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Abstract: Research on the consistency of suspended particulate matter (SPM) concentration retrieved
from multisource satellite sensors can serve as long-time monitoring of water quality. To explore the
influence of the atmospheric correction (AC) algorithm and the retrieval model on the consistency of
the SPM concentration values, Landsat 8 Operational Land Imager (OLI) and Sentinel 2 MultiSpectral
Imager (MSI) images acquired on the same day are used to compare the remote sensing reflectance
(Rrs) SPM retrieval values in two high-turbidity lakes. An SPM retrieval model for Shengjin Lake
is established based on field measurements and applied to OLI and MSI images: two SPM concen-
tration products are highly consistent (R2 = 0.93, Root Mean Squared Error (RMSE) = 20.67 mg/L,
Mean Absolute Percentage Error (MAPE) = 6.59%), and the desired results are also obtained in
Chaohu Lake. Among the four AC algorithms (Management Unit of the North Seas Mathematical
Models (MUMM), Atmospheric Correction for OLI’lite’(ACOLITE), Second Simulation of Satellite
Signal in the Solar Spectrum (6S), Landsat 8 Surface Reflectance Code & Sen2cor (LaSRC & Sen2cor)),
the two Rrs products, as well as the final SPM concentration products retrieved from OLI and MSI
images, have the best consistency when using the MUMM algorithm in SeaWIFS Data Analyst
System (SeaDAS) software. The consistency of SPM concentration values retrieved from OLI and
MSI images using the same model or same form of models is significantly better than that retrieved
by applying the optimal models with different forms.

Keywords: MSI sensor; OLI sensor; remote sensing; suspended particulate matter; turbid water; con-
sistency

1. Introduction

As the main component of case-II water, suspended particulate matter (SPM) con-
centration is an important parameter used in the assessment of aquatic ecosystems and
environmental impact of water [1–3]. It also plays a key biogeochemical role in aquatic
ecosystems [4]. SPM transportation and accumulation have significant effects on aquatic
ecosystems and human activities [5]. Therefore, monitoring the temporal and spatial
variations in the SPM concentration in lakes is important since it allows to understand
the dynamics of suspended particulates, as well as the structure and function of aquatic
ecosystems, and in the management and protection of aquatic ecosystems [1–7].

Monitoring of the SPM concentration in inland lakes and estuaries is usually per-
formed via field surveys and laboratory measurements [8–10]. However, it is difficult to
achieve high-density spatial monitoring of the SPM concentrations in large water bodies
using these methods as they are time-consuming and expensive [11]. Satellite remote
sensing technology can provide global coverage and allow the monitoring of specific areas.
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Remote sensing enables large-scale observations of the spectral reflectance of water in the
visible and near-infrared region, which can be used to map the SPM concentration in turbid
waters around the world [5,12]. Satellite remote sensing technology has, therefore, become
an important tool for monitoring the water quality of large and medium-sized lakes.

Although ocean color satellite sensors (such as Sea-viewingWideFieldSensor (SeaW-
iFS), Moderate Resolution Imaging Spectroradiometer (MODIS), MEdium Resolution Imag-
ing Spectrometer (MERIS), and Geostationary Ocean Color Imager (GOCI)) are equipped
with special spectral bands for observing the bio-optical properties of water bodies, the low
spatial resolution (250 m to 1 km) of these bands limits their capability to monitor in-
land water bodies at a small scale [13]. Land-monitoring satellites, such as the Landsat
and Sentinel-2 satellites, can provide imagery with a high spatial resolution (10–30 m),
which can be used to monitor the water quality parameters of inland lakes and rivers.
Launched on 11 February 2013, Landsat-8 carries the Operational Land Imager (OLI),
which has a spatial resolution of 30 m and a temporal resolution of 16 days. Launched
on June 2015, Sentinel-2 carries the MultiSpectral Imager (MSI), which has a spatial res-
olution of 10–60 m and a temporal resolution of 5 days, making it the first satellite to
systematically observe the world’s coastal zones at both high spatial and high temporal
resolutions. Researchers have used Landsat and Sentinel-2 imagery to map the surface
SPM concentration of large rivers and lakes around the world, including the Mississippi
River [14], Loire River [5], Guadalquivir River [15], Dongting Lake [7], Poyang Lake [12],
and Yangtze River [16]. However, due to the influence that frequent cloudy and rainy
weather in middle and low latitudes has on the quality of satellite imagery, the use of
a single type of optical data has certain limitations in terms of effectively capturing the
highly dynamic variations in SPM concentration in inland waters [11]. A combination of
Landsat-8 and Sentinel-2 images has a temporal resolution of ~3.8 days, which is a short
revisit cycle [17]. Therefore, the combined use of Landsat and Sentinel-2 images to map the
dynamic changes in SPM in inland water bodies has been a trend in recent studies.

In recent years, combination of Landsat-8 and Sentinel-2 data has been used in the
monitoring of various water quality parameters of lakes and rivers. These parameters
have included the dissolved organic carbon concentration [18], chlorophyll-a concentra-
tion [19,20], turbidity [20], water clarity [21], and SPM concentration [13]. Ensuring the
consistency of water quality values retrieved from MSI and OLI images is a prerequisite for
integrating these two remote sensing data sources, so as to carry out the long-term moni-
toring of aquatic systems. The retrieved water quality values are affected by atmospheric
correction of remote sensing images, the retrieval models and other factors, and it is vital
to ensure the consistency of remote sensing reflectance derived from OLI and MSI images.
However, in these studies, only the consistency of the retrieved values of the water quality
parameters for a single area was considered, and the different links in the retrieval process,
which significantly limit the transferability of remote sensing products and the range of
applications in which they can be used, were not analyzed.

The general objectives of this study were to (1) compare the SPM concentration values
retrieved from Sentinel-2 MSI and Landsat-8 OLI images acquired on the same day, and (2)
explore the influence of the atmospheric correction algorithm and the retrieval model on
the consistency of the SPM concentration values. To do this, the combinations of Landsat-
8 and Sentinel-2 images were used to analyze the consistency of SPM remote sensing
products for two high-turbidity lakes in the middle and lower reaches of the Yangtze River
of China. The influence of the atmospheric correction algorithm and retrieval models
used (same model, same form of model, or optimal model with different forms) on the
consistency of the SPM concentration values retrieved from MSI and OLI images was
explored. The results would provide a basis for the seamless integration of Landsat-8
OLI and Sentinel-2 MSI imagery for performing long-term monitoring of water quality
parameters in rivers and lakes.
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2. Materials and Methods
2.1. Study Areas

Shengjin Lake and Chaohu Lake were selected as the study areas, and both are located
in the middle-to-lower reaches of the Yangtze River in Anhui Province, China (Figure 1).
Shengjin Lake (116◦55′–177◦15′ E, 30◦15′–30◦30′ N) is a shallow lake located on the south
side of the Yangtze River in Chizhou City, Anhui Province. The lake comprises three
parts: the upstream, the midstream, and the downstream, and it has a total area of about
133 km2 during the wet season. The average SPM concentration and average chlorophyll-a
concentration in the lake are 62.28 mg/L and 6.83 µg/L respectively, meaning that the
lake can be classified as a turbid lake dominated by SPM. Chaohu Lake (117◦17′–117◦51′ E,
31◦25′–31◦43′ N), located on the north bank of the Yangtze River, is one of the five largest
freshwater lakes in China and has a total area of 775 km2. The average SPM concentration
and average chlorophyll-a concentration in the lake are 32.53 mg/L and ~138.77 µg/L,
respectively; thus, the lake can be classified as a turbid lake dominated by chlorophyll-a.
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Figure 1. Location of study area and sampling sites. (a) Shengjin Lake, (b) Chaohu Lake.

2.2. Field Measurements

Two field surveys were conducted at Shengjin Lake: one on April 14–15 and another
on October 21–22, 2017, and a total of 62 samples were collected from the lake surface
(Figure 1a). Two field surveys were also conducted at Chaohu Lake: one on Novem-
ber 3 and another on December 27, 2019, and a total of 58 samples were collected (Figure 1b).
The remote sensing reflectance (Rrs) of the water surface was detected using an AvaField-1
portable surface spectrometer with a spectral range of 350–1050 nm (Avantes Company,
Netherlands). Using the above-water surface measurement method [22], the measurements
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were recorded at an observation azimuth angle of 135◦ and an observation zenith angle
of 40◦. The remote sensing parameters that were measured included the irradiance of a
standard gray plate, sky radiance, and water-leaving radiance. Simultaneously, the water
clarity and turbidity were determined using a standard 20 cm diameter Secchi disk made
in China and an HACH 2100Q turbidity meter made in USA, respectively, while the co-
ordinates of each sample were recorded by a hand-held Global Positioning System (GPS)
receiver (Trimble GEOXH2008). Water samples (500 mL) were collected at a depth <30 cm
using a suction pump. These samples were taken back to the laboratory for determination
of the SPM concentration, which were pre-weighed by Whatman Glass fiber filtersFiltration
(GF/F) glass microfiber filters (diameter 47 mm, pore size 0.45 µm), then the filters were
dried at 40 ◦C for 48 h and reweighed [23]. The preprocessing of the spectral data and
calculation of the water surface Rrs were performed following the method described by
Wang [24]. The measured Rrs (λ) was calculated using Equation (1):

Rrs(λ) =
Lw − ρLsky

πLp/ρp
(1)

where Lw is the radiance measured above the water surface, Lsky is the radiance of the
sky measured by pointing the spectrometer sensor at the sky at a zenith angle of 45◦, ρp is
the reflectance of the standard gray plate, Lp is the downward solar radiation received
by the spectrometer above the gray plate, and ρ is the dimensionless air–water reflection
(a constant value of 0.025 was used in this study [24]).

2.3. Satellite Images Acquisition and Preprocessing

A Sentinel-2 MSI image of Shengjin Lake acquired on 24 October 2017, as well as MSI
and OLI images acquired on 23 November 2019, all of which were of good quality and
with no cloud cover, were used in this study. For Chaohu Lake, a Sentinel-2 MSI image of
Shengjin Lake acquired on 27 December 2019, as well as MSI and OLI images acquired on
23 November 2019, were also of good quality with thin cloud cover. Landsat-8 OLI images
were downloaded from the remote sensing image database of the US Geological Survey
(USGS) (http://earthexplorer.usgs.gov/ (accessed on 25 May 2020)), and the Sentinel-2 MSI
images were downloaded from the European Space Agency site (https://sentinel.esa.int
(accessed on 28 May 2020)).

SeaWIFS Data Analyst System (SeaDAS) 7.5 software was used to preprocess re-
mote sensing images. The preprocessing included geometric and atmospheric correction.
The Management Unit of the North Seas Mathematical Models (MUMM) algorithm was one
of the atmospheric correction methods used [25]. The MUMM algorithm is an atmospheric
correction method that can be applied to case-II water and is an extension of Gordon’s
standard atmospheric correction algorithm [26]. The MUMM algorithm assumes that the
ratio of the aerosol scattering rate and the water-leaving emissivity at 765 and 865 nm in
the study area have fixed values, and it also assumes that the ratio of the water reflectance
at 765 nm to that at 865 nm, as corrected by the atmospheric diffuse transmittance, has a
fixed value. The radiative transfer equation is solved, and the atmospheric correction is
performed according to the standard algorithm [27,28].

The water bodies in the imagery were extracted using the modified automatic water
extraction index (MAWEI) algorithm (Equation (2)) [29]. This is an improved version of
the automatic water extraction index (AWEI) and further enhances the difference between
water and other ground objects. Compared to the object-oriented methods, AWEI and the
modified normalized difference water index, the MAWEI algorithm extracts water bodies
more accurately. The coastline effect caused by mixed pixels at the edges of water bodies
can affect dark targets, and this is especially important in the case of inland water bodies.
To reduce this interference and minimize the subpixel variability, the MAWEI algorithm
masks and discards two pixels near the coast [30]. The equation used to calculate the
MAWEI is:

MAWEI = 5× (B3− B8a) + (B2 + B4− 4× B12) (2)

http://earthexplorer.usgs.gov/
https://sentinel.esa.int
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where B2, B3, B4, B8a, and B12 are the Rrs at the blue, green, red, near-infrared, and short-
wave infrared bands of the MSI sensor, respectively.

2.4. SPM Retrieval Model Development

Firstly, the Rrs at the spectral bands of MSI and OLI sensors in the range of 400–900 nm
are simulated before constructing the retrieval models. To simulate the Rrs at the bands in
two sensors, the water spectra data and the relative spectral responses of the MSI and OLI
sensors were combined to simulate the Rrs in the different bands. The simulated Rrs was
calculated according to Equation (3) [31]:

Rrs =

∫ λ1
λ2

fi(λ)Rrs(λ)dλ∫ λ1
λ2

fi(λ)dλ
(3)

where Rrs is the simulated Rrs at the spectral bands, Rrs(λ) is the Rrs of the measured
water spectra, fi(λ) is the relative spectral response of the sensor, and λ1 and λ2 are the
wavelengths corresponding to the lower and upper ends of the sensor bands, respectively.

Then Pearson correlation analysis between different band combinations (the mathe-
matical operations of addition, subtraction, multiplication, and division) and the measured
SPM concentration was conducted. After sorting the measured SPM values, two-thirds
of the samples were randomly selected as training samples. Taking the band reflectance
combination with correlation coefficient R greater than 0.8 (Table 1) as the independent
variables, and the measured suspended solids concentration as the dependent variable,
different forms of inversion models are established according to the partial least square
method. The model forms include polynomial model, exponential model, logarithmic
model, power function model, etc. These retrieval models were used to predict the SPM
concentration in the lakes.

Table 1. Band combinations with correlation coefficient (R) greater than 0.8.

Sensor Ratios R Sensor Ratios R

MultiSpectral
Imager (MSI)

B8/B1 0.831

Operational
Land Imager

(OLI)

B5/B1 0.829B6/B2 0.835
B7/B2 0.835
B8/B2 0.859

B5/B2 0.851B6/B3 0.853
B7/B3 0.858
B8/B3 0.872

B5/B3 0.870B7/B5 0.824

The accuracy assessment of the retrieval models that were used in this study was
performed based on the ground observations. The remaining one-third of the samples
were used as test samples to validate the accuracy of the retrieval models using the ground
observations. To reduce the effect of the geographic location and spatial resolution of the
imagery, the retrieved SPM values were calculated using an averaging 3 × 3-pixel window
centered at the positions of the samples. In addition, pixels whose values changed at a
rate of greater than 20% within the 3 × 3 window were eliminated to reduce the effect of
spatial heterogeneity of the SPM in the water [32]. Finally, the results of the evaluation of
the calibration accuracy of the retrieval model, and that of ground verification accuracy,
were integrated. From this, the best model was determined.

2.5. Evaluate the Consistency of SPM Remote Sensing Products

After SPM retrieval models are applied to Landsat-8 and Sentinel-2 images, the consis-
tency of the retrieved values of the SPM concentration is evaluated. First, the SPM values
retrieved from Sentinel-2 images were resampled to 30 m using the extended geospatial
data abstraction library in Python, georeferenced with Landsat-8 images on the same day;
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then, the correlation between the SPM values retrieved from Landsat-8 and Sentinel-2
images, and the difference between them (OLI minus MSI), were analyzed, to verify the
consistency between these two SPM concentration products. The indices used to evalu-
ate the consistency of the remote sensing products in our paper include the coefficient
of determination (R2), root mean squared error (RMSE), and mean absolute percentage
error (MAPE).

3. Results
3.1. Consistency of Rrs Values Derived from OLI and MSI Images

The Rrs values for bands B1–B4 and B8a of the Sentinel-2 MSI image in Shengjin Lake
acquired on 23 November 2019 were reconstructed and resampled to 30 m. The Rrs values
for these five bands were read pixel-by-pixel and compared to those for the Landsat-8 OLI
image from the same day to analyze their consistency.

From the Rrs consistency results (Figure 2), it can be seen that the Rrs values for
the green, blue, and near-infrared bands of the MSI and OLI images are distributed
on both sides of the y = x line, which means that the consistency is good. For the
blue band, RMSE = 0.0005 and MAPE = 1.910%, for the green band, RMSE = 0.0007 and
MAPE = 2.032%, and for the NIR band, RMSE = 0.0007 and MAPE = 3.323%. However,
from the line of best fit, Rrs for the NIR band of the MSI sensor is significantly higher
(a difference of 0.015) than that of the OLI, mainly because these Rrs values are higher
and closer to the values for the land surface. Zhang et al. reported that the Rrs values for
MSI images of land are higher than those of OLI images and that these differences may be
caused by environmental conditions or the spatial resolution, rather than being related to
sensor features [20,33–35]. It can also be seen from the figure that the RMSE and MAPE
values for the red and coastal blue bands are relatively large (for both bands, the RMSE is
greater than 0.0015, and the MAPE value is greater than 10%). In addition, the OLI Rrs is
significantly higher than the MSI Rrs. This difference between the coastal blue band Rrs
for these two images is mainly related to the error produced by the MUMM atmospheric
correction algorithm [28], whereas, for the red band, the difference is mainly a result of
the difference in the spectral range, central wavelength, and spectral response function of
these two sensors.

3.2. SPM Retrieval Model Developed for OLI and MSI Sensors

To ensure the transferability of the SPM retrieval model between the OLI and MSI
sensors, an SPM retrieval model common for OLI and MSI sensors was developed in
Shengjin Lake using the partial least squares method, based on the synchronous field
measurement of Rrs and SPM values. Then, the accuracy of the retrieval model was
comprehensively evaluated using the three indicators (R2, RMSE, and MAPE) of calibration
accuracy and validation accuracy. The results showed that the model with the highest
accuracy was the power function model given by y = 610.210 x1.705, where x is B8a/B3
(Figure 3).

Figure 3 shows that, for ground observations in Shengjin lake, the calibration accuracy
and validation accuracy of the power function model above are higher than other types of
models. The calibration accuracy gives an R2 of 0.78 and an RMSE of 24.097 mg/L, and the
ground validation gives an R2 of 0.840 and an RMSE of 30.062 mg/L. The SPM values
predicted by the model and the measured values are distributed near the y = x line.
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3.3. Consistency of SPM Concentration Retrieved from OLI and MSI Images

Since MSI and OLI sensors have similar band settings and spectral response character-
istics [25,29], the above-mentioned model was applied to the Sentinel-2 MSI and Landsat-8
OLI images acquired on 23 November 2019 in Shengjin Lake, and the consistency of the
retrieved SPM concentration values was compared (Figure 4a,b).
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It was found that the SPM values retrieved from OLI and MSI images that were ac-
quired on the same day are highly consistent and distributed around the y = x line. The val-
ues of the accuracy measures are R2 = 0.933, RMSE = 20.672 mg/L, and MAPE = 6.595%
(Figure 4a). The difference between the values of the SPM concentration retrieved from
these two images is between −10 and 10 mg/L over 70.54% of the lake (Figure 4b). In the
upstream and downstream parts of Shengjin Lake (which together account for 20.87% of
the lake), the SPM concentration retrieved from the MSI image is higher than that retrieved
from the OLI image, with the difference being between −30 and −10 mg/L. The difference
between the two SPM concentration products is mainly related to the spatial distribution
of SPM concentration in Shengjin Lake. Our previous studies have shown that the high
SPM values of the lake are mainly concentrated in the whole downstream part and the
south of the upstream part [36].
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3.4. Universality of the Consistency of Two SPM Concentration Products

Based on spectral measurements made at Chaohu Lake on 27 December 2019, Rrs val-
ues for the MSI sensor were simulated using the method described in Section 2.4. The SPM
retrieval model common for the OLI and MSI sensors was built based on the measured
Rrs and SPM concentration values. The optimal SPM retrieval model can be expressed as
y = 439.108 x0.338, where x is B8a × B4, R2 = 0.791, RMSE = 6.482 mg/L (Supplementary
Figure S1). This model was used to retrieve the SPM concentration values from OLI and
MSI images acquired on 23 November 2019, and the consistency of the retrieved SPM
concentration values was compared in Chaohu Lake (Figure 5a,b).
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It can be seen that the concentration values retrieved from the OLI and MSI images of
Chaohu Lake are evenly distributed near the y = x line, and the accuracy can be expressed
as R2 = 0.904, RMSE = 1.905 mg/L, MAPE = 4.099% (Figure 5a). The value of R2 for Chaohu
lake is slightly lower than that for Shengjin Lake, but its MAPE value is slightly higher.
Figure 5b shows that, over 97.44% of the lake, the difference between the values of the
SPM concentration retrieved from these two images is between −5 and 5 mg/L. Over a
small part of the lake (accounting for 1.94% of the area), the difference is between 5 and
10 mg/L. The above results indicate that the two SPM remote sensing products obtained
from Landsat-8 OLI and Sentinel-2 MSI images by the same retrieval model also have good
consistency in other turbid water regions.
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4. Discussion
4.1. Influence of Atmospheric Correction on the Consistency of SPM Concentration Products

As a key element of the process of retrieving water quality parameters from satel-
lite images, atmospheric correction (AC) has an important effect on the consistency of
the Rrs values [20], as well as SPM concentration values retrieved from OLI and MSI
images. First, the four common AC algorithms (MUMM, Atmospheric Correction for
OLI’lite’(ACOLITE), Second Simulation of Satellite Signal in the Solar Spectrum (6S),
Landsat 8 Surface Reflectance Code & Sen2cor (LaSRC & Sen2cor)) were applied to MSI
and OLI images of Shengjin Lake acquired on 23 November 2019, and the derived Rrs
values for each band were compared. From the comparison results obtained in our study
(Table 2), it can be seen that the maximum MAPE of Rrs values using the same algorithm is
29.317%, while that using the different algorithm can be as high as 46.680%, which implies
that the same AC algorithm is the premise for the consistency of the Rrs values from these
two images. Among the four AC algorithms, the consistency of the Rrs values retrieved
by the water AC algorithms (MUMM, ACOLITE) was significantly higher than that by
the land AC algorithms (6S, LaSRC & Sen2cor), and the consistency of the Rrs values
retrieved by MUMM algorithm (the MAPE is 1.910–10.587%) is generally higher than that
by ACOLITE algorithm (the MAPE is 1.544–16.648%).

Table 2. Comparison of Rrs and SPM values from OLI and MSI images under different atmospheric correction algorithms.

AC MUMM ACOLITE 6S LaSRC & Sen2cor

R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE

RrsB1 0.852 0.0019 10.492% 0.88 0.0020 16.648% 0.887 0.0044 29.317% 0.131 0.0057 46.680%
RrsB2 0.92 0.0005 1.910% 0.935 0.0006 2.956% 0.932 0.0012 6.122% 0.601 0.0016 7.475%
RrsB3 0.976 0.0007 2.032% 0.981 0.0005 1.544% 0.978 0.0026 9.494% 0.914 0.0010 3.032%
RrsB4 0.968 0.0024 10.587% 0.974 0.0021 9.516% 0.971 0.0037 17.562% 0.939 0.0028 12.786%
RrsB5 0.935 0.0007 3.323% 0.949 0.0007 4.416% 0.950 0.0007 5.137% 0.880 0.0022 23.341%
SPM 0.933 20.672 6.595% 0.948 22.66 9.365% 0.95 22.838 11.531% 0891 41.534 28.624%

Then, the same SPM retrieval model was applied to the Rrs images derived from MSI
and OLI images by the above four AC algorithms, and the retrieved SPM concentration
values were compared (Table 2). The comparison results also show that among the four
atmospheric correction algorithms, the SPM values obtained by the MUMM algorithm have
the highest consistency and the smallest value difference (R2 = 0.933, RMSE = 20.672mg/L,
MAPE = 6.595%), followed by the ACOLITE algorithm, while the LaSRC&Sen2Cor algo-
rithm has the largest difference in SPM values. This phenomenon implies that the water
atmospheric correction algorithm has a non-negligible influence on the consistency of
SPM concentration products. Therefore, this paper used the MUMM algorithm to perform
atmospheric correction on the Sentinel-2 MSI and Landsat-8 OLI images.

4.2. Influence of Retrieval Models on the Consistency of SPM Concentration Products

It can be seen that the same retrieval model has good consistency in SPM concentration
from MSI and OLI images (Sections 3.3 and 3.4). In Minnesota of the United States,
the Yellow River estuary in China, and other regions, previous studies have also shown
that the values of water quality parameters retrieved using the same model have good
consistency [13,21]. Considering the regional differences in optical properties of inland
waters, this study further explored the influence of the retrieval model on the consistency
of SPM products in high-turbidity lakes.

4.2.1. Optimal Models with Different Forms

Band combinations that had R > 0.8 (Table 1) and the corresponding SPM concen-
tration values were used to develop the independent retrieval models for MSI and OLI
sensors, based on the method described in Section 2.4. Comparing the calibration accu-
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racy and validation accuracy for the different independent retrieval models, it was found
that the optimal model for the MSI sensor was a quadratic polynomial model given by
y = 537.223 x2 − 166.192x + 22.967, where x is B6/B3, R2 is 0.884, and RMSE is 25.862 mg/L
(Supplementary Figure S2). The optimal model for the OLI sensor was found to be
a power function model given by y = 613.417 x1.709, where x is B5/B3, R2 is 0.835,
and RMSE = 30.584 mg/L (Supplementary Figure S3 and Table S1).

These two SPM retrieval models with different forms were then applied to the MSI
and OLI images of Shengjin Lake acquired on 23 November 2019. The consistency be-
tween the SPM concentration values retrieved from these two images were R2 = 0.892,
RMSE = 33.576 mg/L, and MAPE = 21.832%. This implies that the consistency of the SPM
concentration values retrieved from the MSI and OLI images using the two optimal models
with different forms was obviously lower than that achieved by applying the same model
to the two types of imagery (Figure 6a). In general, it was found that the SPM concentration
values retrieved from the OLI image were higher by ~10–50 mg•L−1 than that retrieved
from the MSI image. The regions with the SPM different values (∆SPM) in the range
of 10–30 and 30–50 mg•L−1 account for 63.74% and 27.71% of the area of Shengjin lake,
respectively (Figure 7a).
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4.2.2. The Same form of Models

To develop the SPM retrieval models with the same form, the parameters of retrieval
models were firstly recalibrated for MSI and OLI sensors based on the method described in
Section 2.4, before applying to MSI and OLI images. The model for the MSI sensor was
reconstructed as y = 610.210x1.705 (where x is B8a/B3, R2 = 0.840, RMSE = 30.62 mg/L) and
that for the OLI sensor as y = 613.417x1.709 (where x is B5/B3, R2 = 0.835, RMSE = 30.584 mg/L).
Then, these two models were applied to the OLI and MSI images of Shengjin Lake acquired
on 23 November 2019. The correlation between the SPM concentration values retrieved
from the two types of imagery was analyzed and the difference (OLI minus MSI) was
also calculated. Using these retrieval models, it was found that the consistency between
the SPM concentration value derived from these two images can be given by R2 = 0.933,
RMSE = 20.48 mg/L, and MAPE = 6.509% (Figure 6b), which is slightly higher than that
for the SPM concentration values retrieved from OLI and MSI images using the same
model (see Section 3.3). The spatial distribution of the difference in the SPM concentration
values derived from the two types of imagery was mostly consistent with that found by
applying the same model: the region with the difference values (∆SPM) in the range of
−10 to 10 mg/L accounted for 71.03% of the area of Shengjin lake (Figure 7b), which is a
slightly higher than that by applying the same model to two types of images. The above
results show that SPM concentration values in turbid water retrieved from the OLI and MSI
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images were highly consistent when using either the same retrieval model or the models
with the same form.
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Combining satellite remote sensing technology with mathematical modeling has
proven the great potential for the estimation of water quality parameters (i.e., SPM,
colored dissolved organic matter (CDOM), chlorophyll-a) on the large scale more effi-
ciently [19,20,37]. The SPM retrieval models suitable for Sentinel-2 MSI and Landsat-8
OLI sensors in this paper were constructed, based on the simultaneous measurements of
SPM concentration and remote sensing reflectance. Besides the SPM, other material con-
stituents in the water (such as phytoplankton pigments, yellow substances) can also affect
its spectral characteristics [37,38]. The method proposed in this paper can be applied to the
direct estimation of optically active parameters (i.e., chlorophyll-a, transparency, turbidity),
or indirect estimation of non-optical active parameters (such as total nitrogen and total
phosphorus) by constructing their correlation with the optically active constituents. Thus,
our conclusions can provide a theoretical basis for the seamless integration of these two
remote sensing water quality products in order to generate long time-series of remote
sensing products for inland water.

5. Conclusions

In this paper, two turbid lakes located in the Yangtze River basin of China were se-
lected as the study area, and the SPM retrieval models for Sentinel-2 MSI and Landsat-8
OLI sensors were constructed based on the measurement of Rrs and SPM concentration.
The consistency between the SPM concentration values derived from OLI and MSI im-
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ages was analyzed, and the influences of the AC algorithms and retrieval models on the
consistency of the two SPM products was also explored.

An SPM retrieval model common for OLI and MSI sensors (y = 610.210x1.705) was
constructed, which consisted of a power function model with B8a/B3 as the independent
variable. The SPM retrieval model was applied to the OLI and MSI images of Shengjin
Lake that were acquired on the same day, and the SPM values retrieved from these two
images were found to be highly consistent. Then, the same method was applied to verify the
consistency of the two SPM products in Chaohu Lake, and the similar results were obtained.

Following AC using the MUMM algorithm in SeaDAS software, the consistency be-
tween the Rrs values derived from the OLI and MSI images was high (R2 > 0.8, MAPE < 5%),
except for the coastal blue and red bands, which is a prerequisite for ensuring the consis-
tency of the SPM concentration values. In terms of the consistency of SPM concentration
values from the OLI and MSI images, the MUMM algorithm in SeaDAS software performed
better than other AC algorithms (ACOLITE, 6S, Sen2cor).

For the OLI and MSI images, the consistency of the SPM concentration values retrieved
using the same form of models (R2 = 0.933, RMSE = 20.48 mg/L, MAPE = 6.509%) and
using the same model (R2 = 0.933, RMSE = 20.672 mg/L, MAPE = 6.595%) were obviously
higher than that achieved by applying the optimal models with different forms (R2 = 0.892,
RMSE = 33.576 mg/L, MAPE = 21.832%). The consistency of the SPM concentration re-
trieved using the retrieval models with the same form was slightly higher than that using
the same retrieval model.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/5/1662/s1, Figure S1: Accuracy assessment of SPM retrieval model for OLI and MSI sensors
in Chaohu Lake. (a) calibration accuracy, (b) validation accuracy; Figure S2: Accuracy assessment
of SPM optimal model for MSI sensor in Shengjin Lake. (a) calibration accuracy, (b) validation
accuracy; Figure S3: Accuracy assessment of SPM optimal model for OLI sensor in Shengjin Lake.
(a) calibration accuracy, (b) validation accuracy; Table S1: SPM retrieval models constructed for OLI
sensor in Shengjin Lake.
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