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GRAPHICAL ABSTRACT

Exercise-induced irisin ameliorates cognitive impairment of aged mice through rescuing the imbalanced
gut microbiota and suppressing TLR4/MyD88 signal pathway-mediated insulin resistance.
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ABSTRACT

Introduction: Exercise has been recognized to improve cognitive performance by optimizing gut flora and
up-regulating exerkine irisin.

Objective: Although exercise-induced irisin is beneficial to cognitive improvement, whether this benefit
is achieved by optimizing gut microbiota and metabolites is not fully explored.

Methods: After aerobic exercise and exogenous irisin interventions for 12 weeks, the 16S rRNA and
metabolites in feces of 21-month-old mice were analyzed. Meanwhile, the differential miRNAs and
mRNAs in hippocampal tissues were screened by high-throughput sequencing. Relevant mRNAs and pro-
teins were evaluated by RT-PCR, Western blot, and immunofluorescence.

Results: Compared with the young control mice, irisin levels and cognitive capacity of aged mice revealed
a significant reduction, while aerobic exercise and intraperitoneal injection of exogenous irisin reversed
aging-induced cognitive impairment. Similarly, 147 up-regulated and 173 down-regulated metabolites
were detected in aged mice, while 64 and 45 up-regulated and 225 and 187 down-regulated metabolites
were detected in aged mice with exercise and irisin interventions, respectively. Moreover, during
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hippocampal miRNA and mRNA sequencing analysis, 9 differential gut flora and 35 differential genes
were identified to be correlated with the inflammatory signaling mediated by the TLR4/MyD88 signal

pathway.

Conclusion: Aging-induced cognitive impairment is due to insulin resistance induced by TLR4/MyD88
signaling activation in hippocampal tissues mediated by gut microbiota and metabolite changes.
Myokine irisin may be an important mediator in optimizing gut microbiota and metabolism for an
improved understanding of mitigated aging process upon exercise interventions.

© 2024 Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Cognitive decline, as an important manifestation of aging, is
common in neurodegenerative diseases such as Alzheimer’s dis-
ease (AD), with cognitive impairment [1,2]. The global population
aging reveals a rapid expansion with increasing number of the
elderly suffering from cognitive decline. With the in-depth studies,
more and more factors including aging, increased inflammation
[3], impaired autophagy [4], excessive endoplasmic reticulum
(ER) stress [5], abnormal circadian rhythm [6], and imbalanced
gut microbiota [7] are involved in cognitive decline. Exercise as a
non-pharmacological intervention can promote body health
involving complex molecular mechanisms. It is worth noting that
imbalanced gut microbiota can be induced by aging process 8]
and the mitigation of cognitive decline through optimizing gut
microbiota and their metabolites has been verified [9], which could
become one of the key interventional targets for repealing global
population aging [10].

Recent studies have confirmed that exercise-induced myokine
irisin can enhance cognitive and memory capacity of aged mice;
however, underlying mechanisms for alleviating impaired cogni-
tion through exercise-induced irisin-mediated optimization of
gut microbiota and metabolites have less reported [11]. Irisin has
been found to be involved in the regulation of intestinal microbiota
in myocardial ischemia and colitis protection, and an obvious
depression and a significantly cognitive decline have been
observed in animal models with irisin deficiency [11-13]. Simi-
larly, another study has demonstrated that irisin may exert anti-
inflammatory effects by targeting the TLR4/MyD88 signal pathway
[14]. As we all know, TLR4 is mainly activated by lipopolysaccha-
ride (LPS) in the intestine, thereby impairing the balance of gut
flora in the body. Coincidentally, during the aging process, the
gut flora could be imbalanced, thereby resulting in the increased
intestinal epithelial permeability, leading to an increased LPS level
in the body, stimulating inflammatory factors, aggravating central
nervous system inflammation, and triggering insulin resistance
and cognitive impairment [15-17]. In a model of type 1 diabetes,
injection of exogenous irisin reveals a significant reduction of
intestinal epithelial permeability [18]. Relevant studies have also
confirmed that cognitive decline of aging mice is closely related
to the activation of TLR4 [19], and the TLR4 knockout mouse model
during aging process shows improved brain structure and cogni-
tive capacity [20]. Therefore, it may be of great significance to tar-
get the TLR4 signal pathway for the prevention and treatment of
aging-induced cognitive impairment. Similarly, we hypothesize
that exercise-induced myokine irisin is likely to be involved in
the regulation of intestinal microorganisms to indirectly enhance
the cognitive capacity of aged mice. Through high-throughput
sequencing of gut microbiota and metabolites in feces and the
screening and identification of differential miRNAs and mRNAs in
hippocampal tissues from aged mice followed by exercise and iri-
sin interventions, we could deeply uncover exercise-induced irisin
for rescuing aging-induced cognitive impairment as a novel inter-
ventional strategy.
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Materials and methods
Recombinant irisin expression and purification

The DNA sequence encoding irisin was cloned into pET-28a
vector (MilliporeSigma, CA, USA) to obtain the pET-28a-irisin
plasmid. The resultant pET-28a-irisin plasmid was then trans-
formed into Escherichia coli BL21(DE3) competent cells, and
spread on a Luria-Bertani (LB) agar plate containing kanamycin
(50 pg/L) for incubation overnight at 37 °C. A single colony was
picked up to inoculate into the LB medium containing kanamycin
(50 pg/L) for cell culture with 200-RPM shaking at 37 °C. Upon
the optical density at 600 nm of 0.6 for cell culture, isopropyl-f
-D-thiogalactopyranoside (IPTG) (0.5 mM) was added in cell cul-
ture for inducing the expression of histidine-tagged irisin during
cell cultivation for another 8 h. To purify irisin, cell pellets were
sonicated to disrupt cell membrane. The supernatant was filtered
and injected into a nick-chelating agarose column (Milli-
poreSigma, CA, USA) loaded with 0.1 M nickel sulfate solution.
The bound irisin protein was eluted with a gradient of imidazole
from 10-500 mM in phosphate buffer. The collected protein was
dialyzed in 500 mM Tris buffer (Servicebio Technology, Wuhan,
China) to remove imidazole and endotoxin through dialysis
membrane with the cutoff of 10000 Da. The concentration of
purified recombinant irisin was determined by the BCA Protein
Assay Kit (Beyotime Biotechnology, Shanghai, China) and used
for the intervention of animal experiments later.

Animal grouping and interventions

Thirty 4-month-old specific pathogen-free (SPF) grade male
C57BL/6 mice were fed with adequate maintenance feed and
water until 21 months old, and then randomly divided the aged
mice into a non-intervention group (OC), an aerobic exercise
group (OE), and an irisin intraperitoneal injection group (OI),
with 10 mice in each group; and ten 4-month-old mice were used
as the young control group (YC). Furthermore, room temperature
(25 = 2 °C), relative humidity (50-60%), circadian rhythm
(12 h:12 h), and free accessibility of foods and water were kept
at same for all mice. All mice in the OE group were subjected to
running training on treadmill with a slope of 10° for 12 weeks.
At the beginning of running training, the mice were provided
with adaptive treadmill running for 5 days (start with 4.2 m/
min until 12 m/min, with an increasing interval of 1 m/min every
30 s), with exercise training time of 10, 20, 30, 45 and 45 min in
first five days, respectively. After adaptive running training, the
formal aerobic exercise training (12 m/min) with the training
duration of 45 min and 5 times of training within one week
was conducted for 12 consecutive weeks. In the OI group, the
mice were provided with the intraperitoneal injection of exoge-
nous recombinant irisin according to their body weights
(500 pg/kg). Both aerobic exercise training and irisin injection
were performed 5 times a week at the fixed time and the health
status of all aging mice during the interventions was also
recorded.
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Ethics statement

All experiments involving animals were conducted according to
the ethical policies and procedures approved by Institutional Ani-
mal Care and Use Committee of Wuhan Sports University with
the certificate number of S087-21-05D, and complied with the
internationally recognized 3R principles.

Behavioral testing

The learning and memory capacity and behavior of all mice
were evaluated by Morris water maze (MWM) testing. On the 1st
day, a positioning test was conducted, and the mice were released
to four different locations in the east, west, south, and north direc-
tions, and allowed to freely explore and swim for 60 s to adapt to
the environment. In the next 4 days, the mice were released for 4
times within one day at different starting points. If the mice did not
find the platform within 60 s, they were guided to the platform and
stayed on the platform for 10 s for spatial location memory. On the
5th day, after the platform was removed, the mice were released in
the quadrant opposite the platform to freely swim for 60 s, and the
time of targeting the platform quadrant and the number of cross-
ing the platform of the mice were used as the indicators to evaluate
the spatial learning and memory capacity.

Blood sample collection and ELISA

Prior to sample collection, all mice were fasted with free acces-
sibility of water for 12 h, and sacrificed by carbon dioxide inhala-
tion for collecting blood samples in sterile EP tubes from
eyeballs, and the collected blood samples were stood quietly at
room temperature overnight. On the next day, the blood samples
were subjected to 20-min centrifugation at 3000xg and 4 °C, and
the supernatant was harvested for corresponding analysis. Irisin
in serum of the mice was determined by its ELISA kit (Phoenix
Pharmaceuticals, California, USA), and LPS, IL-1B, IL-6, TNF-o¢ and
LBP in serum were evaluated by corresponding ELISA kits (Mei-
mian Industrial Co., Ltd, Jiangsu, China) in accordance with the
manufacturer’s operation procedures.

Collection and analysis of hippocampal tissue

Transmission electron microscope (TEM) inspection

After completing MWM testing, the mouse was sacrificed by
carbon dioxide inhalation, and the hippocampal tissue at 1 mm>
was harvested, immediately fixed in 250 pL of 2.5% glutaraldehyde
containing 0.1 M sodium cacodylate (pH 7.2), subsequently post-
fixed in 1% osmium tetroxide for 1 h at 4 °C, stained with uranyl
acetate, and then embedded with resin. The processed block of hip-
pocampal tissue was sectioned into 70 nm ultra-thin sections. The
ultrastructure of hippocampal tissues was examined and pho-
tographed under a TEM (HT7700 Hitachi, Tokyo, Japan) at Medical
and Structural Biology Research Center of Wuhan University.

Histological analysis of hippocampal tissue

Similarly, after MWM test was completed, 3 mice from each
group were randomly selected on the next day, and then subjected
to the perfusion using saline and 4% paraformaldehyde (pH 7.4) in
the anesthesia status. The perfused mice were sacrificed by carbon
dioxide inhalation, the whole brains were harvested to fix in 4%
paraformaldehyde overnight, sequentially embedded in paraffin,
and cut into the slices in the thickness of 5 pm using a cryotome.
After the paraffin removal, the tissue slices were subjected to
hematoxylin-eosin (HE), Nissl, and immunohistochemical staining,
respectively. The histological images of hippocampal tissues were
acquired by imaging system (Eclipse-E100, Nikon, Japan) and ana-
lyzed by Image] Pro software (NIH, Bethesda, MD, USA).
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Sequencing of miRNAs and mRNAs in hippocampal tissue

According to the operation procedures of the Trizol extraction
kit (Sangon Biotech, Shanghai, China) and Qubit2.0 RNA detection
kit (ThermoFisher, MA, USA), total RNA in hippocampal tissue
was extracted and quantitatively determined. The integrity and
contamination of RNA were evaluated by agarose gel.

miRNA: Total miRNA was extracted and processed for sequenc-
ing by Illumina NovaSeq6000 platform (Illumina, TX, USA). FastQC
(v0.11.2) was utilized to evaluate the quality of sequencing data for
all samples, the Adapter was removed and the quality was con-
trolled by Trimmomatic. Bowtie2 (v2.2.4) software was applied
for mapping the clean data to the reference genome. The miRDeep2
(v2.0.0.8) software and miRbase (v22.1) database were used to
match and identify miRNAs.

mRNA: Total mRNA was extracted and processed for sequenc-
ing by Illumina NovaSeq6000 platform (Illumina, TX, USA). FastQC
(v0.11.2) was used for evaluating the quality of sequencing data for
all samples, the Adapter was removed and the quality was con-
trolled by Trimmomatic (v0.36). Qualimap (v2.2.1) was used to
check the distribution of uniformity and genome structure accord-
ing to comparison results for further analysis. StringTie (v1.3.3b)
was applied to construct known gene models for evaluating gene
expression levels. Co-expression analysis of genes was conducted
by WGCNA (v1.51), and multi-directional statistical analysis was
performed based on sample expression matrix for sample compar-
ison analysis. The R package DESeq (v1.26.0) was used for the anal-
ysis of the difference in gene expression, and the graph
visualization was completed based on ggplot2 (v2.2.1).
The interaction network between miRNAs and genes was con-
structed by using the igraph R package (v1.0.1) association
analysis.

Dimensionality reduction analysis was implemented based on
principal component analysis (PCA), the volcano plot was estab-
lished to visualize differential expression, and the enrichment bub-
ble map was generated to visualize the KEGG pathway enrichment
analysis. The data in this study are mainly analyzed with the help
of NCBI NR, NCBI NT, KEGG and other databases.

The analysis of 16S rRNA sequencing and gut microbiota in feces

After experimental interventions, fresh feces of the mice from
all groups were collected for extracting DNA by magnetic soil
and stool DNA kit (Sangon Biotech, Shanghai, China). The purity
of the extracted DNA was validated by agarose gel electrophoresis.
The 16S rRNA gene was amplified by PCR and purified by 2% agar-
ose gel electrophoresis. The target band was recovered by the
Universal DNA Purification and Recovery Kit (ThermoFisher, MA,
USA). NEB Next® Ultra DNA Library Prep Kit (Bio-Rad Laboratories,
San Francisco, USA) was used for the construction of gene library.
After the library was qualified, the V3-V4 region of 16S rRNA was
sequenced using the NovaSeq6000 sequencing platform (Illumina,
TX, USA). Quality of raw data was evaluated by FastQC (v0.11.2),
Trimmomatic (v0.36) was used for removing adapter and quality
control, and Flash (v1.2.7) was used for splice data to obtain clean
data. Qiime (v1.9.1) was used to denoise, cluster, and annotate
with species. Then, a-diversity and p-diversity analysis (Per-
manova test), cluster analysis (PCA analysis), difference analysis
(LEfSe), and correlation analysis of the species were carried out
at each taxonomic level.

Sequencing of non-targeted metabolites in gut

Fecal samples were thawed on ice after being removed from the
—80 °C freezer, and approximately 20 mg of the samples were
weighed for metabolite extraction. Non-targeted metabolites were
collected using ultra-high performance liquid chromatography
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(UPLC) (SCIEX, MA, USA) and quadrupole-time-of-flight mass spec-
trometry (Q-TOF-MS) (TripleTOF6600, AB SCIEX, MA, USA) for data
acquisition. Extensive targeted detection data were acquired by
UPLC (SCIEX, MA, USA) and tandem mass spectrometry (MS/MS)
(SCIEX, MA, USA). The data was processed by Progenesis QI soft-
ware (v3.0), and the data was imported into EZinfo3.0 (v3.0.3) soft-
ware for multidimensional statistical analysis. Metabolites were
analyzed by PCA (R-Base Package v3.5.1) and orthogonal partial
least squares discriminant analysis (OPLS-DA) (MetaboAnalystR
v1.0.1) for multidimensional statistical analysis between two
groups. The differential metabolites with vasoactive intestinal pep-
tide (VIP) > 1 were screened and subjected to unidimensional sta-
tistical analysis (Welch’s t-test and fold change analysis).
Moreover, differential metabolites meeting the criteria (VIP > 1,
p < 0.05 and fold change > 2) were screened and subjected to final
compound identification analysis. The HMDB and METLIN data-
bases were searched based on the primary and secondary spectra
to obtain the identification results of differential metabolites.
MetaboAnalyst (v5.0) online software was used to analyze the sig-
nal pathway and enrichment of differential metabolites.

qRT-PCR

RNA-easy isolation reagent was used for extracting mRNA in
hippocampal tissues. HiSipt® Il Q RT Supermix (Vazyme, Nanjing,
China) was used for qRT-PCR to reverse-transcribe mRNA into
cDNA after removing genomic DNA. Taq Pro Universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China) was used for qRT-PCR of
mRNA. The primers were synthesized from Sangon Biotech
(Table 1). Quant Studio 1 Real-Time PCR System (ThermoFisher,
MA, USA) was used to perform qRT-PCR with 20 pIL reaction system
for each sample in triple repeats using B-actin as the control, and
the 222<T method was performed for all calculations.

Western blot

Hippocampal tissue samples from the mice were collected and
immediately frozen in liquid nitrogen, and then stored in —80 °C
refrigerator for future evaluation. During western blot analysis, fro-
zen hippocampal tissue samples were taken out and homogenized
in lysis buffer supplemented with protease and phosphatase inhi-
bitors (Servicebio Biotechnology, Wuhan, China), and then exten-
sively lysed for 30 min on ice. The lysed samples were
centrifuged at 10,000x g for 5 min at 4 °C to obtain supernatants
and the concentrations of total protein in supernatants were mea-
sured by a BCA kit (Beyotime Biotechnology, Shanghai, China). An
aliquot of the supernatant was mixed with reduced protein loading
buffer and heated at 95 °C water bath for 5 min to denature pro-
teins. Approximately 25 pg of total protein in prepared samples
were separated by using 8-12% sodium dodecyl sulfate-polyacry-
lamide gel electrophoresis (SDS-PAGE) and then transferred to
polyvinylidene difluoride (PVDF) membrane (Merck Millipore,

Table 1
Primer information for qRT-PCR.

Gene Forward primer Reverse primer

name

LBP GGCTTGGCGTGGTCACTAA TGCCGACTTTGGATTCGATCA
TLR4 AGATCTGAGCTTCAACCCCT TGTTTCAATTTCACACCTGGATAA
MyD88 CTCGCAGTTTGTTGGATGCC TTTCTGGCAGTCCTCCTCGAT
MKK7 CGCGTCCTGGTTTAAGGATGT =~ CTCCAGACTCCCACTGAAGAA
JNK GAACAGGATTGAGTAGCGGC  ATATTCACCAAGGCCGGCAG
p38 MAPK  AAAGGACCTACCGAGAGTTGC GTCACCAGGTACACGTCATT
NF-«B CCGAACTTCTCGGACAGCTT GTTCGAGTAGCCATACCCTGG
TNF-o CCAAATGGCCTCCCTCTCAT CCACTTGGTGGTTTGCTACGA
IL-1B GCTTCCTTGTGCAAGTGTCT TGACCACTCTCCAGTACCCA
IL-6 GACTGGGGATGTCTGTAGCTC  CAACTGGATGGAAGTCTCTTGC
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MA, USA). The target protein was probed by primary antibodies
against JNK, p-JNK, IL-1B, IL-6, TNF-o, TLR4, MyD88, MKK7,
p-MKK7, p38 MAPK, p-p38 MAPK, IRS, and p-IRS, as well as corre-
sponding secondary antibodies (Cell Signaling Technology,
Danvers, MA, USA). The band of the target protein after incubated
with enhanced chemiluminescence (ECL) (Bio-Rad Laboratories,
San Francisco, USA) reagent was imaged and visualized by an
ultra-sensitive fluorescence/chemiluminescence imaging system,
ChemiScope6300 (CLiNX Science Instruments, Shanghai, China).

Statistical analysis

All above experiments were accomplished according to the des-
ignated procedures (Fig. 1) and all collected data were presented as
mean * standard deviation (M + SD) to conduct the statistical anal-
ysis by GraphPad Prism software (v4.0.2). Two-tailed unpaired stu-
dent’s t-test and the Wilcoxon sum test were utilized to evaluate
the statistical significance between two or multiple groups, respec-
tively. Statistical analysis among multiple groups was imple-
mented based on Kruskal-Wallis test for non-parametric data,
and the significant difference was considered at p < 0.05. Spearman
correlation analysis was used for correlation analysis.

Results

Exercise and irisin interventions reversed aging-induced reduction of
cognitive capacity in mice

The aging-induced reduction of cognitive capacity can be
reversed by aerobic exercise [21], but whether it is correlated with
exercise-induced myokine irisin is still unknown. Therefore, the
21-month-old mice were provided with aerobic exercise training
and intraperitoneal injection of exogenous irisin for 12 weeks,
and the irisin level in serum and cognitive capacity of the mice
were evaluated. The irisin level in the OC group were decreased
significantly (p = 0.0154) when compared with the YC group.
Oppositely, compared with the OC group, the irisin in OE and OI
groups exhibited an obvious increase (p = 0.0134, p = 0.0037).
Notably, the irisin level in the OI group was higher than that in
the OE group (Fig. 2a). Based on cognition evaluation of the mice
through MWM testing, compared with the YC group, the escape
latency to platform increased significantly (p = 0.0213), while the
target quadrant-exploring time and the platform-crossing number
of the mice from the OC group on the 5th day were markedly
reduced (p = 0.0067, p = 0.0021); in contrast, the reduced escape
latency to platform, and the increased target quadrant-exploring
time and platform-crossing number of the mice from OE and OI
groups on the 5th day were observed (p = 0.0041, p = 0.0425;
p = 0.0005, p = 0.0491; p = 0.0002, p = 0.0075) (Fig. 2c-e). These
results demonstrated that 24-month-old mice exhibited the signif-
icant down-regulation of irisin in serum and the reduced cognitive
capacity, which could be reversed by aerobic exercise and
intraperitoneal injection of exogenous irisin.

Exercise and irisin interventions rescued aging-induced damage of
hippocampal tissues in mice

Aging process is accompanied by damaged morphology, dys-
function, and reduced neuron number of hippocampal tissues; in
contrast, exercise can effectively reverse these changes, as con-
firmed by HE and Nissl staining and immunohistochemical analy-
sis. Hippocampal tissues of the mice from the OC group had sparse
neurons and unclear nucleoli and nuclei, as shown in darker image
by Nissl staining (Fig. 3a and b), and significantly reduced the
number of neurons in CA1, CA3 and DG areas when compared with
the YC group (p = 0.0015, p = 0.0076, p = 0.0009) (Fig. 3c). On the
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contrary, compared with the OC group, the neurons in CA1, CA3
and DG areas of hippocampal tissues in mice from OE and OI
groups revealed more ordered and dense arrangement, and less
damage and more matured neurons (p = 0.0363, p = 0.0163,
p=0.0008; p=0.0018, p = 0.0058) (Fig. 3d). These results suggested
that neurons in CA1, CA3 and DG areas in hippocampal tissues of
aged mice were disordered and sparse during aging process, and
the aging-induced reduction of neuronal function and number
could be reversed by aerobic exercise and intraperitoneal injection
of exogenous irisin.

Similarly, aging accelerated the loss of neuronal synapses,
increased protrusion gaps, reduced synaptic arc lengths, and
decreased postsynaptic density, the hallmarks of synaptic plastic-
ity, as shown in TEM images (Fig. 3e). Indeed, based on the statis-
tical analysis, the number of neuronal synapses decreased
significantly (p = 0.0002) (Fig. 3f), the length of synaptic arc and
the thickness of postsynaptic density decreased (p = 0.0004,
p = 0.0313) (Fig. 3g and h), and synaptic gaps increased in the OC
group (p = 0.0311) when compared with the YC group (Fig. 3i).
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On the other hand, compared with the OC group, hippocampal tis-
sues of the mice from OE and OI groups revealed significantly
increased number of neurons, extended length of synaptic arcs
and thickness of postsynaptic density, and reduced synaptic cleft
(p = 0.0001, p = 0.0012, p = 0.0006, p = 0.0003; p = 0.0001,
p =0.010, p = 0.0001, p = 0.0078). Therefore, aging-induced reduc-
tion in the number of synapses, the length of synaptic arc strings,
and the thickness of postsynaptic density, as well as the increase
in protrusion gaps in hippocampal neurons could be reversed by
aerobic exercise and intraperitoneal injection of exogenous irisin.

Exercise and irisin interventions optimized gut microbiota and
metabolites in feces of aged mice

Exercise and irisin interventions rescued imbalanced gut microbiota of
aged mice

Gut microbiota is an important mediator for reducing cognitive
impairment during exercise [22], but whether exercise-induced iri-
sin and optimized gut microbiota have the capability to suppress
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cognitive impairment during aging process is still unknown. There-
fore, in the present study, gut microbiota of aging-induced mice
following exercise and irisin interventions were analyzed by 16S
rRNA sequencing. Four animal experimental groups with 6 mice
in each group, 1,527,506 original reads were obtained from a total
of 24 samples, and 1,126,634 valid reads were obtained after qual-
ity control. After all samples were clustered according to 97%
homology, 80,165 OTUs were obtained. The number of OTUs were
976, 640, 698 and 690 in YC, OC, OE, and OI groups, respectively
(Fig. 4a), indicating aging-induced disturbance of gut microbiota,
but exercise and irisin interventions can alleviate this disturbance.
The species abundance at the top 10 phylum and genus levels
showed that Bacteroidetes, Firmicutes and Actinomycetes were dom-
inant at the phylum level (Fig. 4b), and Ligilactobacillus and Lacto-
bacillus Lachnospiraceae_NK4A136_group were dominant at the
genus level (Fig. 4c). The differential analysis of the top 10 species
at the phylum and genus levels found that Firmicutes/Bacteroidota
(F/B) ratio and Actinobacteria were significantly reduced in the
OC group at the phylum level (p = 0.0009, p = 0.0004) when com-
pared with the YC group (Fig. 4d and e); while significantly
reversed this ratio and level in OI group (p 0.0302,
p = 0.00024), and the mice from the OE group with exercise inter-
vention showed reversed Actinobacteria level (p = 0.0094). Simi-
larly, compared with the YC group, the Ilevel of
Unidentified_Bacteria in the OC group was significantly increased
(p = 0.0238) (Fig. 4f), while the mice from the OE group exhibited
a significantly reversed trend for this change (p = 0.0262), and the
OI group showed a reversal sign, but no significant difference. At
the genus level, Bacteroides, Turicibacter, Parabacteroides and Bifi-
dobacterium in the OC group were reduced (p 0.0017,
p=0.0148, p = 0.0004, p = 0.0005), while the OE and OI groups pre-
sent a reverse in the reduction of Bacteroides, Parabacteroides and
Bifidobacterium (p = 0.0357, p = 0.0035; p = 0.0181, p = 0.0197;
p = 0.0094, p = 0.0024) (Fig. 4g-i and Supplementary Fig. S1), and
the OE group did not exhibit the decline of Turicibacter (Fig. 4h)
when compared with the YC group, suggesting that exercise and
irisin interventions should participate in optimizing the balance
of gut microbiota during aging process.

The principal coordinate analysis (PCoA) showed the distribu-
tion of bacterial community structure among different groups.
ADONIS analysis showed the difference between YC and OC groups
(p = 0.001), and between OC and OI groups (p = 0.003). However,
the OC and OE groups have no difference (p = 0.092) (Fig. 4j). The
Good Coverage rate of each sample was above 99%, and the o-
diversity analysis (Fig. 4k-n) of gut microbiota from each group
was carried out through observed species, chaol, ACE and Shannon
index. The observed species, chaol, ACE and Shannon in the OC
group were reduced significantly (p = 0.0001), and the mice from
the OI group significantly reversed this trend (p 0.007,
p = 0.0009, p = 0.0128, p = 0.0004) when compared with the YC
group. Although the mice from the OE group had a reversed trend,
the statistical results were insignificant. These results suggested
that intraperitoneal injection of irisin could reverse the change in
the abundance and structure of gut microbiota caused by aging,
thus contributing the compositions of gut microbiota like younger
individuals, although exercise showed a particular improvement of
recognitive capacity even without significant difference.

At the same time, potential biomarkers were screened through
LEfSe analysis (LDA > 4) for differential microbiota in different
groups (Fig. 40). Bacterodies, Bacterodaceae, Oscillospirales and Clos-
tridia_UCG_014 were enriched in the YC group, Ruminococcaceae
and Oscillospirales were enriched in the OC group, Lleibacterium
and Lleibacterium_valens were enriched in the OE group, and Ligi-
lactobacillus, Lactobacillus_murinus, Actinobacteria, unidentified_
Actinobacteria, Bifibobacteriales, Bifibobacterium, Bifibobacteriaceae
and Prevotellaceae_UCG_001 were more abundant in the OI group.
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In addition, KEGG functional prediction and cluster analysis of
gut microbiota based on Tax4Fun found (Fig. 4q) that the aging
of the mice could cause the changes in the compositions of gut
microbiota, which may be an important factor for inducing and
exacerbating the disease. Aerobic exercise and intraperitoneal
injection of exogenous irisin may rescue the imbalanced gut micro-
biota to alleviate aging, inflammation, and neurodegeneration-
related diseases.

Exercise and irisin interventions regulated fecal non-targeted
metabolites in aged mice

Exercise in regulating fecal metabolites has been reported in
many studies [23]| and myokine irisin plays an active role in the reg-
ulation of gut microbiota. Therefore, quality control on fecal non-
targeted metabolites was conducted. OPLS-DA analysis (Fig. 5a)
showed that non-targeted metabolites could effectively distinguish
the differential metabolites in feces of the mice from YC, OC, OE, and
Ol groups. In the statistical analysis of detected metabolites (|log,FC|
>1,VIP >1),compared with the YC group, 147 up-regulated and 173
down-regulated metabolites were detected in the OC group
(Fig. 5b); compared with the OC group, 225 down-regulated and
64 up-regulated metabolites in the OE group were screened;
similarly, 187 down-regulated and 45 up-regulated metabolites in
the OI group were screened (Supplementary Fig. S2). Among them,
compared with the YC group, 2-hydroxy-3,5-dinitro benzoic acid
and 7-keto deoxycholic acid were decreased in mice from the OC
group; while both exercise and irisin interventions could result in
the significant increase of these compounds. Compared with the
YC group, aging could induce the decrease of tetrahydro curcumin,
while exercise intervention could reverse its decrease. Compared
with the YC group, dihydrouracil and S-ribosyl-L-homocysteine in
the OC group were reduced; while irisin intervention could rescue
theirreduction. Based on KEGG analysis, 94 pathways were enriched
between YC and OC groups, 118 pathways were enriched between
OC and OE groups, and 83 pathways were enriched between OC
and OI groups. These pathways with significant differences were
involved in serotonergic synapse (p = 0.0197) and cAMP signaling
pathway (p = 0.0197) between YC and OC groups (Fig. 5¢); pentose
phosphate pathway (p = 0.0052), neuroactive ligand-receptor inter-
action (p = 0.0138), gap junction (p = 0.0197), synaptic vesicle cycle
(p = 0.0206), taste transduction (p = 0.0490) between OC and OE
groups (Fig. 5d). Gonadotropin-releasing hormone (GnRH) secretion
(p = 0.0341) and cAMP signaling pathway (p = 0.0463) were pre-
dicted between OC and OI groups (Fig. 5e), which may be related
to nervous system function.

To further explore the effect of exercise and irisin interventions
on fecal microbiome and metabolites, a correlation analysis was
conducted by extracting top 30 differential metabolites and
microorganisms (Fig. 5f and Supplementary Table S1). The statisti-
cal difference was observed with the reduction of Bifidobacterium,
Turicibacter, Parabacteroides and Bacteroides in mice from the OC
group at the genus level, partially reversed in OE and OI groups
(Fig. 4g-i and Supplementary Fig. S1). Among them, Bifidobacterium
was significantly positively correlated with 2-(2R)-2-methyl-2-pyr
rolidinyl-1H-benzimidazole-7-carboxamide, and pantothenate
(p=0.0231, p=0.0417). Parabacteroides was significantly positively
correlated with cyclamic acid, 2-(2R)-2-methyl-2-pyrrolidinyl-1H-
benzimidazole-7-carboxamide, pantothenate, L-phenylalanine,
and dodecanedioic acid (p = 0.0010, p = 0.0345, p = 0.0172,
p=0.0351, p=0.0001). Turicibacter was significantly positively cor-
related with cyclamic acid (p = 0.0009). Bacteroides was signifi-
cantly negatively correlated with sn-glycero-3-phosphocholine,
methylcysteine and heparin (p = 0.0093, p = 0.0212, p = 0.0246),
and positively correlated with cyclamic acid (p = 0.0048). These
results suggest that exercise and irisin-induced changes in gut
microbiota may also affect the compositions of metabolites in
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Fig. 5. The analysis of non-targeted metabolites in feces of mice from each group and its correlation with gut microbiota. (a) OPLS-DA analysis; (b) The volcano plot of
differential metabolites between YC and OC groups; (c-e) The functional KEGG analysis of differential metabolites; (f) The correlation analysis between differential gut
microbiota and metabolites. Columns are microorganisms, red indicates a positive correlation and blue indicates a negative correlation, as well as the greater absolute value

of the correlation labeled with darker color.

aging mice. Changes in metabolites may induce or exacerbate the
progression of diseases. Therefore, modulating gut microbiota
may be essential to alter metabolites to intervene diseases.

Exercise and irisin interventions regulated miRNAs and mRNASs in
hippocampal tissues of aged mice

The changes of miRNAs in hippocampal tissues of the mice from
YC and OE groups were evaluated by miRNA sequencing to uncover
the regulatory roles of miRNAs. Quality control, statistical analysis,
and the analysis of the original off-machine data (|log,FC| > 1,
p < 0.05) found that compared with the YC group, 19 down-
regulated and 12 up-regulated miRNAs in hippocampal tissues of

the mice from the OC group were detected. Compared with the
OC group, 7 down-regulated and 15 up-regulated miRNAs in the
OE group, and 2 down-regulated and 8 up-regulated miRNAs in
the OI group were detected, and a heatmap of the differential miR-
NAs in each group was established (Fig. 6a and Supplementary
Fig. S3). The interaction network between partial miRNAs and
genes in YC and OC groups was established to identify key miRNAs
and corresponding target genes (Fig. 6b), and to list the significant
differences in miRNAs and predicted target genes between each
group (Supplementary Table S2-4). KEGG pathway enrichment of
the predicted target genes of miRNAs in YC and OC groups was
used to identify corresponding signal pathways, including ErbB,

<

Fig. 4. The 16S rRNA analysis and function prediction of gut microbiota in mice from each group. (a) The number of OTUs in mice from different groups; (b, c) The species
compositions at the phylum and genus levels; (d-f) The TOP10 significantly different microorganisms at the phylum level in each group; (g-i) The TOP10 significantly different
microorganisms at the genus level in each group; (j) PCA of fecal microorganisms in mice from each group; (k-n) Observed species, ACE, Shannon, and chaol; (o, p) The
markers of LEfSe and differential gut microbiota; (d) Tax4Fun analysis and functional clustering of gut microbiota.
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MAPK, cAMP, glutamatergic synapse, Toll-like receptor, Notch,
Wnt, mTOR, Ras, apoptosis, insulin, mitophagy, NF-kB, TNF-a,
and other signal pathways, with the involvement of inflammation
and aging-induced neurodegenerative diseases (Fig. 6¢), and to list
the enrichment of KEGG pathways for miRNAs and predicted target
genes between each group (Supplementary Table S5-7).

Similarly, after extracting total RNA of hippocampal tissues,
mRNA sequencing was also carried out to screen differential
mRNAs (|logoFC| > 1, p < 0.05) between groups after statistical
analysis of the effective data (transcripts per kilobase million,
TPM). Compared with the YC group, 64 up-regulated and 28
down-regulated mRNAs in the OC group were detected. Compared
with the OC group, 50 down-regulated and 11 up-regulated
mRNAs in the OE group, and 79 down-regulated and 9 up-
regulated mRNAs in the OI group were screened. The significantly
differential genes were visualized (Fig. 6d, and Supplementary
Table S8-10). Differential genes were enriched by KEGG (YC group
vs. OC group), with major involvement in Toll-like receptor signal
pathway, vascular smooth muscle contraction, dopaminergic
synapse, NF-kB, cAMP, B cell receptor, Ras, longevity regulation,
T cell receptor, TNF-q, insulin signaling, MAPK and other signal
pathways (Fig. 6e), and the KEGG pathway enrichment of each
group (Supplementary Table S11-13). Joint analysis was performed
based on miRNA and mRNA sequencing, and differentially enriched
pathways between different groups were predicted after KEGG
enrichment analysis (Fig. 6f). Among them, the opposite signal
pathways enriched in YC and OC groups could be observed that
the differential pathways were mainly involved in ErbB, Toll, neu-
rotrophin, circadian rhythm, aminoacyl-tRNA biosynthesis, apop-
tosis, Fcreceptor of immunoglobulin E (Fc epsilon RI), prolactin,
GnRH, glycerophospholipid metabolism, estrogen, NF-kappa B, ret-
rograde endocannabinoid signaling, T cell receptor, TNF, natural
killer cell-mediated cytotoxicity, insulin, phospholipase D, Hippo,
cell adhesion molecules (CAMs), protein processing in the endo-
plasmic reticulum, axon guidance, focal adhesion signaling path-
way, actin cytoskeleton, Ras, and MAPK signal pathways. The
enrichment of KEGG pathways for the joint analysis of miRNAs
and mRNAs between each group were also listed (Supplementary
Table S14-16).

From above results, Toll, inflammation, and insulin signal path-
ways may be the major mechanisms involved in the changes of
hippocampal tissues from aged mice upon exercise and irisin inter-
ventions, suggesting the “gut-brain” crosstalk efficiency.

Correlation analysis between gut microbiota and miRNAs and
mRNAs in hippocampal tissues of aged mice upon exercise and
irisin interventions

To further explore the role of exercise and irisin interventions in
the “gut-brain” axis, spearman correlation analysis for gut micro-
biota, miRNAs and mRNAs in hippocampal tissues between OC
group and other groups were conducted to reveal a significant dif-
ference in A2, Rikenella, Bifidobacterium, Parabacteroides, Monoglo-
bus, Clostridium_sensu_stricto_1, Colidextribacter, Lachnolcostridium
and Christensensensellaceae_R-7 group at the genus level (Fig. 7a-
b), and 46 differential miRNAs (Fig. 7c-d). Similarly, the correlation
analysis between differential gut microbiota and 46 differential
miRNAs was achieved (Fig. 7e). A2, Rikenella, Bifidobacterium,
Parabacteroides and Christensenellaceae_R-7_group were signifi-
cantly positively correlated with miR-1264-5p, miR-1264-3p,
miR-1298-5p, miR-1912-3p, miR-204-5p, miR-211-5p, miR-34c/
b-5p, miR-448-3p, miR-467d-5p, miR-467c-5p, novel-695, miR-
196a-5p, and negatively correlated with novel-72a, novel-43u,
miR-1957a, novel-420, miR-206-3p, novel-428a/b, novel-43,
novel-869a/b/c, miR-130b-3p, miR-141-3p, miR-1251-5p and
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miR-200c-3p. Lachnolcostridium was positively correlated with
miR-1264-5p, miR-1264-3p, miR-1298-5p, miR-1912-3p, miR-
204-5p, miR-211-5p, miR-34c¢/b-5p, miR-448-3p, miR-1969, miR-
1195, miR-196a/b-5p, novel-915, miR-467c/d-5p, novel-695,
novel-95a/b/c/d, novel-67, miR-200b-5p, novel-101a/b, miR-10b-
5p, miR-874a/b, novel-954, and significantly negatively correlated
with novel-945, novel-730, novel-72a, novel-43u, miR-1957a3,
novel-420, miR-206-3p, novel-428a/b, novel-43, novel-869a/b/c,
miR-130b-3p, miR-141-3p, miR-1251-5p, and miR-200c-3p. Mono-
globus was positively correlated with miR-467d-5p, miR-467c-5p,
novel-695 and miR-196a-5p, and negatively correlated with
novel-72a, novel-43u and miR-1957a, Clostridium_sensu_stricto_1
was negatively correlated with miR-34b-5p, novel-730 and miR-
196a-5p, and positively correlated with novel-95b/c, novel-95a/c/
d, miR-1957a, miR-1251-5p and miR-200c-3p. Colidextribacter
was negatively correlated with miR-1264-5p, miR-1264-3p, miR-
1298-5p, miR-1912-3p, miR-204-5p, miR-211-5p, miR-34c-5p,
miR-448-3p, miR-34b-5p and novel-945, and positively correlated
with novel-67, novel-101a, miR-141-3p, miR-1251-5p and miR-
200c-3p. Clostridium_sensu_stricto_1 was negatively correlated
with miR-34b-3p, novel-730, miR-196a-5p, and positively corre-
lated with novel-95a/b/c/d, miR-1957a, miR-141-3p, miR-1251-
5p and miR-200c-3p.

At the same time, the differentially expressed gene transcripts
in the OC group were screened and 747 genes were differentially
expressed in the YC group, 681 genes in the OE group, and 1068
genes in the OI group; among them, there were 35 common genes
(Fig. 7f-g), with correlation with gut microbiota in YC, OE, and OI
groups, which revealed the significant difference from the OC
group (Fig. 7h). It was found that Parabacteroides was positively
correlated with Cpnel, Pak3, Sema4a, Wdr48, Adrala, Hspa8, Ly6e,
Mtm1, Dpagt1, Hp1bp3, Clvs1 and Abcb8, and negatively correlated
with Gbp6, U2af2, A930004D18Rik, Cxcr4, Ical, Mecp2, Calnl, Hcfc2,
and Scmh1; Bifidobacterium was positively correlated with Wdr48,
Adrala, Hspa8, Ly6e and Mtml1, and negatively correlated with
Hcfc2 and Prdm16; A2 was negatively correlated with Clpb, and
positively correlated with Thc1d24; Rikenella was negatively corre-
lated with Magi2 and Akt1s1, and positively correlated with Mndal;
Monoglobus, Christensensensellaceae_R-7, Clostridium_sensu_
stricto_1, Colidextribacter, and Lachnolcostridium were positively
correlated with Cpnel, Pak3 and Sema4a, and negatively correlated
with Scmh1. These results indicated that the correlation analysis of
gut microbiota and miRNAs and mRNAs in hippocampal tissues of
the mice from YC, OE, and OI groups was different from OC group,
which may be the possible mechanisms for regulating gene
expression in hippocampal tissues from the perspective of gut
flora.

Exercise and irisin interventions alleviated inflammatory responses
and TLR4/MyD88 signal pathway-mediated insulin resistance

From the analysis of fecal microbes, non-targeted metabolites,
and screened miRNAs and mRNAs in hippocampal tissues, the
screened signal pathways were predicted and enriched to be corre-
lated with aging, inflammation, and neurodegenerative diseases.
Toll receptor and insulin signal pathway were enriched with miR-
NAs and mRNAs through the analysis of KEGG pathways in hip-
pocampal tissue. Lipopolysaccharide-binding protein (LBP)
activating factor and IL-1B, IL-6 and TNF-a from each group were
detected. These results showed that LPS, LBP, IL-1B, IL-6, and
TNF-a in serum of the mice from the OC group were significantly
increased (p = 0.0405, p 0.0287, p 0.0089, p 0.0188,
p = 0.0149) when compared with the YC group, while LPS, LBP,
IL-1B and TNF-a in serum of the mice from OE and OI groups were
significantly decreased (p = 0.0074, p = 0.0317, p 0.0192,
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Fig. 6. Hippocampal miRNAs, mRNAs and joint analysis of the mice from each group. (a) Behavioral differential miRNAs, listed as groups; (b) Red indicates miRNAs and blue
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Fig. 7. The correlation analysis of gut microbiota and miRNAs and mRNAs in YC, OE, and Ol groups differed from OC group. (a) The number of gut microbiota in YC, OC, and OE
groups differed from OC group; (b) The differential microbiota in each group at the genus level; (¢, d) The number and names of miRNAs in YC, OC, and OE groups differed
from OC group; (e) The clustering heatmap of correlation between miRNAs and genus-level gut microbiota in YC, OC, and OE groups differed from OC group; (f) The number
and names of differential genes in YC, OC, and OE groups differed from OC group; (h) The clustering heatmap of the correlation between genus-level differential gut
microbiota and genes. Red indicates a positive correlation, blue indicates a negative correlation, and darker indicates a more significant correlation.

p = 0.0219; p = 0.0001, p = 0.0055, p = 0.0024, p = 0.0430,
p = 0.0384) (Fig. 8a). The upstream and downstream of TLR4-
mediated inflammatory signal pathways were verified by qRT-
PCR. TLR4, MyD88, NF-kB, IL-1p, IL-6, and TNF-o. were significantly
up-regulated in hippocampal tissues of the mice from the OC group
(p=0.0039, p =0.0084, p = 0.0254, p = 0.0010, p = 0.007, p = 0.0125)
when compared with the YC group; compared with the OC group,
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TLR4, MyD88, NF-kB, and IL-13/6 were significantly decreased in
the OE group (p = 0.0019, p = 0.0424, p = 0.0153, p = 0.0056,
p = 0.0006), and LBP, TLR4, MyD88, JNK, and IL-1$/6 were signifi-
cantly reduced in the OI group (p 0.0425, p 0.0016,
p =0.0123, p = 0.0079, p = 0.0036, p = 0.001) (Fig. 8b). Moreover,
during detecting the inflammatory state of hippocampal tissue in
each group were stained by Ibal, GFAP and p-NF-kB p65, com-
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Fig. 8. The serum inflammatory factors, hippocampal TLR4/MyD88 signal pathway-related genes, and corresponding proteins in hippocampal tissues of the mice froom each
group. (a) Serum levels of inflammation-related factors in different groups; (b) Hippocampal TLR4/MyD88 signal pathway-related inflammatory mRNA levels in each group;
(c) Immunofluorescent staining of Ibal and GFAP in hippocampal tissues of the mice from each group; (d) Corresponding inflammation levels in hippocampal tissues of the
mice from each group evalauted by protein expression of p-NF-xB p65 through immunofluorescence staining; (e) Statistical analysis for expression levels of corresponding

inflammatory proteins in hippocampal tissues of the mice from each group.

pared with YC group, the activation levels of hippocampal micro-
glial cells and NF-xkB p65 were increased in the OC group, but
the activation of hippocampal microglial cells and NF-xB p65 in
OE and OI groups were decreased when compared with the OC
group (Fig. 8c and e).

Furthermore, the expression of proteins associated with the
inflammatory activation status was evaluated by Western blot.
TLR4, MyD88, p-p38 MAPK/p38 MAPK, p-MKK7/MKK7, p-]NK/
JNK, IL-1B/6, TNF-o, p-IRS**"%7/IRS were significantly increased
(p = 00012, p = 0.0009, p = 0.0219, p = 0.0088, p = 0.0160,
p =0.001, p = 0.0046, p = 0.0305, p = 0.0005) in the OC group when
compared with the YC group (Fig. 8d and f). Compared with the OC
group, TLR4, MyD88, IL-1p and p-IRS**"*°7/IRS were decreased
(p = 0.0287, p = 0.0027, p = 0.0264, p = 0.0263) in the OE group,
and TLR4, MyD88, p-p38 MAPK/p38 MAPK, p-MKK7/MKK7, p-
JNK/JNK, IL-1B/6 and p-IRS**"%7IRS were significantly decreased
(p = 0.0144, p = 0.0253, p = 0.0126, p = 0.0119, p = 0.0298,
p =0.0006, p = 0.0069, p = 0.001) in the OI group. The above results
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indicated that hippocampal tissues of aged mice might induce neu-
ronal inflammation and insulin resistance mediated by TLR4/
MyD88 signal pathway through the activation of microglia by
LPS. Exercise and irisin interventions could inhibit LPS in the body,
alleviate the activation of microglial cells, and suppress hippocam-
pal inflammation and insulin resistance.

Discussion

Exercise-modulating gut microbiota may be related to increas-
ing irisin levels in the body. The sequencing of fecal 16S rRNA, non-
targeted metabolites, and hippocampal miRNAs and mRNAs was
conducted to further validate the effects of exercise and irisin-
regulated gut microbiota and metabolites on miRNAs and genes
in hippocampal tissues. The gut microbiota, genes, and signal path-
ways involved in these analyses may become potential interven-
tion targets for improving cognitive capacity, among which, the
activation of the TLR4 signal pathway in brain tissue mediated
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by increased LPS due to the imbalanced gut microbiota may be an
important regulator. Exercise suppresses neuroinflammation
mediated by TLR4/MyD88 signal pathway in brain tissues to
enhance cognitive capacity, which may be related to exercise-
induced irisin in the body.

Aging can lead to impaired cognitive capacity, while drugs,
exercise, and nutritional supplements are currently central inter-
ventions. To better understand the effect of exercise on aging-
induced cognitive impairment, moderate-intensity aerobic and
anaerobic training as possible within a week with a duration of
45-60 min for each training period reveals a significant improve-
ment on cognitive performance in older adults over the age of 50
[24], and aerobic exercise is superior in cognitive improvement
[25]. Therefore, 45-min aerobic treadmill running with 5 times a
week and a training period of 3 consecutive months was provided
for 21-month-old mice to further explore the molecular mecha-
nisms of aerobic exercise-induced cognitive improvement during
aging process in the present study. The improvement of learning
and memory capacity upon exercise interventions may be corre-
lated with increased function and number of neurons. Meanwhile,
the observation with hippocampal HE, Nissl and NeuN staining,
and TEM examination revealed the increased neuronal number,
synaptic arc length, and PSD thickness of neuronal synapses after
exercise intervention, and the synaptic gap was decreased signifi-
cantly [26], including the critical role of gut microbiota [27].

There is a significant difference in irisin level across different
models. Regression analysis of disease states shows that plasma
irisin level is positively correlated with normal and mildly
impaired cognitive capacity of patients without AD. In contrast,
higher irisin level in AD patients may have smaller hippocampal
volume [28], indicating that the occurrence of the disease may
be a feedback response from the increased irisin to slow down
the disease progression and the depletion of irisin secretion when
the disease state is irreversible. Relevant studies have also con-
firmed that exercise can enhance cognitive capacity due to the
optimized gut microbiota [29,30]. In the present study, serum iri-
sin levels in mice subjected to exercise and irisin interventions
are significantly higher than the aging model mice, which is consis-
tent with previous results [31]. Moreover, the direct injection of
recombinant irisin has the stronger effect than exercise interven-
tion. However, the studies on irisin-mediated optimization of gut
microbiota are limited, and the regulation of gut microbiota by iri-
sin is only reported in colitis and ischemia-reperfusion injury
models [11,13]. It is worth noting that although exercise does
not show a significantly regulatory effect on gut microbiota, it still
shows a significantly reversal cognitive capacity during aging pro-
cess, suggesting exercise-induced multiple benefits. Similarly,
exercise can effectively regulate gut microbiota to prevent gut bar-
rier damage [32]. However, the studies in mouse aging models are
still limited. The limited regulation capacity to gut microbiota may
be associated with lower exercise capacity and excessive oxidative
stress in older mice [33,34]. In contrast, excessive exercise inten-
sity may impact the structure and function of gut microbiota in
the elderly population [35]. Meanwhile, some studies have also
shown that exercise can reshape gut microbiota although the
reshaping capacity is limited [36]. In the present study, exercise
has a regulatory effect on gut microbiota, and is weaker than irisin
intervention, which may be due to irisin circulation during exercise
intervention when compared with direct irisin intervention. These
results suggest that moderate-intensity aerobic exercise has a lim-
ited role in regulating gut microbiota in aged mice or exercise-
induced irisin does not reach up to the level for triggering gut
microbiota.

Our 16S RNA sequencing data of gut microbiota have confirmed
that aging can lead to a significant decrease in F/B ratio and abun-
dance of Actinobacteria, unidentified_Bacteria, Parabacteroides, Bac-
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teroides, Turicibacter, and Bifidobacterium, whereas exercise and
irisin injection can reverse the decline in the abundance of gut
microbiota that is closely related to cognitive capacity. Statistical
analysis of gut microbiota at the phylum and genus levels has doc-
umented that F/B ratio shows a significant decrease in aged mice,
with consistent results with previous studies [37,38], and the F/B
ratio decline may be also due to aging stages, and races [39-41].
In a previous study on gut microbiota and cognition in neurologi-
cally healthy elderly, it has found that Firmicutes is positively cor-
related with memory capacity, but Bacteroidetes is negatively
correlated [42]. The fecal microbiota test of Amyotrophic lateral
sclerosis patients with cognitive impairment and Amyotrophic lat-
eral sclerosis patients with normal cognition also shows a signifi-
cant increase in F/B ratio [43], which is consistent with the
decrease in F/B ratio observed during aging process. In rats with
memory impairment, the traditional Chinese herbal prescription
Dangshen Yuanzhi Powder also can reverse the decrease in F/B
ratio while improving memory capacity [44]. In the present study,
exercise and irisin interventions reversed this ratio and showed the
improved cognitive capacity, further confirming that F/B ratio may
be a potential factor of cognitive capacity. However, in obesity
models with cognitive impairment caused by diabetes, F/B ratio
shows a significant increase [45,46], which may be related to
unnatural aging and exogenous food or drug intervention. A signif-
icant increase in Actinobacteria has been found in both AD and
elderly cognitive impairment populations [47-49]. However, Acti-
nobacteria reveals an significant increase in studies using Triphala
to improve cognition in AD mice [50], and Actinobacteria was a sig-
nificant decrease in abundance with increasing age [51], which is
also consistent with our results. In addition, the studies on the rela-
tionship between intestinal microbial changes and cognition in AD
people have also confirmed that the abundance of Actinobacteria is
significantly reduced [52]. Significant reduction in Actinobacteria
has been found in 5XFAD mice with severe cognitive decline when
compared with wild-type mice at the same age [53]. In another
study, Actinobacteria is directly linked to cognitive capacity [54].
The traditional Chinese herb Jiedu Yizhi prescription can signifi-
cantly improve cognitive capacity of APP/PS1 mice, and can also
suppress the TLR4/NF-kB signal pathway in the brain through
inhibiting Actinobacteria, further suggesting that Actinobacteria
may be involved in regulating signal pathways for controlling cog-
nitive capacity [55]. In chronic neuropathic pain models, a selective
decrease in gut flora accompanied by an increase in Actinobacteria
may contribute to the occurrence of cognitive impairment [56]. PD
also shows a rapid decline in cognitive level during the develop-
ment process of the disease. A 3-year follow-up study has found
that the reduction of Actinobacteria is closely related to accelerated
cognitive deterioration [57]. Actinobacteria abundance also shows a
significant increase when administrated with the cognitively ben-
eficial Enoki mushroom polysaccharide [58]. However, Actinobacte-
ria in the studies of aging and cognition fields has received
attention only in recent years [59]. Although there is some contro-
versy, more studies on its beneficial cognitive improvement may
be needed to further confirm.

Based on our study, Parabacteroides reveals a significant
decrease during aging process, while exercise and irisin interven-
tions can reverse its aging-induced reduction. Similarly, a signifi-
cant decrease in the abundance of Parabacteroides has also found
in the elderly with mild cognitive impairment [60]. In hemodialy-
sis patients with cognitive impairment, there is also a positive cor-
relation between Parabacteroides and cognitive capacity [61].
Cognitive capacity can be enhanced by optimizing the composi-
tions of gut flora upon probiotics supplementation, in which the
abundance of Parabacteroides also shows a significant increase
[62]. However, Parabacteroides show an increase in models of cog-
nitive impairment after schizophrenia, stroke, and radiation-
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induced cancers [63-65]. These opposite results may be related to
different disease models, and the specific factors may require more
in-depth study. The reduction of Bacteroides during aging process
may be negatively correlated with body inflammation [66], and
supplementing Bacteroides can inhibit inflammation levels [67].
Therefore, Bacteroides should have close association with cognitive
improvement in the elderly [68], is positively correlated with cog-
nitive capacity [69], as well as involved in neurodevelopment to
improve infant cognitive capacity [70]. In clinical studies, fecal
transplants can suppress cognitive decline due to the significant
increase in Bacteroides [71]. Mendelian analysis of over 200,000
cognitive data and nearly 20,000 gut microbes has demonstrated
that Bacteroides plays an active role in cognitive protection [72].
Some studies have shown a significant increase in Bacteroides by
transplanting gut flora of AD persons into germ-free mice [73].
The detection of microbiota in people with dementia has also con-
firmed an increase in the abundance of Bacteroides as an indepen-
dent factor in dementia [74].

In addition, the beneficial Turicibacter is also significantly
reduced in aging mice, while exercise and irisin interventions res-
cue this deleterious reduction. Supplementing Turicibacter could
delay aging process to a certain extent [75], and a significant
decrease in Turicibacter abundance is also observed in APP/PS1
mice with poor cognitive capacity [76]. Dietary methionine restric-
tion as a diet intervention for anti-aging and suppressing aging-
induced cognitive impairment can stimulate cognitive capacity
through significantly increasing the abundance of Turicibacter
[77]. Bifidobacterium exhibits anti-aging effects on promoting cog-
nitive capacity and metabolic level of AD mice [78,79], which is
possibly correlated with neuron regeneration [28]. In a randomized
controlled trial on the elderly, it is found that exogenous supple-
mentation of Bifidobacterium can significantly improve the learning
and memory capacity of elderly population [80]. Pregnant mice
supplemented with omega-3 exhibit a significant increase of Bifi-
dobacterium and enhanced cognitive capacity in their offsprings
[81]. Aged mice and humans supplemented with Bifidobacterium
have also found that cognitive function is significantly enhanced,
which may be related to the improvement in the gut environment
and barrier and inflammation levels [82,83]. Moreover, middle-
aged mice supplemented with Bifidobacterium show improved cog-
nitive capacity and metabolic function, further confirming its
impact on brain function [84,85]. Supplementing Bifidobacterium
has shown to modulate gut flora when rescuing mild cognitive
impairment, with the involvement in improving synaptic plasticity
through up-regulating brain-derived neurotrophic factor (BDNF),
fibronectin type Il domain-containing protein 5 (FNDC5), and
postsynaptic density protein 95 (PSD-95) in the brain [86]. After
exercise and irisin interventions in the present study, the level of
Bifidobacterium in aged mice reveals a significant increase accom-
panied by the improvement of brain structure and cognitive capac-
ity, further suggesting that exercise or exercise-induced irisin may
promote the optimal balance in the abundance of beneficial
bacteria.

The change in gut microbiota can induce corresponding change
of the metabolites in feces. The fecal metabolites have significant
differences in the OPLS-DA scores of the metabolites from different
interventions. Bacteroides, Turicibacter, and Bifidobacterium at the
genus level are significantly reduced in feces of aged mice, which
can be reversed by exercise and irisin interventions. Bifidobac-
terium is significantly positively correlated with 1H-2-(2R)-2-met
hyl-2-pyrrolidinyl-benzimidazole-7-carboxamide, and pantothen-
ate, among which 1H-2-(2R)-2-methyl-2-pyrrolidinyl-benzimida
zole-7-carboxamide has limited research, while pantothenic acid
is involved in improved cognitive capacity. Pantothenic acid is also
known as vitamin B5, and the deficient intake of pantothenic
acid may lead to cognitive decline [87]. In the analysis of human
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cerebrospinal fluid components, it is found that pantothenic acid
is significantly positively correlated with aging [88], and abnormal
change in pantothenic acid is also found in gut flora of normal peo-
ple and people transitioning from MCI to dementia [89]. Turicibac-
ter is significantly positively correlated with cyclamic acid.
However, the studies on the role of cyclomic acid in cognition seem
to be lacking. Bacteroides is significantly negatively correlated with
sn-glycero-3-phosphocholine, methylcysteine and heparin, and
positively  correlated with cyclamic acid. Sn-glycero-3-
phosphocholine (synonym choline alfoscerate) as an acetylcholine
precursor in improving cognition has been confirmed by many
studies. Sn-glycero-3-phosphocholine has a positive effect on cog-
nitive improvement in natural aging and different stages of AD
populations [90,91], and is even considered a cognitive enhancer.
A meta-analysis involving 449 population-based trials has demon-
strated that phosphocholine supplementation can significantly
improve cognition [92]. However, the relationship between
methylcysteine, heparin, and cyclohexanoic acid and cognition
has been less studied.

To explore the relationship between gut microbiota and miR-
NAs and mRNAs in hippocampal tissues, differential gut microbiota
between YC, OE, OI, and OC groups at the genus level are screened.
Among differential miRNAs, miR-206-3p is significantly up-
regulated in the OC group and down-regulated in YC, OC and OI
groups at a certain degree. The miR-206-3p is directly involved
in regulating BDNF [93], which may become a potential marker
for diagnostic and treatment tools for AD [94]. In addition, the rel-
ative expression of miR-103-3p and miR-103b-3p was higher in OC
and OE groups. Relevant studies have shown that lower levels of
miR-103-3p in human serum are independently associated with
cognitive impairment [95]. Based on sequencing data of AD
patients and normal populations, miR-103-3p can interact with
most of the key genes screened to predict AD [96]. MiR-103-3p
in the OE group seems to be consistent with that in the OC group,
but relevant studies have confirmed that exercise may cause the
increase of miR-103-3p to a certain extent [97], but the studies
between miR-103b-3p and cognitive capacity have not been
reported. In transcriptome sequencing, we have found that some
genes closely correlated with cognition are significantly different
between YC and OC groups, such as Cst7, Kik6, Slc13a4, Trem2,
Slc16a9, Cldni1, and Apod. The Cst7 gene is up-regulated in the OC
group, but down-regulated in the YC and OI groups, and is also
associated with cognitive decline [98], while the inhibition of
Cst7 shows cognitive deficits [99]. As a gene closely related to
AD, the expression of KIk6 can lead to neuronal degeneration
[100], and Kik6 has been found to be significantly elevated in
plasma of AD persons, and may become a biomarker for predicting
the severity of dementia AD [101]. Sic13a4 has sodium-sulfate
symporter activity, and the deletion of the Slc13a4 gene causes a
significant decrease in the learning and memory capacity of mice,
but in contrast, Slc13a4*'~ mice show an increase in the appearance
of hippocampal neurons [102]. Trem2 has been found to be related
to AD in many studies and is highly expressed in AD. Inhibiting
Trem2 has also become an important target to alleviate cognitive
decline [103,104]. Slc16a9 methylation mediates the effects of pre-
natal alcohol exposure on neonatal cognitive and attention-related
deficits [105]. In the blood-brain barrier endothelial cells of aged
mice, TLR4 activation is accompanied by a decrease in Cldn1, while
the downregulation of TLR4 shows an increase in Cldn1, and Cldn1
is positively correlated with cognition [106]. Leukoaraiosis patients
with cognitive impairment also show a significant decrease in Cld-
nl [107]. Moreover, the inhibition of ACE and ACE heterozygous
mice show an exacerbation of AD symptoms [108], and the under-
lying mechanism may be related to the degradation of B-amyloid
protein [109]. However, there are many studies showing that ACE
is not correlated with cognition [110], or that blocking ACE can
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alleviate further deterioration of cognition [111]. Therefore, the
relationship between ACE and cognition may need further explo-
ration. Apod shows the up-regulation with the extension of age
[112], also shows high expression in AD patients [113] and a neg-
ative correlation with cognitive capacity [114]. Gm28294 and C5ar2
are significantly down-regulated in the OC group and increased in
YC, OE and OI groups. Unfortunately, there are no reports on
Gm28294 in the literature. C5ar2 may play a neuroprotective role
in AD and delay the occurrence of AD, complement and
astrocyte-related genes to a certain extent [115]. Gpr17 and Fos
are significantly down-regulated in the OC group and up-
regulated in the OE group. However, some studies have shown that
knocking out and inhibiting Gpr17 exhibits positive effects on cog-
nition [116,117], which is contrary to our results. Fos gene plays an
important role in spatial memory [118]. The c-Fos as one of the Fos
gene members is dysregulated in AD patients [119], and is also sig-
nificantly down-regulated in aging mice with cognitive deficits
[120], while running training can significantly up-regulate its
expression in hippocampal tissues [121], which is consistent with
our results.

U2af2, Gbp6, Scmhl, Prdmi16, Aktlsl, Calnl, Mecp2, Cxcr4,
A930004D18Rik, Ical, Hcfc2, Prdm16 and Magi2 genes are up-
regulated in the OC group, while Adrala, Glmp, Ctage5, Ndell,
Wdr48, Tenm4, Hspa8, Pak3, Clvs1, Cpnel, Sema4a, Ly6e, AbcbS,
Dpagt1 and Hp1bp3 are down-regulated in the OC group, which
may be the important predictors of aging. Based on the correlation
analysis of gut microbiota A2, Rikenella, Bifidobacterium, Parabac-
teroides, = Monoglobus,  Christensensenselaceae_R-7,  Clostrid-
ium_sensu_stricto_1, Colidextribacter and Lachnolcostridium at the
genus level and miRNAs and mRNAs, gut microbiota has a signifi-
cant potential role in influencing hippocampal miRNAs and mRNAs
to participate in aging-induced neurological diseases (Fig. 6h).

Inflammation-induced insulin resistance is one of the major
inducers of aging-induced cognitive impairment, which may be
closely correlated with the increased LPS and LBP in the body. Both
exercise and irisin interventions have been confirmed to exert anti-
inflammatory effects with the focus on TLR4/MyD88 [14,122,123].
Under normal physiological conditions, LPS in gut microbiota can
maintain homeostasis at a certain level. At aging and disease states,
abnormal changes in gut microbiota may lead to the release of a
large amount of LPS, thereby aggravating the inflammatory
response of the whole body and organs, and even inducing insulin
resistance and the occurrence of diseases. TLR4 signal pathway is
the primary inflammatory signal for LPS-induced LBP activation.
In the present study, suppressing TLR4 signal pathway in
hippocampal tissues of aged mice upon exercise and irisin inter-
ventions can suppress inflammation. Similarly, the significant up-
regulation of TLR4, MYD88, IL-1p, and IL-6 genes in hippocampal
tissues of the elderly has also been confirmed by human experi-
ments [124,125]. TLR4 may mediate the transduction of IL-1p sig-
nal pathway in hippocampal tissues of aged mice. The absence of
TLR4 can offer aged mice for better learning and memory functions
[20,126], which may be closely correlated with the suppression of
inflammation and the mitigation of neuronal disorders [127], illus-
trating that the activation of TLR4 may be one of the important
causes of insulin resistance and accelerating cognitive impairment
during aging process [128]. During natural aging or drug-induced
aging process, p-p38 MAPK in hippocampal tissues can be trig-
gered to a certain extent [129,130], and aerobic exercise can signif-
icantly result in its down-regulation [131], which is consistent
with our study, suggesting an obviously positive anti-
inflammation efficiency and enhanced insulin sensitivity upon
exercise and irisin interventions. However, the effect of irisin inter-
vention on inhibiting hippocampal neuroinflammation and insulin
resistance is better than that of exercise intervention, which may
be related to the fact that the irisin level in aging mice induced
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by moderate exercise is not enough to optimize gut microbiota
for suppressing inflammation. The specific mechanism needs to
be further clarified.

In the present study, comprehensive testing of gut flora,
non-targeted metabolites, hippocampal miRNAs and mRNAs,
blood-related indicators, and hippocampal tissue samples shows
that irisin intervention is more effective than exercise. Exercise-
induced regulation of the gut-brain axis may be closely related to
resultant endocrine, metabolite and physiological changes
involved in regulating gut flora. Therefore, exercise-induced irisin
can modulate gut microbiota to improve cognition, which is also
a new way to uncover exercise to improve cognition. Analyzing
how exercise regulates gut flora and participates in disease
improvement may be a focus of future research. At present, it
has been confirmed that irisin is positively correlated with cogni-
tive capacity of AD persons with cognitive impairment [132], and
exercise plays a role in enhancing cognition by increasing irisin
levels [13]. However, exercise seems to be a reference only for peo-
ple with normal physical activities, but not for people with cogni-
tive impairment, physical disabilities or those who are unable to
accomplish exercise. Therefore, direct intervention with irisin to
achieve the mimic effects of exercise on health promotion and dis-
ease prevention or rehabilitation is the ultimate goal that we are
currently pursuing. Unfortunately, there are currently no experi-
mental reports on irisin interventions in humans, but exercise
[13], nattokinase [133], low-intensity pulse [134], solanum melon-
gena extract [135] can trigger the circulating level of irisin in the
body. Therefore, increasing the circulating level of irisin in the
body through exogenous interventions targeting the body’s irisin
may also be a potential strategy for disease interventions in the
future. It is worth noting that irisin appears to vary in different dis-
eases, and if used in human treatment, more detailed screening of
body functions and diseases may be required. The collection of
data from larger samples of people with different ages and diseases
and the exploration of human-related experiments may be a
breakthrough in promoting the clinical value of irisin.

Conclusion

Exercise-reversed cognitive impairment of aging mice may be
correlated with the generation and secretion of exercise-induced
irisin and the irisin-mediated optimization of gut microbiota and
metabolites through suppressing TLR4/MyD88 signal pathway
and insulin resistance. This finding may provide a new reference
for exercise-mediated gut microbiota to enhance cognitive capac-
ity during aging process. Unfortunately, the beneficial effect and
underlying mechanisms of irisin on optimizing the balance of gut
microbiota are not fully validated. Moreover, irisin gene knockout
to affect the regulation of gut microbiota and cognitive capacity
may need to be further verified.
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