a function of vaccination 

Correlation
matrix
Σ =

[ρij ], i, j =
1, 2, ..., P

BIC-based
clustering
usig Σ

Cluster
k

Cluster
1

Cluster
K

Select the
best endpoint

in each
cluster

based on w

Importance
weights
wi, i =
1, 2, ..., P

Selected
subset of
immune
response
endpoints

Fig. 2  System flowchart of the weighted BIC-based feature selection method
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status, the potential outcome of an immune response endpoint if receiving a vac-
cine, and their interaction, the magnitude of this interaction term can serve as a 
practical weight for the endpoint as it characterizes the capacity of the endpoint 
for modifying vaccine’s protective effect. Next, we show the connection between 
these interaction terms and the optimal weights for combining multiple endpoints 
in regimen ranking, using a special risk modeling setting.

We present a special model for disease risk conditional on potential multivari-
ate immune responses if receiving a vaccine regimen. Based on this model, one 
can analytically derive the optimal weights for individual immune response end-
points such that ranking based on the weighted average of immune response end-
points is equivalent to the ranking of the corresponding efficacies of the vaccine 
regimens. Details can be found in Web Supplementary Appendix B. Modeling 
disease risk conditional on potential immune responses if receiving a particular 
vaccine regimen (instead of actual observed immune responses in a trial partici-
pant) is appealing for HIV vaccine down-selection for the following reasons: (1) 
HIV vaccine trials typically enroll healthy individuals who have not been pre-
viously exposed to HIV vaccine antigens and thus their HIV-specific immune 
responses if receiving placebo would be zero; (2) modeling disease risk condi-
tional on potential vaccine-induced immune responses allows prediction and 
ranking of vaccine efficacy based on immunogenicity induced by candidate vac-
cine regimens observed in phase I/II studies. In particular, let T be the treatment 
indicator with T = 0 indicating placebo receipt, and T = j for j = 1,… ,m indicat-
ing receiving the jth regimen out of m different vaccine regimens. Further, let Y 
be the binary indicator for disease (HIV infection). We consider the following 
models for vaccine-induced immune responses and disease risk.

(I) For j ∈ 1,… ,m , let Xj be the potential outcome of a set of immune response 
endpoints of dimension p for a participant if receiving vaccine regimen j, i.e., the 
immune responses induced by vaccine regimen j. Note that this is just the set of 
endpoints considered in down-selection, which may not necessarily include all 
immune response endpoints important to vaccine efficacy. The potential outcome 
Xj does not depend on the actually assigned T; among an individual receiving 
placebo, Xj is essentially a counterfactual outcome that is not observed. Suppose 
Xj = {X1j,… ,Xpj} are multivariate normal among vaccine group j with common 
variance across vaccine regimens. Without loss of generality, we assume that the 
vaccine-induced immune response endpoints are standardized in a way such that 
each immune response endpoint is centered at zero with unit variance when j = 1 . 
That is, we have

where �i1 = 0 by definition. Note that we essentially only assume a constant cor-
relation structure for immune responses induced by different vaccine regimens. That 
is, if the original immune assay measures have different variability across different 

(8)��T = j ∼ N

⎡⎢⎢⎢⎣

⎡⎢⎢⎢⎣

�1j
�2j
…

�pj

⎤⎥⎥⎥⎦
,�

⎤⎥⎥⎥⎦
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vaccines, one can scale the measure by its corresponding standard deviation first to 
achieve the common variance of Xj across vaccine j.

(II) Suppose the following risk model holds for comparing vaccine regimen j 
with placebo conditional on �j (immune response elicited by jth vaccine):

for T = 0 or j , where �j = {�1j,… , �pj} and � is the cumulative distribution function 
of a standard normal distribution. Under model (9), we have 
P(Y = 1|T = 0,�j) = �

(
�0 + �T

2
(�j − �j)

)
 . The disease prevalence among the pla-

cebo group P(Y = 1|T = 0) can then be derived by integrating P(Y = 1|T = 0,�j) 
with respect to distribution of �j ; it is straightforward to see that the location-shift �j 
in vaccine-induced immune response endpoints �j across vaccine regimens as in (8) 
ensures the derivation of a common prevalence of disease among placebo recipients 
based on model (9) for any j ∈ {1,… ,m} . As show in Web Supplementary Appen-
dix B1, based on the (8) and (9), the disease prevalence if receiving the jth vaccine 
regimen is

which is a monotone increasing function of �T
3
�j . In other words, the efficacy of a 

vaccine in preventing infection is a monotone increasing function of the weighted 
mean of the immune response endpoint induced by the vaccine with weight equal to 
−�3 . Therefore, the ranking of the efficacy of different vaccine regimens is the same 
as the ranking of the vaccine regimens’ immunogenicity based on this weighted 
mean, with weights proportional to the interaction between immune response end-
points and treatment status in the multivariate risk model (9).

In practice, however, it is rarely the case that the immune response endpoints 
measured from a phase I immunogenicity study for down-selection have all been 
measured together in a previous efficacy trial to allow for the risk modeling in (9), 
which is based on multivariate immune response endpoints to estimate the opti-
mal weight. It is more likely that prior information is available for modeling dis-
ease risk as a function of a univariate immune response endpoint. One practical way 
to accommodate this situation is to weight each immune response endpoint by the 
magnitude of its interaction with treatment in the risk model conditional on the spe-
cific immune response endpoint. For the ith immune response endpoint, the mar-
ginal risk model comparing vaccine regimen j vs placebo conditional on Xij can be 
derived from (8) and (9) as

(9)P(Y = 1|T ,�j) = 𝛷

(
𝛾0 + 𝛾1I(T > 0) + �T

2
(�j − �j) + �T

3
�jI(T > 0)

)

(10)

P(Y = 1�T = j) = ∫ P(Y = 1�T = j,�j)dF�j
(�j)

= �

�
�0 + �1 + �T

3
�j√

1 + (�2 + �3)
T�(�2 + �3)

�
,

(11)P(Y = 1|T ,Xij) = 𝛷(𝛽0i + 𝛽1iI(T > 0) + 𝛽2i(Xij − 𝛿ij) + 𝛽3iXijI(T > 0))
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for T = 0, j . If one has prior information about model (11), then one can use −�3i 
as the weight for immune response endpoint i. That is, one gives weight to each 
immune response endpoint based on its interaction with the treatment in a disease 
risk model based on potential outcome of univariate immune response endpoint. As 
mentioned in Sect. 2.1, here we assume that for each immune response endpoint, a 
larger immune response is associated with higher vaccine efficacy so −𝛽3 > 0 . For 
immune responses that are associated with decreased vaccine efficacy, one can take 
the negative value of the assay measurement as the endpoint so this condition is 
satisfied. More details about the analytical form of �3i under models (8) and (9) can 
be found in Web Supplementary Appendix B2. In general, even without assuming 
models (8) and (9), the interaction between individual immune response endpoint 
and vaccination under a generalized linear risk model like in (11) is still a meaning-
ful measure of effect modification and can thus be used to derive the importance 
weight of the endpoint. Various approaches have been developed in the literature for 
estimating the risk model (11) conditional on the vaccine-induced immune response 
[7, 12, 14, 15]. In scenarios where a partial set of multivariate immune responses is 
available from existing efficacy trial data, we can also estimate importance weights 
for each endpoint in the partial set by fitting a risk model conditional on the partial 
set of immune responses together [11].

In practice, any immune response measured in the laboratory is accompanied by 
a certain degree of inherent measurement error. That is, if Xij described above is the 
ith true underlying immune response endpoint induced by the jth vaccine regimen, 
in real life we might observe Ki responses Xijk = Xij + eijk that characterize Xij but 
with additional measurement error eijk ∼ N(0, �2

ijk
) . For example, to characterize an 

underlying binding antibody response, several immune response endpoints might be 
obtained using different antigens. Importance weights can be similarly assigned to 
these observed immune response endpoints based on their interaction with treatment 
status in the disease risk model conditional on the vaccine-induced immune response 
measured with error. Detailed derivations of the corresponding risk model under 
models (8) and (9) are provided in Web Supplementary Appendix B3.

3  Simulation Studies

In this section, we conduct numerical studies to assess the performance of our pro-
posed methods for feature selection in down-selection of vaccine regimens. We con-
sider several settings where p = 30 observed immune response endpoints subject to 
measurement error from n = 50 individuals within each of 9 regimen arms are simu-
lated from a multivariate normal distribution with variance 1 and regimen-specific 
mean, and varying correlation structure between these immune response endpoints. 
Here we assume the correlation structure among immune response endpoints is 
available from a pilot study and that this information can be used to guide the deci-
sion about which immune response endpoints to collect when designing a down-
selection study, although the correlation structure could alternatively be estimated at 
the time of data analysis.
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We apply the RFS algorithm developed in Huang et al. [14] for regimen down-
selection, using the weighted average as the criterion for ranking regimens based on 
pre-specified weights of immune response endpoints. The weights adopted are pro-
portional to the interaction between univariate endpoint and treatment status in the 
model of disease risk conditional on corresponding endpoint (further details can be 
found in Web Supplementary Appendix C). We investigate the performance of our 
feature selection algorithms (penalization-based & BIC-based) combined with the 
RFS, and compare their performance with that of the naive RFS using the whole sets 
of immune response endpoints. We define regimens that should be selected as those 
that satisfy both the superiority and non-redundancy criteria, as well as those that 
should be ranked among the top Q; the remaining regimens should not be selected. 
Without loss of generality, here we evaluate settings where there are no other regi-
mens in the whole set that have identical immune response profiles as the top Q 
regimens that should be selected. With a maximum allowable Q = 3 , we compare 
various approaches with respect to the following performance criteria: (i) the aver-
age total number of regimens selected, (ii) the percentage of regimens that should 
be selected among the selected set, namely the ‘positive predictive value’ (PPV), 
(iii) the probability that a regimen that should be selected is actually selected, i.e. 
the ’true positive rate’ (TPR), and (iv) the probability that a regimen that should not 
be selected is mistakenly selected, i.e. the ’false positive rate’ (FPR). Performance 
results presented are averaged over 1,000 Monte-Carlo simulations.

For the penalization-proposed feature selection algorithm, we adopt b = 1 in our 
simulations. We find that the results are fairly robust to an interval around b = 1 
(an example is given in Web Supplementary Appendix C, Setting IV). For the BIC-
based feature selection algorithm, we use the NbClust R package for clustering the 
observed immune response endpoints.

In simulation setting I, we assume that the p = 30 observed immune response 
endpoints can be grouped into two clusters of 15 endpoints each. This clustering can 
be attributed to two underlying true immune response endpoints that are associated 
with vaccine efficacy. The two underlying immune response endpoints have correla-
tion � . Within each cluster, the 15 measured immune response endpoints are equal 
to the underlying true immune response endpoints plus some measurement error, 
such that they have the same mean as the true underlying endpoints. In particular, 
the immune response endpoints within the first cluster of regimen 1 are empirically 
measured versions (i.e., with inherent measurement error and different noise levels) 
of the first true underlying immune response endpoint with mean � and variance 
1, while the immune response endpoints within the second cluster of the regimen 
1 are empirically measured versions of the second underlying endpoint with zero-
mean and unit-variance. We have an opposite data generation mechanism for regi-
men 2. For regimen 3, we assume both true points have mean �∕2 and variance 1 
and all immune response endpoints measured are empirically measured versions of 
the underlying true endpoints. Based on the means of the 30 immune response end-
points measured with error, regimens 1, 2, and 3 are non-redundant to each other 
and superior to the other regimens, and are thus the desired regimens to be selected. 
The first three immune response endpoints in each cluster have smaller measure-
ment error (with measurement error standard deviation = 0.1) than the rest of the 
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12 immune response endpoints (with measurement error standard deviation = 1). 
Therefore, the first three endpoints in each cluster have higher importance weights 
and thus better chances of being chosen during feature selection. The mean struc-
tures of the individual endpoints for each regimen and the weights of the individual 
endpoints for varying � ’s in simulation setting I are presented in Web Supplemen-
tary Table 1.

The performance with respect to various operational criteria as a function of � 
(effect size, see Appendix C in Web Supplementary materials) for setting I is pre-
sented in Fig.  3 for � = 0.3 and in Supplementary Figs.  2 and 3 for � = 0.1 and 

Fig. 3  Comparison of the proposed penalization-based ( b = 1 ), BIC-based, and naive selection methods 
with respect to the average number of selected regimens, TPR, FPR, and PPV over 1000 Monte Carlo 
simulations. The naive method includes all immune response endpoints in down-selection. We consider 
two clusters, each containing 15 immune response endpoint measurements. These endpoint measure-
ments are empirically measured versions of the underlying true endpoints in each cluster; some of the 
measurements are noisier than others. The correlation between the two true underlying endpoints is 
� = 0.3 (medium-correlation scenario). For more details, see setting I in Appendix C of Supplementary 
materials
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0.5, respectively. When effect size � increases, all approaches tend to select the cor-
rect number of regimens; their PPV and TPR approach 1 with small FPRs. Both the 
proposed penalization-based method and the BIC-based method select around 6.7% 
(one endpoint from each cluster) of the total immune response endpoints to enter 
regimen down-selection. This results in a lower computational burden in the RFS 
stage and also better performance compared to the naive methods, which enter all 
measured immune response endpoints into the RFS. By selecting immune response 
endpoints with smaller measurement error and thus larger importance weights, our 
proposed feature-selection methods outperform the naive method , with an apparent 
increase in TPR for medium effect size ( � from 1.0 to 2.0).

Simulation setting II is a modified version of setting I: within each cluster, only 
the first five immune response endpoints have non-zero means and are empirically 
measured versions of the true underlying immune response endpoint. The rest of the 
10 immune response endpoints measured have mean zero and thus are not useful 
surrogate endpoints, since they are not associated with differential vaccine efficacy 
across different vaccine regimens. For simulation setting II, the mean structure of 
the individual immune response endpoints for each regimen and the weights of indi-
vidual endpoints for varying � ’s are presented in Web Supplementary Table 2.

The performance with respect to various operational criteria as a function of � 
for setting II is presented in Fig. 4 for � = 0.3 and in Web Supplementary Figs. 4 
and 5 for � = 0.1 and 0.5, respectively. Like in setting I, both the penalization-based 
and the BIC-based selection methods select around 6.7% (one endpoint from each 
cluster) of the total immune response endpoints to enter the RFS algorithm due to 
the same correlation structure between the two settings. Substantial improvements in 
performance using the feature-selection methods are observed in setting II compared 
to the naive method without any feature selection, with increased TPR for various 
effect sizes, and decreased FPR and increased PPV for small effect size ( 𝛿 < 1.0 ). 
Feature selection is particularly important in this setting relative to setting I, since 
the redundant “pure noise” endpoints utilized by the naive method will only increase 
the multi-test adjustment burden without contributing to the differentiation between 
regimens. Meanwhile, inclusion of “pure noise” variables tends to select nonoptimal 
regimens and make FPR and PPV much worse for the naive method without feature 
selection compared to methods with feature selection. This is in contrast to setting 
I, where each immune response endpoint is useful to some extent for differentiating 
regimens. As a result, when more endpoints are included in setting I, the test for dif-
ferentiating regimens is in general more conservative, but the impact on FPR and 
PPV is minimal.

In simulation setting III, we consider a modified version of setting II such that 
only the first 10 immune response endpoints in each cluster have non-zero means 
and are empirically measured versions of the true underlying immune response end-
point in each cluster. The rest of the five immune response endpoints measured in 
each cluster have mean zero and thus are not useful surrogate endpoints. Within each 
cluster, the first five immune response endpoints have measurement error standard 
deviation 0.1, the second five endpoints have measurement error standard deviation 
0.2, and the last five endpoints have measurement error standard deviation 1. As a 
result, the first five endpoints in each cluster have higher importance weights and 
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thus better chances of being chosen during feature selection. For simulation setting 
III, the mean structure of the individual immune response endpoints for each regi-
men and the weights for individual endpoints for varying � ’s are presented in Web 
Supplementary Table 3.

The performance with respect to various operational criteria as a function of � 
for setting III is presented in Fig. 5 for � = 0.3 and in Web Supplementary Figs. 6 
and 7 for � = 0.1 and 0.5, respectively. In this setting, the penalization-based and 
BIC-based selection methods select around 6.7% (one endpoint from each clus-
ter) and 13.3% (two endpoints from each cluster) of the total immune response 

Fig. 4  Comparison of the proposed penalization-based ( b = 1 ), BIC-based, and naive selection methods 
with respect to the average number of selected regimens, TPR, FPR, and PPV over 1000 Monte Carlo 
simulations. The naive method includes all immune response endpoints in down-selection. We consider 
two clusters, each containing 15 immune response endpoint measurements: 5 are non-zero mean noisy 
measurements of the underlying true endpoint in each cluster and the remaining 10 are “pure noise” vari-
ables with zero mean that are not associated with the differential vaccine efficacy across regimens. The 
correlation between the two true underlying endpoints is � = 0.3 (medium-correlation scenario). For 
more details, see setting II in Appendix C of Supplementary materials
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endpoints to enter the RFS algorithm, respectively. The BIC-based method tends 
to estimate more clusters than needed due to the increased heterogeneity in meas-
urement error, leading to a larger number of immune response endpoints selected. 
Substantial improvements in performance using penalization-based feature-selec-
tion methods are observed compared to the naive method without any feature 
selection, with increased TPR for various effect sizes, and decreased FPR and 
increased PPV for small effect size ( 𝛿 < 1.0 ). The penalization-based method also 
outperforms the BIC-based method in this setting. Compared to the naive method 

Fig. 5  Comparison of the proposed penalization-based ( b = 1 ), BIC-based, and naive selection methods 
with respect to the average number of selected regimens, TPR, FPR, and PPV over 1000 Monte Carlo 
simulations. The naive method includes all immune response endpoints in down-selection. We consider 
two clusters, each containing 15 immune response endpoint measurements: 10 are non-zero mean noisy 
measurements of the underlying true endpoint in each cluster and the remaining 5 are “pure noise” vari-
ables with zero mean that are not associated with the differential vaccine efficacy across regimens. The 
correlation between the two true underlying endpoints is � = 0.3 (medium-correlation scenario). For 
more details, see setting III in Appendix C of Supplementary materials
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without any feature selection, the BIC-based feature selection method improves 
TPR but also has larger FPR and smaller PPV for small effect size.

We also studied two other settings (IV and V) with three clusters (dictated by 
three underlying true immune response endpoints) and 10 immune response end-
points measured within each cluster. Details of these settings are presented in Web 
Supplementary Appendix C and Supplementary Tables  4 and 5. The correspond-
ing simulation results are presented in Web Supplementary Figs. 8–13. Moreover, 
we investigated performance based on mixed binary and continuous endpoints in 
another setting VI, which is derived from setting II by discretizing 40% of the con-
tinuous endpoints into binary endpoints based on comparison of each value with the 
corresponding mean value (See Web Supplementary Appendix C). The correspond-
ing simulation results are presented in Web Supplementary Figs. 14–16. A similar 
pattern comparing the proposed feature selection methods with the naive method 
without feature selection is observed in these settings.

As we discussed in Sect. 2, b = 1 is a legitimate choice after reformulating our 
problem based on normalized w (i.e., w∗ ), based on various exploratory studies. An 
example is shown in Web Supplementary Figs. 17–18, where we present results for 
simulation setting IV with different choices of b, demonstrating robust performance 
achieved with b = 1.

4  Data Example

In this section, we illustrate the application of our proposed methods using a real 
data example that was used in Huang et al. [13] for down-selection of vaccine regi-
mens in HIV vaccine trials. This example includes immune response data from five 
different vaccine regimens. The first regimen is the partially efficacious vaccine reg-
imen used in the RV144 Thai trial [17], which tested an ALVAC-HIV prime with a 
gp120 AIDSVAX B/E boost. In the RV144 trial, 16,395 participants were recruited 
and randomized (1:1) to vaccine or placebo; of these, 8,197 participants were 
assigned to receive vaccine injections at weeks 0, 4, 12, and 24. Among the vac-
cine recipients who were uninfected at week 26, immune responses were measured 
from 41 cases (i.e. infected before month 42) and 205 controls (i.e. free of infection 
over 42 months) selected in a 5:1 ratio to cases among strata defined by gender, 
number of vaccine injections received, and per-protocol status [9]. Immune response 
endpoints measured at week 26 for the 205 uninfected vacinees were included in 
this data example (RV144T). Also included are data from four other regimens in a 
recently completed HVTN phase I trial (HVTN 096): NYVAC prime plus NYVAC 
+ AIDSVAX B/E boosts (T1), NYVAC + AIDSVAX B/E prime plus NYVAC + 
AIDSVAX B/E boosts (T2), DNA prime plus NYVAC + AIDSVAX B/E boosts 
(T3), and DNA + AIDSVAX B/E prime plus NYVAC + AIDSVAX B/E boosts 
(T4). Participants in each of the four vaccine arms of HVTN 096 received vaccine 
injections at weeks 0, 4, 12, and 24; immune response data measured from 19, 18, 
17, and 19 vaccine recipients in T1, T2, T3, and T4, respectively, are included in this 
data example. Eight immune response endpoints from each regimen are included in 
the analysis dataset: one neutralizing antibody (NAb) response endpoint measured 
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using the TZM-bl assay, one CD4+ T-cell response endpoint measured using intra-
cellular cytokine staining (ICS), and six IgG binding antibody response endpoints 
measured using the binding antibody multiplex assay (BAMA) with different HIV 
antigens, including AE.A244 V1V2 Tags/293F (B1), gp70_B.CaseA2 V1V2/169K 
(B2), gp70_B.CaseA_V1_V2(B3), A244 gp120 gDneg/293F/mon (B4), vaccine 
insert (B5) and Con S gp140 CFI(B6).

Figure 6 shows a heatmap of the correlations between the eight immune response 
endpoints along with their hierarchical clustering based on the correlation matrix. 
The ICS readouts have the lowest correlations with all other immune response end-
points. Correlations between NAb and other immune response endpoints are also 
low. In contrast, strong correlations are observed among BAMA readouts B1, B4, 
B5 and B6 and between B2, and B3.

We first entered all eight immune response endpoints into the RFS down-selec-
tion process as in Huang et al. [13]. The down-selection process ranked the vaccine 
regimens in the following order: 096T3, 096T1, 096T4, 096T2, and RV144T; 096T3 
was selected as the only superior vaccine regimen. We then applied the proposed 
feature selection algorithms to the candidate immune response endpoints before 
entering the regimen down-selection. Two different sets of weights for individual 
immune response endpoints were considered. In the first set, equal weights were 
assigned to each endpoint. Based on this weighting strategy, the penalization-based 
algorithm chose three endpoints: ICS, B1, and NAb. Since all endpoints have the 
same importance wights, we chose ICS first because it has the lowest correlation 
with the other endpoints. We next chose B1 since it has the lowest correlation with 

Fig. 6  Heatmap of spearman correlations between different immune response endpoints in the data 
example
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ICS. NAb was the third endpoint chosen because it has low correlations with ICS 
and B1. The other five endpoints B2 - B6 were discarded because of their relatively 
high correlations with B1. Based on the three selected endpoints, the RFS algorithm 
ranked the vaccine regimens in the order of 096T3, 096T4, 096T1, RV144T, and 
096T2; 096T3 was the only vaccine regimen selected. Therefore, with only 37.5% 
of immune response endpoints, the vaccine regimen selected is the same as when 
we used all immune response endpoints for down-selection. The BIC-based fea-
ture selection algorithm assigned B2 and B3 in the same clusters and assigned the 
remaining six endpoints into six individual clusters. It selected seven (B1, B2, B4, 
B5, B6, ICS, and NAb) out of eight endpoints. Based on these selected endpoints, 
the RFS algorithm ranked the vaccine regimens in the order of 096T3, 096T1, 
096T4, 096T2, and RV144T. Again, 096T3 was the only regimen selected, this time 
with 87.5% of the immune response endpoints.

We also investigated our feature selection algorithms using a second set of 
weights that correspond to the magnitude of the log-transformed univariate odds 
ratio (OR) (0.7 for B1–B6 and 1.08 for ICS and NAb) for the association of each 
individual immune response endpoint with infection risk, as reported in Haynes 
et al. [9]. Note that if one assumes the infection risk among placebo receipts does 
not depend on the vaccine-induced immune response, then this log(OR) among vac-
cine recipients is the same as the interaction coefficient �3 presented in (11). Based 
on this weighting strategy, the penalization-based algorithm chose two immune 
response endpoints, B2 and B6. In particular, among endpoints B1-B6 that have 
high importance weights, B2 has the lowest correlation with other endpoints and 
was chosen first. After that, B6 was chosen because of its low correlation with B2. 
Other endpoints were discarded by the algorithm due to either high correlations with 
B2 and B6 or low importance weights. Based on the two selected endpoints (25% 
out of eight), the RFS algorithm ranked the vaccine regimens in the order of 096T3, 
096T1, 096T4, 096T2 and RV144T; 096T3 was the only vaccine regimen selected. 
The BIC-based feature selection algorithm under the second set of weights selected 
the same seven endpoints as the equal weights setting; again, 096T3 was the only 
regimen selected.

5  Discussion

In HIV vaccine development, effectively screening and appropriately down-select-
ing candidate regimens based on their immunogenicity before advancing to future 
efficacy trials is important for saving both time and financial resources. Identify-
ing a parsimonious set of immune response endpoints most relevant for a vaccine’s 
protective effect is essential in this down-selection practice, because the identifica-
tion of such a set can lead to better down-selection performance and also significant 
resource savings in terms of lab assay measurements. Moreover, the resulting reduc-
tion in the number of immune response endpoints entering regimen down-selection 
can reduce the computational complexity in down-selection, which increases expo-
nentially as the number of endpoints increases.
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Motivated by the application of down-selecting HIV vaccine regimens based on 
their immunogenicity, here we developed new algorithms for dimension reduction 
when multiple candidate endpoints are available to rank and select regimens. The 
proposed algorithms combine two pieces of information: (1) a weight reflecting an 
individual immune response endpoint’s relevance for predicting a vaccine’s protec-
tive effect, and (2) the correlation structure between immune response endpoints. 
We also demonstrated through extensive numerical studies that prior feature selec-
tion combined with a subsequent down-selection algorithm can achieve better per-
formance with respect to selection of the desired regimens.

Immune response endpoints from HIV phase-I immunogenicity studies can 
involve multiple immune classes. When constructing the list of candidate immune 
response endpoints for regimen down-selection, we typically start with endpoints 
that span various different immune classes. The penalization-based or clustering-
based approach for feature selection can then be applied to the list of candidates, 
ignoring the immune class information. As endpoints within the same class tend to 
be more correlated with each other, redundant endpoints within a class are likely to 
be excluded during feature selection.

A caveat of the proposed feature selection algorithms is the need to input a rela-
tive importance weight of an individual immune response endpoint with respect to 
its relevance to the vaccine’s protective effect. This weight is important for selecting 
desired endpoints. Consider a situation in which we have two assays, both meas-
uring the same underlying true response, but with different levels of noise. The 
endpoint with smaller measurement error would have larger importance weight (or 
larger interaction with treatment estimated from pilot data). The endpoint with larger 
measurement error would have smaller importance weight. As a result, immune 
endpoints with smaller signal-noise ratios are more likely to be excluded in the 
penalized-based feature selection process, due to their smaller importance weights. 
In practice, one can also consider first screening out assays with low signal-noise 
ratios. Usually the relative importance weight can be estimated by eliciting expert 
input (e.g. regarding whether an assay is more tied to the mechanism of protection 
of a given vaccine) or can be substituted with the interaction between a vaccine-
induced immune response endpoint and vaccine status in infection risk, estimated 
based on existing data. When weights are estimated with pilot data, the uncertainty 
associated with the estimated weights would affect the performance of feature selec-
tion. Therefore, during the process of HIV vaccine development, it is important for 
researchers to continue updating the importance weights as new data become avail-
able, in order to reduce the uncertainty in weight estimation. Meanwhile, since the 
choice of importance weights depends on untestable assumptions about the risk pre-
diction model conditional on new vaccine regimens and vaccine-induced immune 
responses, it is important to perform sensitivity analysis in practice to evaluate the 
robustness of feature selection and regimen down-selection under a range of plausi-
ble importance weights.
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