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Abstract: In the last few decades, the newly emerging field of epigenetic regulation of glycosylation
acquired more importance because it is unraveling physiological and pathological mechanisms
related to glycan functions. Glycosylation is a complex process in which proteins and lipids are
modified by the attachment of monosaccharides. The main actors in this kind of modification
are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The
expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly
DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these
last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1
nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential
for acquiring new insights in the glycan field, especially if this could be useful for finding novel and
personalized therapeutics.

Keywords: epigenetics; methylation; histone acetylation; miRNAs; glycosylation; glycogenes; cancer;
inflammatory bowel disease; IgA nephropathy

1. Introduction

In the vast universe of cell biology, there is a very elaborate mechanism capable of
carrying out a myriad of functions: glycosylation of proteins and lipids. It consists of
the enzymatic attachment of monosaccharides to lipid or protein molecules [1], giving
rise to a class of macromolecules called the glycoconjugates (glycoproteins, proteoglycans,
mucins, glycosphingolipids, lipopolysaccharides). Glycoconjugates differ in their glycan
(the carbohydrate chain) sequence, length, number and position of branches, and type of
connections between sugars [1,2]. The complexity of glycan structures is due to the fact
that glycan synthesis is not template-driven, unlike linear molecules such as DNA and
proteins [3], and is influenced by many variables, including environmental factors, genetic
factors (i.e., single nucleotide polymorphisms), transcription factors, protein transports,
altered pH values in subcellular sites (especially in the Golgi apparatus), Golgi organizers,
ion channels, oxygen concentration, subcellular localization of enzymes, activated monosac-
charide donor substrates, and acceptor substrates availability [3–5]. In fact, it is estimated
that more than 800 genes are involved in the process of glycosylation [6,7], and, among
these, about 500 glycosylation-related genes (or glycogenes) are directly involved in glycan
assembly, remodeling and degradation, and account for about 2% of the genome [8,9].

Glycosylation has important implications for numerous processes, including the
following.

Physical and structural role: a dense layer of glycans (glycocalyx) covers the surface
of all the cells allowing to modulate cell–cell, cell–matrix, and cell–molecule interactions,
critical to the development of a complex multicellular organism [10,11]; protein folding [9]:
it takes place in the endoplasmic reticulum and ensures protein stability and function-
ing [10]; transcriptional regulation [9,12]: O-GlcNAcylation participates in the epigenetic
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regulation of gene expression [12–14]; interactions between host and pathogenic microor-
ganism [10,11]: viruses and bacteria bind and get access to host cells through glycan
receptors [15,16] and are able to evade the immune system decorating themselves with
a layer of host-like glycans (the so-called “molecular mimicry” mechanism) [9,17]. Para-
sites use another strategy to survive, called “glycan gimmickry”, consisting in targeting
host–glycan-binding proteins with their glycans [18].

One of the most important features of glycosylation is that it takes place in a cell- and
tissue-specific manner [3,6,19]. For example, it plays a very critical role in the development
and function of the nervous system, where characteristic glycan structures regulate axon
pathfinding, neurite outgrowth, synaptogenesis, neurotransmission, and other neuronal
processes [20]. Moreover, neural-specific glycans are required to carry out high-order brain
functions, including learning/memory and the formation of neural networks [6,21].

This review briefly describes the principal epigenetic mechanisms that participate in
gene expression and how they are related to glycosylation. A short overview illustrates the
normal physiology of epigenetic regulation of glycogenes, and a more extensive section is
devoted to cancer and other diseases.

2. Epigenetic Regulation of Glycosylation

Since glycosylation is cell- and tissue-specific, but the DNA template is always the
same in every cell of an organism, a master player able to regulate gene expression is re-
quired: epigenetics. It was defined as a “stably heritable phenotype resulting from changes
in a chromosome without alterations in the DNA sequence” [22]. It is a process that takes
place during the differentiation of somatic cells, as well as in response to environmental
changes [23]. Epigenetics is one of the reasons why the cells of an organism have a different
phenotype, even if they share the same DNA sequence. Epigenetics acts in order to regulate
gene expression mainly through the following three mechanisms [24–28].

DNA methylation: it occurs in CpG rich-regions called CpG islands, where CpG
dinucleotides tend to cluster. Frequently, methylation of these regions represses gene
transcription and expression [29], while unmethylated regions promote gene activation.
Basically, methylation requires a methyl group (CH3) covalently attached to the 5-carbon
of the cytosine residue (5mC) in the CpG site [26,30,31]. This action is carried out by
DNA methyltransferases (DNMTs), and the CH3 group physically interrupts the binding
between the proper transcription factor and its recognition sequence. Moreover, gene
silencing upon methylation can also occur when methyl-CpG-binding proteins bind to
the methylated DNA and recruit co-repressor molecules, such as histone deacetylases, to
induce chromatin structure condensation [32].

Histone modifications: the two main modifications that can occur on histones are
methylation and acetylation. They alter chromatin structure; in fact, euchromatin (ac-
tively transcribed) is characterized by high levels of acetylation and di/trimethylation of
H3K4, H3K36 and H3K79 [29,33], while heterochromatin (transcriptionally inactive) is
characterized by low levels of acetylation and high levels of H3K9, H3K27 and H4K20
methylation [29]. O-GlcNAcylation is another form of histone modification [12–14], and it is
the perfect example of how epigenetics and glycosylation are tangled together: epigenetics
regulates glycogenes expression, and glycosylation participates in epigenetic regulation.

Noncoding RNAs (ncRNAs): a wide range of RNA molecules belongs to this category,
which is included transfer RNA (tRNA), ribosomal RNA (rRNA), microRNA (miRNA), small
interfering RNA (siRNA), piwi-interacting RNA (piRNA), small nuclear RNA (snRNA), small
nucleolar RNA (snoRNA), and long noncoding RNA (lcnRNA) [34–36]. The most studied
are miRNAs and lncRNAs. miRNAs are characterized by a short sequence of nucleotides
(about 20–30), play a role in gene silencing [31] targeting mRNA 3’UTR regions, and inhibit
protein translation or enhance mRNA degradation [26,34]. To date, over 80 glycogenes have
been identified as miRNAs targets [37]. LncRNAs are longer than miRNAs (up to more than
100 kilobases) [25] and can function both by repressing or activating gene expression [34],
acting as molecular chaperones or scaffolds for various chromatin regulators [31].
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Of course, epigenetics is not the only mechanism involved in the transcription of
glycogenes. In fact, also transcription factors binding to a gene promoter and enhancer
elements are fundamental for this purpose [38]. A prominent example is given by transcrip-
tion factors hepatocyte nuclear factor 1α (HNF1α) and its downstream target hepatocyte
nuclear factor 4α (HNF4α), which were proven by Lauc et al. in the first genome-wide
association study (GWAS) of protein glycosylation to regulate the expression of key fuco-
syltransferases and fucose biosynthesis genes. This finding revealed a new role for HNF1α
as a master transcriptional regulator of multiple stages in the fucosylation process [39].

3. Physiological Aspects of Epigenetic Regulation of Glycosylation

Before going deeper into the field of epigenetic regulation associated with pathological
glycosylations, it is worth making a brief presentation on how glycogenes are regulated
by epigenetics when it comes to normal physiology. Research in this field is just at the
beginning, and there are little available data at present. Yet, some prominent studies
carried out on the brain elucidated the significance/importance of specific neural glycans
since their fine-tuning is pivotal for high-order brain functions (i.e., learning/memory, the
formation of the neural network, myelination), and their dysregulation leads to various
neurological disorders [40]. The first research group focused on a glycosyltransferase
called N-acetylglucosaminyltransferase IX (MGAT5B), that catalyzes the transfer of N-
acetylglucosamine (GlcNAc) to the 6-OH position of the mannose residues of GlcNAcβ1,2-
Manα on both the α1,3- and α1,6-linked mannose arms in the core structure of N-glycans.
It is also responsible for the transfer of GlcNAc in β1,6-linkage to O-mannosyl glycans. The
gene encoding this enzyme is MGAT5B, which is exclusively expressed in the brain [41], and
it has been proved that it is under the control of neural cell-specific histone modification:
active chromatin marks like H3K9ac and H3K4me3 were found in the mouse brain, and
repressive chromatin marks like H3K27me3 and H3K9me2 were detected in mouse kidney
and liver [42]. The second research group studied two glycosyltransferases involved in
lipid glycosylation: B4GALNT1 and ST8SIA1. They are both involved in the biosynthesis of
gangliosides, a class of sialic acid-containing glycosphingolipids particularly abundant in
the central nervous system. Their peculiarity consists in being ontogenically regulated, and
in fact, they are more expressed in the adult brain. Experiments on mice showed that brain
gangliosides shift from the simpler ones (GM3 and GD3) in early phases of life to more
complex ones during development (GM1, GD1a, GT1a, and GT1b) and that expression of
B4galnt1 (prevalently) and St8Sia1, both involved in this shifting, increased, due to histone
H3 and H4 acetylation [43–45].

4. Epigenetic Regulation of Glycosylation in Cancer

The majority of the studies of epigenetic regulation of glycogenes are about cancer. It is
well-established that aberrant glycosylation is one of the hallmarks of tumoral cells [46–48]
and that these changes are nonrandom: in cancer advancement, only the fittest cells survive,
and specific glycan changes are selected for tumor progression [47]. In fact, transcription
of a gene tends to be constitutively repressed in cancer, when its epigenetic silencing is
advantageous for promoting cancer progression [49]. In particular, incomplete synthesis
and neo-synthesis processes are the two principal mechanisms associated with alterations
of carbohydrate structures during tumor progression [50]. Incomplete synthesis refers to
truncated glycosylation that produces the Tn antigen in mucin-type O-glycans, and neo-
synthesis produces abnormal glycosylation patterns such as sialyl Lewis X (sLex) [51,52].
Tn antigen and sLex are typical of lymphocytes and help in their extravasation from the
blood, while in cancer, they facilitate metastatic spread [1,53]. Novel glycan structures also
have the role of enabling cancer cells to evade the host immune response [15,51,54,55].

All these modifications in glycosylation during the tumoral event are carried out by
genetic, epigenetic, metabolic, inflammatory and environmental mechanisms [52], but this
review focuses only on epigenetic alterations that affect glycogenes during carcinogenesis.
The first studies were based on the methylation status of the promoter region, using
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demethylating agents such as 5-aza-2-deoxycytidine (5-aza-dC) [56–58]. Later on, it was
discovered that hypermethylation of a promoter could not be sufficient to maintain gene
silencing; in fact, even upon a treatment, only a partial restoration was achieved, and this
was due to other epigenetic marks involved such as repressive histone modifications [59,60].

Epigenetic modifications of glycogenes in cancer were extensively reviewed by Dall’Olio
and Trinchera [48], and the most recent ones are updated in Table 1, but it is most likely
that the number of glycogenes epigenetically regulated in cancer is going to grow in the
next years.

Table 1. List of glycogenes regulated through epigenetics.

Target Epigenetic Mechanism Effect Tissue/Cells Involved References

Galactosyltransferases

B4GALT3 miR-1247-3p
CircUBXN7/miR-1247-3p axis

Downregulation
Upregulation

CAFs in lung metastasis of
liver cancer

Bladder cancer
[61,62]

N-acetyl-galactosaminyl transferases

GALNT1 LncRNA SNHG7/miR-216b axis Upregulation Colorectal cancer [63]

GALNT3 Linc01296/miR-26a axis Upregulation Colorectal cancer [64]

GALNT4 miR-4262 (downregulated) Upregulation Colorectal cancer [65]

GALNT7

miR-30e (downregulated)
LncRNA SNHG7/miR-34a axis

miR-154 (downregulated)
miR-125a-5p (downregulated)

Upregulation
Upregulation
Upregulation
Upregulation

Cervical cancer
Colorectal cancer

Laryngeal squamous cell
carcinoma

Cervical cancer

[66–69]

GALNT14 Hypermethylation Downregulation

A549-T cells
(paclitaxel-resistant strain
of human non-small cell

lung cancer)

[70]

B4GALNT1 Histone acetylation
Hypermethylation

Upregulation
Downregulation

Renal cell carcinoma
Hepatocellular carcinoma [71,72]

N-acetyl-glucosaminyl transferases

MGAT3 miR-23a(upregulated) Downregulation Hca-P (mouse) cell line [73]

OGT

miR-24-1 (downregulated)
miR-24 (downregulated)

miR-483 (downregulated)
miR-485-5p (downregulated)

Upregulation
Upregulation
Upregulation
Upregulation

Hca-F (mouse) cell line
High invasive breast cancer

cell lines
Gastric cancer

Colorectal cancer and
esophageal cancer cell lines

[74–78]

Sialyltransferases

ST3GAL4 miR-370 (treatment) Downregulation Colo 320 cell line [79]

ST6GAL1
miR-9 (downregulated)

LncRNA ZFAS1/miR-150 axis
LncRNA HOTAIR/miR-214 axis

Upregulation
Upregulation
Upregulation

Hepatocellular carcinoma
cell lines with high

lymphatic metastatic
potential

T-cell acute lymphoblastic
leukemia

Colorectal cancer

[80–82]

ST6GAL2 LncRNA HCP5/miR-22-3p, miR-186-5p,
miR-216a-5p axis Upregulation Follicular thyroid

carcinoma [83]
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Table 1. Cont.

Target Epigenetic Mechanism Effect Tissue/Cells Involved References

ST6GALNAC2 miR-182 and miR-135b Downregulation Colorectal cancer [84]

ST6GALNAC3 Promoter hypermethylation Downregulation Prostate cancer [85]

ST6GALNAC5 Promoter hypermethylation Downregulation Cervical cancer [86]

ST6GALNAC6 Histone methylation (H3K27me3) Downregulation Colon cancer [87]

ST8SIA1
miR-33a and let-7e (downregulated)

Promoter hypomethylation
Promoter hypermethylation

Not evaluated
Upregulation
Not evaluated

Colorectal cancer
Triple-negative breast

cancer
Esophageal cancer

[88–90]

ST8SIA4 miR-146a and miR-146b
(upregulated)miR-146a (upregulated)

Downregulation
Downregulation

Follicular thyroid
carcinomaOral squamous

carcinoma cell lines
[91,92]

Fucosyltransferases

FUT1 miR-34a (downregulated) Upregulation Head and neck squamous
cell carcinoma [93]

FUT4

miR-26a e miR-26b (downregulated)
miR-200b (downregulated)

miR-125a-5p (downregulated)
miR-200c (treatment)

miR-1295b and miR-6715amiR-29b/Sp1
axis

LncRNA AC114812.8/miR-371b-5p axis

Upregulation
Upregulation
Upregulation

Downregulation
Not evaluated
Upregulation
Upregulation

Colorectal cancer
Breast cancer

Bladder cancer cell lines
MCF-7 cell line (breast

cancer)
Cholangiocarcinoma

Acute myeloid leukemia
Bladder cancer cell lines

[94–100]

FUT5 miR-125a-3p (downregulated) Upregulation Colorectal cancer [101]

FUT6 miR-125a-3p (downregulated)
LncRNA HOTAIR/miR-326 axis

Upregulation
Upregulation

Colorectal cancer
Colorectal cancer [101,102]

Sulfotransferases

HS3ST3B1 miR-218 (downregulated) Upregulation Non-small cell lung cancer [103]

Nucleotide donor transporters

DTDST Histone methylation (H3K27me3) Downregulation Colon cancer [87]

Below, we present some prominent examples of epigenetically modified glycogenes
involved in tumor progression.

4.1. C1GALT1C1

One of the hallmarks of carcinoma mucins is their incomplete glycosylation. The
addition of the first N-acetylgalactosamine (GalNAc) O-linked to serine or threonine of
mucin-type glycans leads to the formation of the Tn antigen, which is a well-known cancer-
associated structure [48]. On this first GalNAc, a Gal residue could be added by core 1
β1,3-galactosyltransferase (C1GALT1 or T-synthase), which needs the molecular chaperone
C1GALT1C1 (encoded by C1GALT1C1 gene) for its functioning. This leads to the formation
of the T antigen. At the same time, another enzyme called sialyltransferase ST6GALNAC1
could act on the Tn antigen, adding a residue of α2,6-linked sialic acid, resulting in the
formation of the sialyl-Tn (STn) antigen and blocking further chain elongation [52,104].
During carcinogenesis, C1GALT1C1 expression could be downregulated due to genetic
mutations [105] or, more interestingly, to an epigenetic modification: hypermethylation
of the promoter leads to the silencing of C1GALT1C1 and to the accumulation of the
cancer-associated Tn and STn antigens [106,107]. The secreted mucins expressing these
antigens often appear in the bloodstream of patients with cancer and are associated with
invasion since they potentiate migration of tumor cells through the inhibition of cell–cell
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contacts [108,109]. Moreover, these carcinoma mucins often decorate the tumor surface,
creating clustered sites for antibody attachment, thereby improving their activity as tu-
mor immunogens. In fact, since these glycans infrequently occur in normal tissues, they
provoke immune responses in patients, a property that has been exploited for potential
immunotherapy [47,108].

4.2. B4GALNT2 (β-1,4-N-acetyl-galactosaminyltransferase 2)

Sda carbohydrate (GalNAcβ1,4[Sialα2,3)Galβ1,4GlcNAc) belongs to the category of
the histo-blood group antigens. They were initially found on the erythrocyte surface,
but it was soon discovered that this group of antigens is widely distributed in many
epithelial tissues (colon, stomach, kidney, oocyte) and secretions (urine, serum, saliva,
milk) [110–112], and play roles in the regulation of physiological mechanisms. In particular,
studies in murine models showed that the Sda antigen is involved in the processes of
hemostasis [113,114] and reproduction [115,116]. The last step in the biosynthesis of the
Sda antigen is catalyzed by GalNAc transferase B4GALNT2 (also known as Sda synthase),
which adds an N-acetylgalactosamine to a terminal α2,3-sialylated galactose residue [117].
Experiments on guinea-pigs [118] and rats [119] proved that the B4GALNT2 gene could be
ontogenically regulated; in fact, the enzyme was absent at birth and increased with age.
More information on Sda synthase is known as far as concern cancer since the expression
and activity of this enzyme are downregulated in gastrointestinal cancer leading to a
complete loss of the antigen [112,117,120]. The reason for such differential expression
was attributed to the hypermethylation of the B4GALNT2 promoter [120,121], which is
embedded in CpG islands. In work by Kawamura et al. [54], the B4GALNT2 gene was
found methylated in about one-half of the gastric cancer cases taken under consideration
and in the majority of gastric and colon cancer cell lines. They used a demethylating agent,
5-aza-dC, to attempt a recovery of B4GALNT2 transcription, but it worked only partially,
inducing a very weak expression of both the glycoenzyme and the Sda antigen. Human
colon cancer cells were also treated with the histone acetylase inhibitor butyrate, but neither
a slight recovery of the Sda antigen nor that of B4GALNT2 was observed. According to
these results, the mechanism of B4GALNT2 downregulation in cancer deserves further
investigation [122].

4.3. B3GALT5

B3GALT5 is one of the glycoenzymes involved in the synthesis of type 1 chain carbo-
hydrate antigens, namely the Lewis a (Lea) trisaccharide, the Lewis b (Leb) tetrasaccharide
and the sialyl Lewis a (sLea) tetrasaccharide [123,124]. Lea and Leb are involved in various
biological contexts, such as microbial adhesion and cancer [125], whereas sLea has been
proven to be specifically an E-selectin ligand, favoring the metastatic process and angio-
genesis during cancer development [124,126,127]. The peculiarity of B3GALT5 is that its
expression is regulated by two promoters: the LTR and native promoters [128].

The LTR promoter, which has retroviral origins and is activated through hepatocyte
nuclear factor HNF1α and HNF1β [129,130], is mainly active in the organs of the gastroin-
testinal tract (such as the colon, stomach, and pancreas). However, HNF1α and HNF1β are
not able to modulate transcription, which depends on distal regulatory elements that are
active when methylated. In fact, LTR and proximal sequences lack CpG islands, suggesting
that methylation-sensitive DNA sequences reside outside the LTR region, presumably
distant from the promoter, where they act as potential epigenetic regulators of transcrip-
tion [130,131].

In the mammary glands, thymus and trachea, as well as in some human cancer cell
lines, transcription is mainly driven by a native promoter, which is sensitive to nuclear
factor NF-Y [124] and is located nearby two CpG islands [132] epigenetically regulated
through methylation [130]. As for the LTR promoter, NF-Y is unable to regulate transcrip-
tion, which depends on the methylation of the regulatory elements [130,131]. Moreover,
histone modification is another mechanism involved in the regulation. High expression
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of the native transcript is associated with active histone marks (H3K4me3, H3K79me2,
H3K9Ac, and H3K9-14Ac), while low levels of the transcript are associated with repressive
histone marks (H3K27me2 and H4K20me3) [132].

The differential regulation of B3GALT5 was studied in particular in the pancreas and
colon, comparing normal and tumoral tissues [130–132]. B3GALT5 is strongly downreg-
ulated in colon cancer with respect to the normal mucosa [133,134], and the silencing of
the gene is due to the opposite but synergic behavior of the two promoters: hypomethy-
lation of the distant sequences of the LTR promoter and hypermethylation of the native
promoter [124]. In the pancreas, both normal and cancer tissues have very low levels
of methylation in the native promoter, and the levels of B3GALT5 LTR transcript were
similar to those of the native transcript, without difference between normal and tumoral
specimens [131,132].

5. Epigenetic Regulation of Glycosylation in Other Diseases

Dysregulation of glycosylation is associated not only with cancer but also with a
number of other diseases. The majority of them are caused by genetic mutations such
as congenital disorders of glycosylation, diabetes, cardiovascular, immunological, au-
toimmune (rheumatoid arthritis, Sjögren’s syndrome, systemic lupus erythematosus) and
infectious disorders [2,7]. Other diseases are associated with both genetic and epigenetic
modifications, such as inflammatory bowel disease (IBD), IgA1 nephropathy (IgAN), and
neurodegenerative diseases, briefly reviewed below. Since this is a recent field of research,
it is highly probable that the disorders associated with aberrant epigenetic regulation of
glycosylation will increase over time, giving a better insight into the disease pathogenesis.

5.1. Inflammatory Bowel Disease

IBD is a chronic inflammatory disorder that affects the gastrointestinal tract and com-
prises two clinical syndromes: Crohn’s disease (CD) and ulcerative colitis (UC) [135,136].
These diseases have unknown etiology, and there is insufficient information about patho-
genesis, but it is believed that a complex interaction of genetic, epigenetic, microbial, envi-
ronmental and immunological factors are involved [137]. In particular, several studies have
evaluated the epigenetic status of IBD patients using candidate gene strategies [138–142] or
epigenome-wide association studies [143–146], trying to elucidate IBD pathogenesis [147].
Cooke and colleagues [143] collected rectal biopsies and identified some glycogenes that
have a differential methylation status between patients with CD and UC (inflamed vs.
non-inflamed) and healthy controls. In fact, in inflamed UC vs. controls, B3GALT2, GFPT1
and GBGT1 have increased methylation; in inflamed CD vs. controls, GFPT1 and GBGT1
have increased methylation and FUT2 has a decreased methylation; in non-inflamed CD vs.
controls, FUT7 and FGF23 have decreased methylation. These altered methylation levels
correlated with the development of IBD, contributing to better understand IBD pathogene-
sis. Another study conducted by Klasíc and colleagues evaluated the methylation status
of β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase (MGAT3) promoter
in CD3+ T cells isolated from the inflamed mucosa of UC patients. They found that the
MGAT3 promoter was hypermethylated in UC patients compared with healthy controls.
This kind of deregulation might lead to an increase of the proinflammatory properties
of IgG through a decrease in galactosylation and sialylation and an increase of bisecting
GlcNAc on digalactosylated glycans, thus suggesting a functional role of MGAT3 in IBD
pathogenesis [148].

5.2. IgA1 Nephropathy

Several studies led to the conclusion that inhibition of genes involved in glycosyla-
tion by miRNAs plays a role in the pathogenesis of IgA1 nephropathy (IgAN), which is
characterized by the aggregation of aberrantly glycosylated IgA1 molecules, leading to the
synthesis of inflammatory cytokines and glomerulonephritis. The first study conducted by
Serino and colleagues brought to the attention the role of miR-148b. It was demonstrated
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that peripheral blood mononuclear cells (PBMCs) of patients with IgAN show a higher
miR-148b expression level compared to healthy controls, and this upregulation leads to
a lower C1GALT1 expression. C1GALT1 is involved in the O-glycosylation of the IgA1
heavy chain hinge-region, and without the expression of the gene, hinge-region displays a
deficiency of galactose [149]. This group also demonstrated that GALNT2 (UDP-GalNAc:
polypeptide N-acetylgalactosaminyltransferase 2) is the target of miRNA let-7b, similarly to
C1GALNT1 and miR-148b. GALNT2 initiates the addition of GalNAc to serine or threonine
residues of the IgA1 hinge-region. Let-7b was significantly upregulated in IgAN patients,
and, as a consequence, GALNT2 levels became lower [150].

Recently, another miRNA was found to be involved in the aberrant glycosylation
of IgAN, but not in a direct way. In fact, the direct target of miR-98–5p is CCL3 (C–C
motif chemokine ligand 3), which can change the level of Th1 and Th2 cytokines in many
diseases. Th1 and Th2 cytokines participate in the pathogenesis of IgAN. In this case, only
IL-6 was found to be upregulated in PBMCs of IgAN patients compared to healthy controls.
IL-6 reduces the galactosylation of IgA1 by decreasing the expression of C1GALT1 [151].

Another miRNA able to indirectly modify glycosylation in IgAN is miR-374b. The
target of this miRNA is C1GALT1C1, which is required for the activity of C1GALT1,
and that is downregulated in the B cells isolated from IgAN patients, leading to abnormal
glycosylation of IgA1 [152]. Furthermore, miR-320 (upregulated in the renal tissues of IgAN
patients) targets C1GALT1C1, which in fact is downregulated in the same patients [67].

5.3. Neurodegenerative Diseases

A critical role of glycosylation is emerging in the field of neuron homeostasis and re-
lated neurodegenerative diseases. It is well-known that several glycoconjugates and related
processing enzymes, namely glycosyltransferases and glycosidases, are strictly and specif-
ically expressed in the central nervous system, and a set of specific glycosylations, such
as ganglioside biosynthesis and GlcNAcylation, are strongly associated with various neu-
rodegenerative disorders [153]. At present, the majority of data arise from genetic defects.
Both KO mice of ganglioside glycosyltransferases and congenital disorders of glycosylation
affecting ganglioside biosynthesis indicated that ganglioside dysregulation gives rise to
neuroinflammation, functional impairment, and in turn neurodegeneration [153,154]. More-
over, non-genetic derangement of glycosyltransferases was associated with Parkinson’s
disease (reduced B3GALT4 and ST3GAL2, increased OGT, O-linked GlcNAc transferase),
Huntington disease (reduced ST3GAL5, ST3GAL2, ST8SIA3, B4GALNT1), Alzheimer’s dis-
ease, and even amyotrophic lateral sclerosis (general ganglioside overexpression) [153,155].
In multiple sclerosis, an autoimmune disease causing inflammation of the central nervous
system, glycoproteins are candidate targets of autoreactivity, and glycosyltransferases such
as MGAT1, MGAT5 and B4GALT6 are reported as deregulated genes [7,156]. A key role of
epigenetic regulation is reported in multiple sclerosis [7] and suggests that such mechanism
could be the common trait of some of the other neurodegenerative disorders associated
with deranged glycosylation.

6. Concluding Remarks

Epigenetic regulation of glycosylation is an emerging and relatively recent field of
research. The analysis of glycogenes expression due to epigenetic mechanisms started
with the use of demethylating agents in cancer cell cultures [57,157], and it has become
more important over the years. At present, several pathological mechanisms associated
with cancer and other diseases are known to be caused by epigenetic dysregulation of
glycosylation, as reported in this review. We also reported relevant studies illustrating how
epigenetics controls glycosylation under physiological conditions [3,6,44,45,122,158,159].
Altogether these findings help to unravel the roles and functions of glycans, which are
candidate targets in the field of personalized medicine through drugs-based inhibitors of
their synthesis, glycan antagonists, and glycan-function modulators [52]. In this regard,
it is also worth recalling the critical interplays involving glycosylation, epigenetics, and
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hypoxia since one controls the other. This suggests that drugs affecting glycosylation
through epigenetic regulation could be relevant in cancer developing chemo-resistance [26].
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C1GALT1 Core 1 β1,3-galactosyltransferase
C1GALT1C1 C1GALT1-specific chaperone 1
CAF Cancer-associated fibroblast
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FGF23 Fibroblast growth factor 23
GalNAc N-Acetylgalactosamine
GBGT1 Globoside α-1,3-N-Acetylgalactosaminyltransferase 1
GALNT2 UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase 2
GFPT1 Glutamine-fructose-6-phosphate transaminase 1
GlcNAc N-Acetylglucosamine
HNF1α Hepatocyte nuclear factor 1α
HNF4α Hepatocyte nuclear factor 4α
IBD Inflammatory bowel disease
IgAN IgA1 nephropathy
MGAT3 β-1,4-Mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
OGT O-Linked GlcNAc transferase
PBMC Peripheral blood mononuclear cell
lncRNA Long noncoding RNA
miRNA MicroRNA
ncRNA Noncoding RNA
piRNA Piwi-interacting RNA
rRNA Ribosomal RNA
siRNA Small interfering RNA
snRNA Small nuclear RNA
snoRNA Small nucleolar RNA
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