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Abstract
Transcriptional changes in Friedreich’s ataxia (FRDA), a rare and debilitating recessive Mendelian neurodegenerative
disorder, have been studied in affected but inaccessible tissues—such as dorsal root ganglia, sensory neurons and
cerebellum—in animal models or small patient series. However, transcriptional changes induced by FRDA in peripheral
blood, a readily accessible tissue, have not been characterized in a large sample. We used differential expression, association
with disability stage, network analysis and enrichment analysis to characterize the peripheral blood transcriptome and iden-
tify genes that were differentially expressed in FRDA patients (n¼418) compared with both heterozygous expansion carriers
(n¼228) and controls (n¼93 739 individuals in total), or were associated with disease progression, resulting in a disease sig-
nature for FRDA. We identified a transcriptional signature strongly enriched for an inflammatory innate immune response.
Future studies should seek to further characterize the role of peripheral inflammation in FRDA pathology and determine its
relevance to overall disease progression.

Introduction
Friedreich’s ataxia (FRDA, OMIM 229300) is a rare autosomal re-
cessive disorder characterized by progressive ataxia, significant
loss of motor control, cardiomyopathy and diabetes. The disor-
der is usually caused by an intronic trinucleotide (GAA) repeat
expansion in the highly conserved gene frataxin (FXN,
ENSG00000165060), whose protein product is essential to the

formation of iron-sulfur cluster complexes. These complexes
are necessary for the proper functioning of a large number of
proteins, particularly those involved in mitochondrial metabo-
lism. FRDA is a result of FXN haploinsufficiency, and complete
loss of FXN is embryonic lethal (1). FRDA patients exhibit a 70–
80% reduction of FXN expression levels compared with unaf-
fected individuals (2). Heterozygous expansion carriers exhibit a
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modest reduction in FXN expression and do not develop clinical
symptoms.

FXN deficiency causes a number of pathologies at the cellular
level (reviewed in 3). A large build up in mitochondrial iron and
reduced function of antioxidant proteins lead to an increase in
reactive oxygen species, which lead to severe oxidative stress
characterized by damage to proteins, DNA and lipid membranes.
These effects can ultimately lead to degeneration and cell death,
particularly in post-mitotic cells with very high metabolic activ-
ity, such as large neurons, cardiomyocytes and pancreatic islet
cells (4), but many of the affected pathways are universal to the
function of all eukaryotic cells, and a more subtle transcriptional
response may be present in peripheral tissues not clinically in-
volved, but readily available for study in large cohorts. In addi-
tion, because FRDA results in severe metabolic stress and
eventual loss of cells of the peripheral and central nervous sys-
tem, this may lead to a peripheral immune response that can be
detected at the level of gene expression in blood immune cells.
To explore these hypotheses, we collected the largest series to
date of RNA from peripheral blood from FRDA patients, carriers,
and controls, and performed microarray-based gene expression
analysis. We identified an inflammatory disease-associated sig-
nature which in part overlaps with previous datasets from
patients and animal models. The entire dataset is available to
the FRDA community in a web-based application (REPAIR) for
data mining and additional analyses.

Subjects and Samples
A total of 739 subjects were enrolled at two sites, UCLA and the
Children’s Hospital of Philadelphia (CHOP). Table 1 provides a ba-
sic summary of the demographics of the subjects. Subjects were
divided into three groups based on clinical diagnosis. Patients
were those subjects clinically diagnosed with FRDA (n¼ 418) and
in most (90.6%) the approximate number of GAA repeats in the
FXN gene was also determined via PCR (5) to serve as molecular
confirmation, as well as an indirect measure of disease severity.
Eighteen patients were compound heterozygotes with one re-
peat expansion and one loss-of-function point mutation in FXN
(Supplementary Material, Table S1). Carriers were those subjects
carrying one expanded FXN allele and one normal allele
(n¼ 228). Most carriers were parents of patients, who are obligate
carriers. Control subjects consisted of individuals known not to
have any relatives with FRDA. Because carriers and controls are
phenotypically indistinguishable, we checked blood frataxin lev-
els in 95 enrolled controls (6) and excluded 2 subjects with fra-
taxin levels lower than the range observed in homozygote
expansion carriers, leaving 93 controls for further analyses.

Results
Differential expression

In order to identify a peripheral signature related to FRDA pa-
thology, we fit linear models for each transcript. At a cut-off of

log10 Bayes factor> 0.5 (log BF, see Materials and Methods) com-
paring the alternative model containing disease status to the
null model without it, after accounting for a number of potential
confounders (see Materials and Methods and Supplementary
Material, Figs S1 and S2), 1115 transcripts were significant for
the effect of disease status across all three groups. To identify
transcripts that were significantly differentially expressed (DE)
across pairwise comparisons, we computed posterior probabili-
ties and identified transcripts for each pairwise comparison
where the posterior probability (pp) of differential expression
was greater than 0.95 (see Materials and Methods). The global
false discovery rate (FDR) for each set of DE transcripts in each
comparison was also computed as described in Materials and
Methods. Of the 1115 transcripts identified as being significantly
affected by disease status, 829 transcripts were DE between
patients and controls (global FDR¼ 0.012), 1078 between
patients and carriers (global FDR¼ 0.0017) and 182 between car-
riers and controls (global FDR¼ 0.018) (Fig. 1, Table 2,
Supplementary Material, Table S2). The observation that more
genes were DE in patients versus carriers compared with
patients versus controls is likely due to the much larger number
of carriers (228) compared with controls (93), which provides
stronger statistical support to small expression changes.

Regression with clinical phenotypes

Several phenotypic measures can be used to quantify disease
severity in FRDA patients. A direct clinical measure is the func-
tional disability stage (FDS) score developed for the Friedreich’s
ataxia rating scale (FARS) (7), which rates patients on a scale
from 0–6 based upon their mobility, with 0 indicating no impair-
ment and 6 complete disability. Two less direct measures of dis-
ease severity are the disease duration in years and the size of
the shorter GAA repeat expansion in patients, GAA1. We used
linear modeling to identify transcripts with significant positive
or negative linear relationships with each phenotypic measure.
At a cut-off of log BF> 0.5, comparing the alternative model
with the phenotypic measure to the null model without it, we
identified 1508 transcripts significantly associated with FDS
(global FDR¼ 0.0028, Fig. 2, Table 3, Supplementary Material,
Table S3), 280 transcripts significantly associated with GAA1
(global FDR¼ 0.0043) and 13 transcripts significantly associated
with disease duration (global FDR¼ 0.006). In all three analyses,
all genes with log BF> 0.5 also had a pp> 0.95.

Enrichment analysis of DE and FDS-associated genes

We used enrichment analysis to identify biological pathways
that were significantly overrepresented in DE or FDS-associated
genes (Fig. 3). In genes that were significantly upregulated in
patients compared with carriers and controls, we identified a
very strong enrichment for one specific process: neutrophil de-
granulation (patient vs. control: 58 genes, log BF¼ 22.2, patient
vs. carrier: 70 genes, log BF¼ 26.6). There was weaker enrich-
ment for downregulated genes in general, with the strongest
term relating to T-cell differentiation (patient vs. control: 12
genes, log BF¼ 6.26, patient vs. carrier: 14 genes, log BF¼ 6.67).
This enrichment is supported by the presence of numerous
T-cell marker genes (CCR7, CD8A, GZMK, CD3D, CD27) in the
most downregulated genes in patients. These results indicate
the presence of subtle but robust changes in peripheral blood
gene expression associated with the presence of a pathogenic
mutation in FXN.

Table 1. Summary of subject demographics

Status Male Female Total Age GAA1 length

Patient 221 (53%) 197 (47%) 418 25 6 11.9 900 6 185
Carrier 89 (39%) 139 (61%) 228 50 6 17.8 N/A
Control 53 (57%) 40 (43%) 93 37 6 10.4 N/A
Total 363 376 739
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Remarkably, enrichment analysis identified the same top
term for genes positively associated with FDS: neutrophil de-
granulation (38 genes, log BF¼ 5.78). Negatively associated
genes had weaker overall enrichment, which was primarily cen-
tered around RNA processing (mRNA splicing: 39 genes, log
BF¼ 4.28; tRNA modification: 12 genes, log BF¼ 3.8; rRNA modifi-
cation: 32 genes, log BF¼ 3.25). Although not significantly
enriched, several of the most negatively associated genes
(CD79A, GZMB) are also lymphocyte marker genes, recapitulat-
ing the decrease in similar genes seen in differential expression.

Overlap with other datasets

Gene expression changes associated with frataxin deficiency
have previously been studied in a number of models, including
transgenic mice, as well as peripheral blood. Two human data-
sets from peripheral blood (GSE11204, GSE30933, see
Supplementary Material for descriptions of each dataset), and
one mouse dataset (RNAi mouse) (8) were analyzed using the
same differential expression workflow used with our data. We
considered upregulated (log FC> 0) and downregulated (log
FC< 0) transcripts separately (or positive and negative

Figure 1. Differential expression analysis identifies 829 genes DE between patients and controls and 1078 genes DE between patients and carriers. Volcano plot of all

genes in patient versus control and patient versus carrier comparisons. The fold change is on the x-axis, and the log BF is on the y-axis. Blue indicates a gene that is sig-

nificantly (log BF>0.5, pp>0.95) downregulated, while red indicates a gene that is significantly upregulated.

Table 2. Top genes most DE between patients and controls

Gene Definition Log BF Log FC
(pat. vs. cont.)

Log FC
(pat. vs. carr.)

Function

MMP9 Matrix metallopeptidase 9
(ENSG00000100985)

3.05 0.302 0.255 (UniProt KB) May play an essential role in lo-
cal proteolysis of the extracellular matrix
and in leukocyte migration.

ANPEP Alanyl aminopeptidase, mem-
brane (ENSG00000166825)

2.25 0.218 0.124 (UniProt KB) Broad specificity
aminopeptidase.

DYSF Dysferlin (ENSG00000135636) 1.31 0.207 0.139 (UniProt KB) Key calcium ion sensor involved
in the Ca(2þ)-triggered synaptic vesicle-
plasma membrane fusion.

MME Membrane metalloendopeptidase
(ENSG00000196549)

2.13 0.194 0.152 (Entrez Gene) The protein is a neutral endo-
peptidase that cleaves peptides at the
amino side of hydrophobic residues.

RPL14 Ribosomal protein L14
(ENSG00000188846)

1.36 �0.181 �0.0541 Ribosome component.

RNF24 Ring finger protein 24
(ENSG00000101236)

1.58 0.178 0.0965 (Entrez Gene) This gene encodes an integral
membrane protein that contains a RING-
type zinc finger.

PADI4 Peptidyl arginine deiminase 4
(ENSG00000159339)

3.08 0.185 0.175 (Entrez Gene) This gene is a member of a
gene family which encodes enzymes re-
sponsible for the conversion of arginine
residues to citrulline residues.

NCF4 Neutrophil cytosolic factor 4
(ENSG00000100365)

1.79 0.170 0.107 (UniProt KB) Component of the NADPH-oxi-
dase, a multicomponent enzyme system
responsible for the oxidative burst.

CA4 Carbonic anhydrase 4
(ENSG00000167434)

1.54 0.169 0.137 (UniProt KB) Reversible hydration of carbon
dioxide.

LRRN3 Leucine-rich repeat neuronal 3
(ENSG00000173114)

3.18 �0.153 �0.163 Unannotated.

Annotations provided by GeneCards (RRID: SCR_002773), UniProt (RRID: SCR_002380) and Entrez Gene (RRID: SCR_002473). Log FC¼ log2 fold change, log BF¼ log10 Bayes

factor.
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regression coefficients for FDS-associated transcripts) and the
overlaps were computed for patients versus controls, patients
versus carriers and FDS regression in each direction of change.
Thirteen comparisons had a log BF greater than 0.5 (Fig. 4), indi-
cating that our DE and FDS-associated genes were significantly
enriched for genes enriched in differential expression in other
datasets.

In all cases, the overlap was only observed in the upregu-
lated genes. Six of the enriched comparisons originate from the
patient versus control and carrier versus control contrasts from
a previously published peripheral blood dataset (GSE30933),
while the other seven enrichments are seen in DE genes in heart
tissue collected at several developmental timepoints in a novel
mouse model of FRDA (8). No enrichment was observed for the
other previously published peripheral blood dataset (GSE11204).
There was also no enrichment observed in DE genes in cerebel-
lum and dorsal root ganglion (DRG) tissue collected from the
same mouse model (Supplementary Material, Fig. S3).

Weighted gene coexpression network analysis
(WGCNA)

WGCNA is a powerful method for the identification of groups of
coexpressed transcripts (9–12). We first identified modules in
our dataset, then used module eigengenes (see Materials and
Methods) as summary measures for each module to determine
if any modules were significantly different across our diagnostic
groups, or related to disease progression, using the same linear
model designs as in the previous analyses.

Diagnosis
First, we assessed the relationship with diagnostic groups. We
identified seven distinct coexpression modules in the complete
dataset (Fig. 5A and B, Supplementary Material, Table S4). Three
of the seven modules had a log BF> 0.5 for the alternative model

compared with the null (Fig. 5C): pink (log BF¼ 2.17), green (log
BF¼ 1.38) and black (log BF¼ 1.67). To identify the specific pair-
wise differences in the eigengene values, we also computed pos-
terior probabilities and FDRs for the contrasts previously
described for differential expression (patient vs. control
FDR¼ 0.0015, patient vs. carrier FDR¼ 0.0017). The pink module
eigengene was significantly higher in patients than in controls
(log FC¼ 0.011, pp¼ 0.994) and carriers (log FC¼ 0.012, pp¼ 1.0),
while no difference was observed between carriers and controls.
The green module eigengene was also higher in patients com-
pared with controls (log FC¼ 0.012, pp¼ 0.998) and carriers (log
FC¼ 0.009, pp¼ 1.0). Conversely, the black module eigengene was
significantly decreased in patients compared to controls (log
FC¼�0.008, pp¼ 0.970) and carriers (log FC¼�0.012, pp¼ 1.0).
The top hub genes in each module are listed in Table 4.

Functional disability stage
We also used WGCNA to identify groups of coexpressed genes corre-
lated with FDS. Using the same subset of patients as in the regression
with FDS, we identified eight modules (Fig. 6A and B, Supplementary
Material, Table S5), and used the same linear model designs de-
scribed for regression with FDS to determine if any eigengenes were
significantly associated with FDS. Three modules had a log BF> 0.5
for the alternative model compared with the null (global FDR¼ 1.0�
10�4, Fig. 6C): the magenta module (coeff.¼ 0.0071, log BF¼ 1.45,
pp¼ 0.999), the yellow module (coeff.¼�0.0093, log BF¼ 3.01,
pp¼ 1.0) and the red module (coeff.¼�0.0077, log BF¼ 1.91, pp¼ 1.0).
The top hub genes for each module are listed in Table 5. Remarkably,
the top three hub genes of the magenta module are the same as the
top three hub genes of the pink module from the status network, and
two of the top three hub genes in the yellow module are shared with
the black module in the status network.

Enrichment analysis of significant modules
Similar to the approach taken with DE and FDS-associated
genes, we used enrichment analysis to identify biological path-
ways which were overrepresented in our significant WGCNA
modules (Fig. 7). In the status network, the pink module was
highly enriched for neutrophil degranulation (43 genes, log
BF¼ 12.0), the same process seen in upregulated genes in differ-
ential expression and genes positively associated with FDS. The
green module exhibited even stronger enrichment for neutro-
phil degranulation (156 genes, log BF¼ 38.8). The likely reason
the green module is separate from the pink module is that the
green eigengene is slightly increased in carriers, while the pink
module shows no difference between carriers and controls.
Finally, the black module, while showing weaker enrichment
overall, did contain a large number of genes involved in rRNA
modification (49 genes, log BF¼ 1.47).

In the FDS network, we found that the magenta module was
strongly enriched for the same inflammatory response, neutro-
phil degranulation (75 genes, log BF¼ 14.2), as seen in the pink
module in the status network. Enrichment analysis of yellow
module indicated enrichment for rRNA processing (44 genes,
log BF¼ 2.98) and the mitochondrial respiratory chain complex
(20 genes, log BF¼ 1.89). Finally, the red module was strongly
enriched for translation, especially mitochondrial translation
(27 genes, log BF¼ 4.44).

Cell type deconvolution

Changes in cell type composition could in theory explain some
of the changes in gene expression we observed between

Figure 2. Regression of gene expression with FDS identifies 1508 transcripts sig-

nificantly associated with FDS. Volcano plot of all genes in FDS regression. The

regression coefficient is on the x-axis, and the log BF is on the y-axis. Blue indi-

cates a gene with a significant (log BF>0.5) negative regression coefficient, while

red indicates a gene with a significant positive coefficient.
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patients, carriers, and controls and with FDS. The availability of
cell-type specific transcriptomes in well-studied tissues such as
peripheral blood has led to the development of tools to estimate
the proportion of cell types in a sample known to contain a
mixed population of cells. We used the CellMix tool (13) with an
existing cell-type specific peripheral blood dataset (14) to esti-
mate cell type proportions in our full dataset (patients, carriers
and controls) and the subset of FRDA patients we used for re-
gression of gene expression with FDS, after regressing out the
effects of collinear variables.

After comparing cell type proportions in our three disease
status groups, only the proportion of natural killer cells was sig-
nificantly different (log BF¼ 2.45, Fig. 8) and pairwise testing
found the proportion underwent a small but significant de-
crease in patients compared with both carriers and controls (pa-
tient vs. control: diff.¼�0.0159, pp¼ 1.0; patient vs. carrier:
diff.¼�0.0094, pp¼ 0.999). We also regressed cell type propor-
tion with FDS but found no significant associations
(Supplementary Material, Fig. S4).

qPCR and array validation

We validated the differential expression changes of the top
three DE genes between patients and controls, MMP9, DYSF and
ANPEP, using quantitative polymerase chain reaction (qPCR)
in 32 patients (including 21 additional samples not previously
included in the analysis) and 32 age and sex-matched controls
(including 16 new samples, Fig. 9). We also analyzed the corre-
sponding array data for samples for which this was available
(14/32 controls and 22/32 patients). In the qPCR data, there were
no significant differences between patients and controls for
MMP9 (P< 0.08, log FC¼�0.0006, Mann–Whitney U-test), DYSF
(P< 0.76, log FC¼ 0.022) or ANPEP (P< 0.26, log FC¼�0.007). In
the corresponding array data, MMP9 was significantly increased
in patients (P< 0.013, log FC¼ 0.92), while ANPEP (P< 0.13, log
FC¼ 0.41) and DYSF (P< 0.34, log FC¼ 0.15) were upregulated but
did not reach statistical significance. These results show that
we have biologically validated our results with a small number
of independent microarrays, but that qPCR is less powered to

Table 3. Top genes most strongly associated with FDS

Gene Definition Log BF FDS
coefficient

Function

PI3 Peptidase inhibitor 3
(ENSG00000124102)

1.71 0.11 (UniProt KB) This gene encodes an elastase-specific inhibi-
tor that functions as an antimicrobial peptide.

CA1 Carbonic anhydrase 1
(ENSG00000133742)

0.98 0.10 (UniProt KB) Reversible hydration of carbon dioxide. Can
hydrates cyanamide to urea.

SNCA Synuclein alpha
(ENSG00000145335)

0.93 0.081 (UniProt KB) Reduces neuronal responsiveness to various
apoptotic stimuli, leading to a decreased caspase-3
activation.

FCGBP Fc fragment of IgG-binding
protein
(ENSG00000275395)

4.81 �0.080 (UniProt KB) May be involved in the maintenance of the
mucosal structure as a gel-like component of the
mucosa.

GNG10 G Protein Subunit Gamma
10 (ENSG00000242616)

1.50 0.079 (UniProt KB) Guanine nucleotide-binding proteins (G pro-
teins) are involved as a modulator or transducer in vari-
ous transmembrane signaling systems.

PROK2 Prokineticin 2
(ENSG00000163421)

1.99 0.078 (UniProt KB) May function as an output molecule from the
suprachiasmatic nucleus (SCN) that transmits behavioral
circadian rhythm.

CHPT1 Choline phosphotransfer-
ase 1 (ENSG00000111666)

2.53 0.078 (UniProt KB) Catalyzes phosphatidylcholine biosynthesis
from CDP-choline.

GZMB Granzyme B
(ENSG00000100453)

1.95 �0.077 (UniProt KB) This enzyme is necessary for target cell lysis in
cell-mediated immune responses.

CD79A CD79a molecule
(ENSG00000105369)

3.01 �0.075 (EntrezGene) This gene encodes the Ig-alpha protein of the
B-cell antigen component.

ALPL Alkaline phosphatase, liver/
bone/kidney
(ENSG00000162551)

1.13 0.074 (EntrezGene) This gene encodes a member of the alkaline
phosphatase family of proteins.

Annotations provided by GeneCards (RRID: SCR_002773), UniProt (RRID: SCR_002380) and Entrez Gene (RRID: SCR_002473). The regression coefficients are not directly

comparable with correlation coefficients because the expression values and FDS cannot be standardized in a linear model including covariates. However, the relative

magnitude of the coefficient still reflects the strength of the linear relationship. Log BF¼ log10 Bayes factor.

Figure 3. Enrichment analysis identifies biological pathways that are signifi-

cantly overrepresented in DE and FDS-associated genes. Bar plot of most repre-

sentative enrichment term for each gene set on the y-axis. The label on the right

is the pathway, and the number in parentheses is the size of the overlap be-

tween the gene set and pathway. The log BF is on the x-axis, and is statistically

significant at log BF> 0.5 (marked by red line).
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Figure 4. Overlap of DE genes with other datasets. The number in the top of each cell in the heatmap is the number of transcripts in the overlap and the number in pa-

rentheses is the log BF of a hypergeometric overlap test. Log BF>0.5 is considered significant. T3¼12 weeks old, T4¼16 weeks old, T5¼20 weeks old. See

Supplementary Material for additional descriptions of the datasets and analytic procedures.

A

C

B

Figure 5. WGCNA identifies the pink, green and black modules as significantly different across clinical status. (A) Cluster dendrogram and color assignment for all tran-

scripts in the full dataset. (B) Cluster dendrogram and heatmap of eigengene correlations. (C) Violin plots showing eigengene posterior estimates for the pink, green

and black modules. The 95% credible intervals are between the smaller top and bottom lines and median estimate is the larger middle line.
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detect small expression differences between patients and con-
trols, likely because of small sample size and noisier
quantification.

Discussion
We report the first large-scale analysis of peripheral gene ex-
pression in patients with FRDA, heterozygous mutation carriers
and controls. After conservative data processing and strict sta-
tistical thresholds, we identified the transcripts with either ro-
bust differences between patients and controls, or correlated
with FDS (Tables 2 and 3). In addition, network methods identi-
fied coordinated groups of genes with biological significance.

The most striking finding across our analyses was the robust
enrichment for increased expression in patients of inflamma-
tory genes, particularly those involved in neutrophil degranula-
tion, an important innate response to tissue injury and
infection which has also been implicated in chronic inflamma-
tion (15). It is not possible to determine from this data whether
the inflammatory response observed peripherally is part of the
disease pathogenesis, or merely a response to stress induced by
FXN deficiency. In other chronic inflammatory disorders, activa-
tion of neutrophils and other components of the innate im-
mune response is a key component of the disease (16). A
growing body of literature also supports the involvement of
both innate and adaptive immune responses in neurodegenera-
tion, including Parkinson’s disease, Alzheimer’s disease and
frontotemporal dementia (17). Many of our top DE genes and
network hub genes are clearly linked to the innate immune re-
sponse. These include several peptidases (MMP9, ANPEP, MME),
a regulator of peptidase activity (PI3), two carbonic anhydrases
(CA1, CA4) and genes regulating neutrophil degranulation
(NCF4, DYSF, STX3).

We also identified a strong enrichment for a decrease in
transcription and translation associated with FRDA, both when
comparing patients to controls and carriers, and when

examining the relationship with disease severity. Our DE genes
and hub genes include RPL14, a ribosome component, as well as
a chaperone protein (TTC4), and an rRNA processing gene
(DDX47). It has long been known that oxidative stress, like that
induced by FXN deficiency, leads to a decrease in translation
(18), which may explain these changes.

Several of our DE or hub genes have been identified as being
relevant to other neurodegenerative disorders. Both PROK2 and
AQP9 were identified as being DE in peripheral blood in
Huntington’s disease (19). Mutations in dysferlin (DYSF) have
been identified as a cause of limb-girdle muscular dystrophy
(20), and mutations in alpha-synuclein (SNCA) have been identi-
fied in familial cases of Parkinson’s disease (21). However, the
relevance of these genes to the pathology of FRDA cannot be
ascertained from this study.

We observed a fairly consistent overlap with our previous inde-
pendent peripheral blood study including 41 subjects. The
GSE11204 dataset, while also partly collected in peripheral blood
(the part of the dataset collected from cell lines was not analyzed
because phenotypic data were not available), was severely con-
founded by batch effect which might explain the poor overlap. The
intriguing overlap with genes that are DE in the heart of a novel
mouse model for FRDA may indicate there are some similar in-
flammatory processes occurring in the heart. We speculate that
the complete lack of overlap with corresponding CNS tissues (DRG
and cerebellum) in the same FRDA mouse model is caused by large
differences in structure and function between cells of the CNS and
peripheral blood and the smaller number of genes identified as DE
in CNS tissues of the mouse model compared to the heart.

The detection of large numbers of genes significantly associ-
ated with FDS is intriguing given that this is a high-level clinical
measurement and was collinear with age (whose effects were
removed from the data before regressing with FDS). Although it
is less sensitive than FARS, FDS is easier to collect in large se-
ries, and is a fairly direct measurement of disease severity, so it
is biologically plausible that genes would be positively or

Table 4. Top hub genes for the pink, green and black modules

Gene Definition Module kME Function

STX3 Syntaxin 3 (ENSG00000166900) Pink 0.91 (UniProt KB) Potentially involved in docking of synaptic vesicles at pre-
synaptic active zones.

MXD1 MAX dimerization protein 1
(ENSG00000059728)

Pink 0.90 (Entrez Gene) This gene encodes a member of the Myc superfamily of
basic helix-loop-helix leucine zipper transcriptional regulators.

AQP9 Aquaporin 9 (ENSG00000103569) Pink 0.89 (Entrez Gene) The aquaporins are a family of water-selective mem-
brane channels.

DYSF Dysferlin (ENSG00000135636) Green 0.88 (UniProt KB) Key calcium ion sensor involved in the Ca(2þ)-triggered
synaptic vesicle-plasma membrane fusion.

ARID3A AT-rich interaction domain 3A
(ENSG00000116017)

Green 0.88 (UniProt KB) Transcription factor which may be involved in the control
of cell cycle progression

MBOAT7 Membrane-bound O-acyltransfer-
ase domain containing 7
(ENSG00000125505)

Green 0.88 (UniProt KB) Acyltransferase which mediates the conversion of lyso-
phosphatidylinositol into phosphatidylinositol.

FBXO31 F-box protein 31
(ENSG00000103264)

Black 0.88 (UniProt KB) Component of some SCF (SKP1-cullin-F-box) protein li-
gase complex that plays a central role in G1 arrest following DNA
damage.

MMS19 MMS19 homolog, cytosolic iron-
sulfur assembly
component(ENSG00000155229)

Black 0.85 (UniProt KB) Key component of the cytosolic iron-sulfur protein
assembly (CIA) complex.

USP5 Ubiquitin-specific peptidase 5
(ENSG00000111667)

Black 0.84 (UniProt KB) Cleaves linear and branched multiubiquitin polymers
with a marked preference for branched polymers.

Annotations provided by GeneCards (RRID: SCR_002773), UniProt (RRID: SCR_002380) and Entrez Gene (RRID: SCR_002473). kME¼ correlation of gene with module hub

gene.
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Figure 6. WGCNA identifies the magenta, yellow and red modules as significantly associated with FDS (A) Cluster dendrogram and color assignment for all transcripts

in the patients with FDS available. (B) Cluster dendrogram and heatmap of eigengene correlations. (C) Scatterplots showing relationship of FDS (on the x-axis) with

eigengene expression (on the y-axis) for the magenta, yellow, and red modules.

Table 5. Top hub genes for the magenta, red, and yellow modules

Gene Definition Module Kme Function

STX3 Syntaxin 3 (ENSG00000166900) Magenta 0.90 (UniProt KB) Potentially involved in docking of synaptic vesicles at
presynaptic active zones.

MXD1 MAX dimerization protein 1
(ENSG00000059728)

Magenta 0.91 (Entrez Gene) This gene encodes a member of the Myc superfamily
of basic helix-loop-helix leucine zipper transcriptional
regulators.

AQP9 Aquaporin 9
(ENSG00000103569)

Magenta 0.90 (Entrez Gene) The aquaporins are a family of water-selective mem-
brane channels.

TTC4 Tetratricopeptide repeat do-
main 4 (ENSG00000243725)

Red 0.87 (Entrez Gene) This gene encodes a protein that contains tetratrico-
peptide (TPR) repeats, which often mediate protein–protein
interactions and chaperone activity.

PPP3CC Protein phosphatase 3 catalytic
subunit gamma
(ENSG00000120910)

Red 0.84 (UniProt KB) Calcium-dependent, calmodulin-stimulated protein
phosphatase.

DDX47 DEAD-box helicase 47
(ENSG00000213782)

Red 0.84 (UniProt KB) Involved in apoptosis. May have a role in rRNA proc-
essing and mRNA splicing.

FBXO31 F-box protein 31
(ENSG00000103264)

Yellow 0.88 (UniProt KB) Component of some SCF (SKP1-cullin-F-box) protein
ligase complex that plays a central role in G1 arrest following
DNA damage.

USP5 Ubiquitin-specific peptidase 5
(ENSG00000111667)

Yellow 0.86 (UniProt KB) Cleaves are linear and branched multiubiquitin poly-
mers with a marked preference for branched polymers.

RPUSD2 RNA pseudouridylate synthase
domain containing 2
(ENSG00000166133)

Yellow 0.86 Unannotated.

Annotations provided by GeneCards (RRID: SCR_002773), UniProt (RRID: SCR_002380) and Entrez Gene (RRID: SCR_002473). kME¼ correlation of gene with module hub

gene.
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negatively associated with it. We were also intrigued to note
that the same inflammatory response which appears to differ-
entiate patients from controls and carriers is also positively as-
sociated with disease severity. By contrast, the enrichments
seen for downregulated genes in patients and genes inversely
associated with severity were generally weaker, though still
consistently including transcription.

The relatively poor detection of genes associated with GAA1
or disease duration is likely to due to several issues. Both meas-
ures were collinear with age and are not direct measures of dis-
ease severity. Furthermore, somatic mosaicism may introduce
differences in GAA1 length in blood compared with affected tis-
sues such as the spinal cord, heart or pancreas.

Although we found enrichment for a number of cell type-
specific signatures in our data, cell type deconvolution revealed
no change in proportion of neutrophils as estimated from gene
expression data, leading us to hypothesize that the large increase
in neutrophil degranulation persistently seen across different
analyses is not due to an absolute change in neutrophil count. We
observed only a small decrease in natural killer cells in patients,
which may explain the decrease in lymphocyte activation

observed in differential expression, although alterations in adap-
tive immune responses have been observed in neurodegenerative
disease (17). Complete blood cell counts should be used to prop-
erly characterize what changes, if any, occur in cell type composi-
tion, and cell-type specific transcriptomes, especially of
neutrophils, should be generated to identify which genes are un-
dergoing changes in expression in individual blood cell types.

It is also important to recognize the limitations of studying a
neurodegenerative disease like FRDA by quantifying gene ex-
pression in peripheral blood. The fold changes and regression
coefficients with FDS we observed are quite small in magnitude
when compared with what is typically observed in model sys-
tems and post-mortem studies. Due to the scale of the study,
we were not able to control some factors associated with the
sample collection that could increase the variability in our gene
expression signal, such as fasting, exercise and the time of day
the sample was collected. We cannot determine conclusively
whether these factors may have confounded our study but we
anticipate that they would likely reduce our power to detect
effects, making our results more conservative.

The inflammation occurring in FRDA is not an acute response
to an infection or a traumatic injury; instead it is likely to be simi-
lar to the chronic low-grade inflammation observed in other neu-
rodegenerative and inflammatory disorders (17). Our large
sample size and rigorous correction for potential confounders
have provided the statistical power to identify a broad inflamma-
tory signature. No individual gene can fully quantify the inflam-
matory response and other cellular pathology, but in aggregate
these genes provide insights into the effects of FXN deficiency. A
further strength of our large sample size is that we can capture
more of the genetic variation across FRDA patients than is logisti-
cally feasible in model systems and post-mortem studies, which
makes our results relevant for a broader range of patients.

Future studies of FRDA in humans should characterize the pe-
ripheral inflammatory state of FRDA patients, and seek to identify
whether this inflammation contributes to the pathology of the dis-
ease, or is merely a response to stresses induced by it. In particu-
lar, proteomic cytokine profiling and immune cell activity assays
could provide valuable biomarkers beyond gene expression.

Materials and Methods
The full pipeline and code used for all of the analyses is avail-
able on Github (https://github.com/coppolalab/FRDA_pipeline)
and a summary is provided in this section.

RNA collection and microarray hybridization

Peripheral blood was collected in Paxgene tubes and frozen be-
fore RNA extraction, which was performed using a semi-
automated system (Qiacube). Subjects were not specifically
instructed to fast or refrain from exercise, and the time of col-
lection was not uniform. RNA quantity was assessed with
Nanodrop (Nanodrop Technologies) and quality with the
Agilent Bioanalyzer (Agilent Technologies), which generated an
RNA integrity number (RIN) for each sample. Total RNA (200 ng)
was amplified, biotinylated and hybridized on Illumina HT12 v4
microarrays, as per manufacturer’s protocol, at the UCLA
Neuroscience Genomics Core. Slides were scanned using an
Illumina BeadStation and signal extracted using the Illumina
BeadStudio software (Illumina, San Diego, CA).

Figure 7. Enrichment analysis identifies biological pathways that are signifi-

cantly overrepresented in WGCNA modules. Bar plot of most representative en-

richment term for each gene set is on the y-axis. The label on the right is the

pathway, and the number in parentheses is the size of the overlap between the

gene set and pathway. The log BF on the x-axis, and is statistically significant at

log BF>0.5.

Figure 8. Cell type deconvolution analysis. Boxplots showing cell type propor-

tion of seven cell types in patients, carriers and controls.
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Array preprocessing

Array preprocessing was performed using the standard pipeline
from the lumi package (22), which is designed specifically for
Illumina microarrays. Raw intensities were normalized using
variance-stabilized transformation (23) and interarray normali-
zation was performed with robust spline normalization. A total
of 17 outliers were removed from the full dataset and 6 outliers
were removed the patient-only dataset using sample-wise con-
nectivity z-scores. Batch effect correction was performed using
ComBat from the sva package (24). Probes were filtered by detec-
tion score and unannotated probes were dropped. Duplicate
probes for the same gene were dropped using the maxMean
method with the collapseRows function (25) from the WGCNA
package, which only keeps probes with the highest mean ex-
pression across all of the samples. After all probe filtering steps,
16 099 probes were used for analysis of the full dataset, and
15 198 probes for the patient-only dataset.

Removal of confounding covariates

Age and sex were found to be collinear with disease status
(Supplementary Material, Fig. S1). To account for this, the

effects of both covariates were fitted and removed using the
median posterior estimates from linear models for each gene
made with the BayesFactor package (26,27).

Differential expression

Differential expression between patients, carriers and controls
was assessed using Bayesian model comparison on linear mod-
els for each gene generated with the BayesFactor package (26,27).
Bayesian model comparison produces Bayes factors (BFs) in-
stead of P-values for assessing significance. A BF is the ratio of
the probabilities of two models, and reflects the amount of in-
formation gained in terms of variance explained when adding
one or more variables to a model. Because age and sex were al-
ready removed due to collinearity, only disease status and RIN
were available to use as variables. The full model containing the
intercept, disease status and RIN was compared with the null
model containing only the intercept and RIN. BFs were log-
transformed to log BFs to place them on a more practical scale
(28), and a log BF of 0.5 was used as a cut-off for significance of
the alternative model to the null model (29). Although we are fit-
ting a separate model for each gene and thus running

Figure 9. qPCR and array validation of top three DE genes in 32 patients and 32 age- and sex-matched controls. Boxplots showing the relative expression of the top

three DE genes to the median value of the control samples. A total of 21 patient and 16 control samples (marked with closed circles) were new and not previously in-

cluded in the analysis. Top: microarray data, bottom: qPCR.
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thousands of tests, BFs do not require adjustment for multiple
comparisons because they are model comparisons (26).

Posterior estimates of the regression coefficients were gener-
ated using 10 000 iterations of Monte Carlo Markov chain sam-
pling with a random seed set to 12 345 to guarantee
reproducibility. We then specified three contrasts: patient-
control, patient-carrier and carrier-control. For contrasts, the
posterior samples were subtracted from each other in the order
specified to produce an estimate of the difference in expression
between the two groups. The median of this estimate was
treated as the log fold change (log FC). The pp of the pairwise
comparison being in the same direction as the log FC was de-
fined as the number of posterior samples that were non-zero
and had the same sign as the log FC.

The Bayesian FDR for each pairwise comparison is 1 � pp of
the comparison, so we used a pp of 0.95 as our threshold for
pairwise significance, so that the FDR for individual genes
would be less than 5%. The global FDR for a pairwise compari-
son was computed by taking the mean of the FDR values for all
of the genes that were found to be significantly DE for that com-
parison (adapted from 30, 31).

Regression with functional disability stage and other
phenotypic measures

Several phenotypic measures were available in a large subset of
the FRDA patients (n¼ 308), including FDS from the FARS, the
shorter of the two GAA repeat expansions (GAA1), and the dis-
ease duration (the difference between age of onset and age at
draw). Patients that were compound heterozygotes, with one
loss-of-function FXN variant on one allele and a repeat expan-
sion on the other, were excluded from this analysis. Age was
found to be collinear with all three measures (Supplementary
Material, Fig. S2) and was removed using the same linear
modeling with BayesFactor described previously.

Similar to the approach used for differential expression, lin-
ear models for each gene were fitted using BayesFactor. The full
model containing the intercept, the continuous phenotype
(FDS, GAA1 or disease duration), sex and RIN, was compared
with the null model without the continuous phenotypes and log
BFs were computed. Posterior estimates of the coefficients were
generated using the same parameters described above, and pos-
terior probabilities were defined as the number of samples in an
estimate that were non-zero and whose sign was opposite that
of the median estimate. The same thresholds of log BF> 0.5 and
pp> 0.95 were used to assess significance of the linear relation-
ship between gene expression and the continuous phenotypes,
and the global FDR was computed as described for differential
expression.

Gene coexpression network analysis

Weighted gene co-expression network analysis (WGCNA) was
run on (1) the full set of samples; and (2) the subset of patients
with complete phenotypic information described above. Only
batch effect was removed using ComBat, as the network con-
struction step must be performed on data that has not any
source of biological variation removed. The pipeline from the
WGCNA package was used as reported previously (9). A signed
network with a soft power of 6 was generated, and a module
dissimilarity threshold of 0.2 was used to merge correlated
modules. Hub genes were identified in network modules using
scaled connectivity, the ratio of a specific gene’s within-module

connectivity to the maximum within-module connectivity in
that module.

Eigengene values, summarizing gene expression within each
module, were compared across disease status using the same
linear model approach described for differential expression,
with age and sex being regressed out before fitting the final
models. Posterior estimates of the model parameters were gen-
erated using the same parameters as described previously.
Similar to the approach used for genes, module eigengenes with
a log BF> 0.5 when comparing the alternative model to the null
were considered different across conditions, and pairwise com-
parisons were also considered significant if their 95% credible
intervals did not overlap. For regression with continuous phe-
notypes, the same linear modeling, removal of age effect and
posterior estimation as that described for regression of genes
was used with the module eigengenes. An eigengene with log
BF> 0.5 was considered to have a significant linear relationship
with the continuous phenotype.

Overlap with other datasets

We compared our results with two other human datasets from
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/):
GSE11204 (32) and GSE30933 (33), as well as a dataset generated
on a novel mouse model of frataxin deficiency (8). The same
workflow used to identify DE genes in our data was applied to
these datasets, with adjustments made to account for platform
differences. Complete descriptions of the datasets and analytic
procedures are available in the Supplementary Material.
Enrichment was tested using the log BF computed from a hyper-
geometric overlap test (34) implemented in BayesFactor.

Cell type deconvolution

Cell type deconvolution was performed using the quadratic pro-
gramming method (35) implemented by the CellMix package
(13), which provides a peripheral blood dataset (14) that can be
used to estimate proportions of cell types in transcriptomic
data. Deconvolution was run on the raw, unprocessed array
data as recommended, although outliers were removed so that
only the samples used in the final analysis were used to com-
pute cell type proportions. The proportions were separately esti-
mated in the full group of patients, carriers and controls, as well
as the subset of patients used for phenotype regression.

The significance of differences in proportions of cell types
across patients, carriers and controls was separately assessed
for each cell type using the same Bayesian model comparison
and pp estimation described for differential expression. The
effects of age and sex were removed by linear regression from
the raw expression data before running CellMix as described for
differential expression, as both variables were confounded with
disease status. The significance of regression of FDS with cell
type proportion was also determined using the same Bayesian
model comparison and pp estimation described for differential
expression. The effect of age was removed by linear regression
from the raw expression data before running CellMix as de-
scribed for phenotype regression because it was collinear with
FDS.

Gene set annotation

Enrichment of genes for specific ontologies and pathways was
analyzed using the following datasets downloaded from Enrichr
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(36,37) (RRID: SCR_001575): GO Biological Process 2015 (RRID:
SCR_002811), GO Molecular Process 2015 (RRID: SCR_002811),
KEGG 2016 (RRID: SCR_012773) and Reactome 2016 (RRID:
SCR_003485). Enrichment scores were computed using a log BF
obtained using the same hypergeometric contingency table
implemented in BayesFactor (34) used for overlap testing.

qPCR validation

Taqman qPCR was used to validate expression changes ob-
served for the top three genes, in 32 patients and 32 age- and
sex-matched controls. 8/32 (25%) patients and 11/32 (34%) con-
trols were new subjects that had not been studied previously,
therefore in addition to being a technical validation, this is also
partly a biological confirmation of our findings. RNA was con-
verted to cDNA using the Invitrogen Superscript III First-Strand
Synthesis System. The TaqMan TM Gene Expression Assay was
then used to detect gene expression in the following three tar-
get genes: MMP9 (Taqman, Hs00957562_m1), ANPEP (Taqman,
Hs00174265_m1) and DYSF (Taqman, Hs01002513_m1). RPLP0
(Taqman, Hs99999902_m1), GAPDH (Taqman, Hs02758991_g1)
and b-Actin (Applied Biosystems, 4326315E) were used as refer-
ence genes. Three technical replicates were performed for each
reaction, resulting in nine replicates for each biological sample,
for a total of 576 PCR amplifications. The real-time PCR was car-
ried out on a LightCycler 480 (Roche) instrument and the Ct val-
ues were retrieved using the instrument software.

Ct values for the three targets genes and three reference
genes were normalized to a dilution curve as described previ-
ously (38) and outliers were identified and removed in two
steps. First, data were standardized by subtracting the mean
and dividing by the median absolute deviation for each pair tar-
get and reference genes separately (i.e. only MMP9 with RPLP0
as reference). Any reaction with a standardized score with abso-
lute value great than 2 was excluded, resulting in a total of 44/
576 MMP9 reactions, 43/576 ANPEP reactions and 50/475 DYSF
reactions being excluded. After removing these outliers, the me-
dian value across all remaining technical replicates for each
gene in each subject was computed. Median expression values
per subject were again standardized by median and MAD and
any subject whose standardized score had an absolute value
greater than 2 was excluded. This resulted in 6 subjects being
excluded for MMP9, 1 subject for ANPEP, and 8 subjects being ex-
cluded for DYSF. The significance of the difference in expression
between patients and controls for each gene was assessed using
the Mann–Whitney U-test because the expression values were
not normally distributed. Data from corresponding arrays was
processed using the same array preprocessing pipeline as de-
scribed previously, except that age and sex were not regressed
out because they were no longer confounded with disease
status.

To maintain consistency with the qPCR analysis, the Mann–
Whitney U-test was also used to assess the significance of the
differences between patients and controls for each gene in the
array data. For 9 patients and 11 controls, the array used was
from a different time point than the one analyzed in the original
DE analysis, providing both technical and biological validation
for those subjects.

Data Availability
All raw gene expression data is available for download in NCBI
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/gds)

under accession number GSE102008. An interactive differential
expression analysis interface for the data is available in the
REPAIR database (https://coppolalab.ucla.edu/account/login).
Finally, interactive visualizations of our network analysis are
available on our website (https://coppolalab.ucla.edu/gcla
bapps/nb/browser?id=FRDA_Gene%20Expression%20Network%
20-%20Diagnosis;ver=, https://coppolalab.ucla.edu/gclabapps/
nb/browser?id=FRDA_Gene%20Expression%20Network%20-%
20FDS;ver=).
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