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1  | INTRODUC TION

Gymnosperms are an ancient and widespread nonflowering plant 
lineage of great economic and ecological importance. With only 
1,000 living species, gymnosperms represent four of the five seed 
plant lineages including conifers (Pinophyta), cycads (Cycadophyta), 
ginkgos (Ginkgophyta), and gnetophytes (Gnetophyta; Wang & 
Ran, 2014). Coniferous species make up 39% of the world's forests 

and represent great value for forestry‐dependent economies in 
Northern and Southern hemispheres (Armenise, Simeone, Piredda, 
& Schirone, 2012). Efforts to understand their biology, and genomic 
and functional evolution have been limited by their life‐history char‐
acteristics and large genome sizes (De La Torre et al., 2014). Recent 
studies highlighted the underpinnings of the major morphological, 
genomic, and functional differences that shaped the evolutionary 
divergence among gymnosperms and flowering plants.
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Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. 
Morphological and functional divergence between the two major seed plant clades 
involved significant changes in their reproductive biology, water‐conducting systems, 
secondary metabolism, stress defense mechanisms, and small RNA‐mediated epige‐
netic silencing. The relatively recent sequencing of several gymnosperm genomes 
and the development of new genomic resources have enabled whole‐genome com‐
parisons within gymnosperms, and between angiosperms and gymnosperms. In this 
paper, we aim to understand how genes and gene families have contributed to the 
major functional and morphological differences in gymnosperms, and how this in‐
formation can be used for applied breeding and biotechnology. In addition, we have 
analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resist‐
ance (PDR) gene family with a wide range of functionalities in plants' interaction with 
their environment including defense mechanisms. Some of the genes reviewed here 
are newly studied members of gene families that hold potential for biotechnologi‐
cal applications related to commercial and pharmacological value. Some members of 
conifer gene families can also be exploited for their potential in phytoremediation 
applications.
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The most noteworthy differences between angiosperms and 
gymnosperms certainly occur at the morphological level. Flowers, 
the major functional innovation in angiosperms, are assumed to have 
evolved through the transformation of gymnosperms' separate male 
and female structures into an integrated hermaphrodite structure 
(Niu et al., 2016; Pires & Dolan, 2012). Similarly, angiosperms de‐
veloped a more efficient method of water transport through ves‐
sels, while tracheids are present in gymnosperm species (with the 
exception of gnetales), but also in the basal angiosperm Amborella 
trichopoda. Gene families involved in secondary metabolism such 
as terpene biosynthesis or various alkaloid biosynthesis pathways 
evolved differently in gymnosperms and flowering plants (Chen, 
Tholl, Bohlmann, & Pichersky, 2011; Hall, Zerbe, et al., 2013b). In this 
review paper, we aim to understand how a subset of well‐studied 
genes and gene families have contributed to the evolution of major 
morphological and functional differences between angiosperms and 
gymnosperms including their reproductive biology, water‐conduct‐
ing xylem tissues, secondary metabolism and stress, and noncoding 
and small RNAs. In addition, we analyzed the gene family evolution of 
the pleiotropic drug resistance (PDR) proteins, known to play import‐
ant roles in plant–environment interactions in angiosperms. Some of 
the gymnosperm genes reviewed here are newly studied members 
of gene families such as PDR that hold potential for biotechnologi‐
cal applications with commercial and pharmacological value. Some 
members of conifer gene families have potential to be exploited for 
improved growth on marginal or disturbed soils, by increasing the 
detoxification potential of spruces in phytoremediation applications.

2  | GENOMIC E VOLUTIONARY 
DIFFERENCES BET WEEN ANGIOSPERMS 
AND GYMNOSPERMS

Before the extensive radiation of flowering plants during the late 
Cretaceous, gymnosperms dominated the world flora for almost 
200 million years (Pennisi, 2009; Pires & Dolan, 2012). Extreme cli‐
matic shifts over the Cenozoic resulted in major extinctions in the 
gymnosperm lineage, which may account for the low diversity of ex‐
tant gymnosperms in comparison with their sister seed plant clade 
(Crisp & Cook, 2011; Leslie et al., 2012). Extinctions were more pro‐
nounced in the Northern hemisphere in which older lineages were 
replaced by those better adapted to cooler and drier environmental 
conditions, resulting in higher species turnover rates in Pinaceae and 
Cupressaceae, compared to southern lineages (Leslie et al., 2012). 
More recently, climatic changes during the last Glaciation strongly 
shaped species distributions and patterns of speciation and adap‐
tation for many Northern hemisphere gymnosperms which went 
through cycles of contraction and expansion from refugia (Shafer, 
Cullingham, Côté, & Coltman, 2010).

While angiosperm evolution has been shaped by whole‐genome 
duplication (WGD) events leading to higher speciation rates and 
the development of key functional innovations, gymnosperm ge‐
nomes have been less dynamic (Landis et al., 2018; Soltis & Soltis, 

2016; Vanneste, Maere, & Van de Peer, 2014). The rarity of WGD, 
paucity of chromosomal rearrangements, and slow mutation rates 
have led to low levels of structural genomic and morphological vari‐
ation among species, and low speciation rates in gymnosperms (De 
La Torre et al., 2014; De La Torre, Li, Van de Peer, & Ingvarsson, 
2017; Jaramillo‐Correa, Verdu, & Gonzalez‐Martinez, 2010; Leitch 
& Leitch, 2012; Pavy et al., 2012). In the presence of polyploidy and 
retro‐transposition, angiosperms have developed mechanisms to 
counteract the increase in genomic DNA by replication or recombi‐
nation‐based errors generating indels, and unequal recombination 
between sister chromosomes (Grover & Wendel, 2010; Leitch & 
Leitch, 2012).

Although polyploidy is largely absent in gymnosperms (exceptions 
are Sequoia, Pseudolarix, and Ephedra), a combination of a massive 
accumulation of long‐terminal repeat retrotransposons (LTR‐RTs), 
together with limited removal of transposable elements through un‐
equal recombination, has resulted in very large genome sizes (mean 
1C = 18.8 pg; De La Torre et al., 2014; Leitch & Leitch, 2012; Nystedt 
et al., 2013). Recent studies revealed transposable elements make 
up to 74%, 76.58%, 79%, and 85.9% of the genomes of Pinus taeda, 
Ginkgo biloba, Pinus lambertiana, and Gnetum montanum, respectively 
(Guan et al., 2016; Neale, Martínez‐García, Torre, Montanari, & Wei, 
2017; Neale et al., 2014; Wan et al., 2018; Wegrzyn et al., 2014). A 
comparative analysis among six diverged gymnosperms suggested 
the diversity and abundance of transposable elements is widely con‐
served among gymnosperm taxa (Nystedt et al., 2013). However, a 
more recent study focused on gnetophytes (Gnetum, Welwitschia, 
Ephedra) suggests higher frequencies of LTR‐RT elimination due to 
recombination‐based processes of genome downsizing may explain 
the smaller sizes of gnetophytes in comparison with other gymno‐
sperm genomes (Wan et al., 2018).

Despite significant variations in noncoding regions of angio‐
sperm and gymnosperm genomes, both plant lineages have compa‐
rable numbers of genes and gene families. Sequence similarities of 
expressed genes are 58%–61% between conifers and angiosperms, 
and 80% within Pinaceae (Prunier, Verta, & MacKay, 2016; Rigault 
et al., 2011). This suggests that functional differences observed be‐
tween seed plant lineages may have evolved as a consequence of 
differences in rates of nucleotide substitution, frequency of copy 
number variant (CNV) formation (Prunier, Caron, & MacKay, 2017; 
Prunier, Caron, Lamothe, et al., 2017; for a discussion of poplar vs. 
spruce CNVs see Prunier et al., 2019), and/or differential gene fam‐
ily expansion or contraction (Zhou et al., 2019). A recent analysis 
of protein‐coding genes across a broad phylogeny suggested slower 
rates of molecular evolution (number of synonymous substitutions 
dS and mutation rates), but higher substitution rate ratios (dN/dS) in 
gymnosperms than in angiosperms (De La Torre et al., 2017). Higher 
levels of dN/dS in gymnosperms suggest stronger and more effec‐
tive selection pressures probably due to larger effective population 
sizes, especially in the Pinaceae (De La Torre et al., 2017). In addition, 
gymnosperms generally present high levels of within‐population ge‐
netic diversity, while long‐distance gene flow of wind‐dispersed pol‐
len between highly outcrossed populations leads to rapid decay of 
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linkage disequilibrium and low among‐population genetic diversity 
(De La Torre et al., 2014, 2017; Porth & El‐Kassaby, 2014). Higher 
gene turnover, which probably explains a higher species turnover, 
has been observed in Pinaceae. Although the cause of this is un‐
known, it is being suggested that this trend might be explained by 
an elevated frequency of gene CNVs, although rates of CNV forma‐
tion in Pinaceae or any other gymnosperms are unknown (Casola & 
Koralewski, 2018).

Because gymnosperms predate angiosperms, most differential 
gene family expansions between angiosperms and gymnosperms 
seem to have occurred either by loss of genes in angiosperms 
(most likely scenario) or gain in gymnosperms (by neofunctional‐
ization or subfunctionalization). Large expanded paralogous gene 
families such as leucine‐rich repeats, cytochrome P450, MYB, and 
others (Table 1) have been observed in gymnosperms (De La Torre, 
Lin, Van de Peer, & Ingvarsson, 2015; Neale et al., 2014; Pavy et 
al., 2013; Porth, Hamberger, White, & Ritland, 2011; Warren et al., 
2015). While comparing differentially expanded gene families using 

whole‐genome data, our study found that Picea abies' larger gene 
ontologies, compared to those of Arabidopsis thaliana, are the con‐
sequence of the species' ability to respond to diverse stimuli (biotic 
and abiotic stress), transport mechanisms, and a variety of specific 
metabolic and biosynthetic processes (Figure 1).

Sequence variation leading to neofunctionalization in large pa‐
ralogous families might have resulted in the evolution of lineage‐spe‐
cific expansions between angiosperms and gymnosperms or within 
gymnosperms lineages (e.g., Picea and Pinus; Gonzalez‐Ibeas et al., 
2016). Conifer‐specific gene families have been observed in the 
Terpene synthase (TPS) subfamily (Hall, Zerbe, et al., 2013b; Shalev 
et al., 2018; Warren et al., 2015), in specific subfamilies of P450s 
such as the CYP720Bs subfamily (Geisler, Jensen, Yuen, Madilao, & 
Bohlmann, 2016; Warren et al., 2015) or the CYP750 family (Gesell 
et al., 2015; Porth et al., 2011), and in transcription factors such as 
mTERF involved in abiotic stress and plant growth (Gonzalez‐Ibeas 
et al., 2016). F‐box proteins that are subunits of the E3 ubiquitin li‐
gase aggregations also known as the SCF quaternary complex (SKP1, 

Gene family Function Taxon Reference

MYB Defense response, vascular 
development

Pinus taeda, 
Picea glauca

Bedon et al. (2010); Patzlaff 
et al. (2003)

NB‐LRR Disease resistance Picea abies Fossdal et al. (2012)

sRNA's (SGS3, 
DCL1)

Epigenetics, transposable 
element silencing

P. taeda, Pinus 
lambertiana, 
P. abies

Gonzalez‐Ibeas et al. 
(2016); Yakovlev, 
Carneros, Lee, Olsen, and 
Fossdal (2016)

Phenylalanine 
ammonia 
lyase (PAL)

Lignin biosynthesis P. taeda Bagal, Leebens‐Mack, 
Lorenz, and Dean (2012)

Ty3/Gypsy Transposable element P. abies, Pinus 
palustrus, 
Abies concolor, 
Podocarpus 
totara and 
others

Nystedt et al. (2013); 
Friesen, Brandes, and 
Heslop‐Harrison (2001)

Cytochrome 
P450

Monoterpenoid production Thuja plicata Gesell et al. (2015);

P. glauca Warren et al. (2015)

miR390‐TAS3‐
ARF

Auxin signaling P. abies Xia, Xu, Arikit, and Meyers 
(2015)

CslE/J/G‐like Cellulose synthesis P. abies, 
Cryptomeria 
japonica, Pinus 
banksiana and 
others

Yin et al. (2014)

Dehydrins Drought, cold tolerance P. glauca, Abies 
balsamea, Larix 
laricina and 
others

Stival Sena et al. (2018); 
Rigault et al. (2011)

Glucosinolate 
biosyn‐
thesis and 
α‐bisabolene 
synthase

Terpene‐mediated defense Ginkgo biloba Guan et al. (2016)

FSL2 and EFR Bacterial infection defense G. biloba Guan et al. (2016)

TA B L E  1   Gene families showing 
differential expansions in gymnosperms
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Cullin1, F‐box protein, and Rbx1) also reveal conifer‐specific gene 
families (Gonzalez‐Ibeas et al., 2016).

3  | REPRODUC TIVE BIOLOGY

The reproductive biology in gymnosperms is characterized by a 
largely outcrossing mating system, predominant anemophily (wind 
pollination) and wind‐mediated seed dispersal. Other characteristics 
that differ between gymnosperms and angiosperms are the pres‐
ence of uncovered seeds (lack of fruit), a haploid nourishing tissue 
(megagametophyte) surrounding the diploid embryo in the develop‐
ing seed, and temporary polyembryony.

Genomic research on the reproductive biology of gymnosperms 
is not as advanced as in angiosperms (Cairney & Pullman, 2007; 
Rodrigues, De Vega, & Miguel, 2018). This is not surprising given 
the lack of genetic mutant lines required for discovering genes in‐
volved in plant development and reproduction (these resources 
are largely available for model plant species such as A. thaliana: the 
SALK lines, e.g.). Knowledge about the genetic underpinnings of re‐
productive and seed development is scarce in conifers, with Pinus 
being the most studied conifer genus to date, and Picea to a lesser 
extent. Recent studies in Picea suggest individual or multiple gene 
family members involved in reproductive development have gene 
expression‐based relationships with tree growth and environmental 
stress (abiotic, biotic defenses); however, the exact molecular nature 

F I G U R E  1   Functional enrichment of genes in gene families showing differential expansions between gymnosperms (Picea abies) 
and angiosperms (A. thaliana). (a) Barplot showing significant (p < 0.0001) enriched gene ontologies for gymnosperms (gray bars) and 
angiosperms (yellow bars); (b) Gene interaction network showing significant gene ontologies for gymnosperms species; (c) Gene interaction 
network showing significant gene ontologies for angiosperms species. p‐Values vary from 0.05 (yellow) to <5.00e‐7 (dark orange) according 
to the color scale in left bottom (A. De La Torre & P.K. Ingvarsson, unpublished). P. abies genome version 1.0 (Nystedt et al., 2013; http://
conge nie.org) was used for this analysis

(a) (b)

(c)

http://congenie.org
http://congenie.org
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of their involvement is unknown (Porth et al., 2012; Porth, White, 
Jaquish, & Ritland, 2018).

Some of the most thorough reproductive development studies 
on pines have been on trees growing under somewhat less natural 
conditions and therefore prone to artificial stress (such as botanical 
garden settings). This has resulted in a higher frequency of anomalies 
such as bisexual reproductive structures (hermaphroditism) than it is 
expected under natural conditions (Flores‐Renteria et al., 2011; Niu 
et al., 2016). Nevertheless, teratology and hermaphroditism might 
have been common in early and now extinct gymnosperms (Rudall, 
Hilton, Vergara‐Silva, & Bateman, 2011). While species members of 
the Pinaceae family are mostly monoecious (gymnosperms overall 
are mostly dioecious), their male and female reproductive structures 
are unisexual, and megasporophylls and microsporophylls occupy 
distinct locations on a tree's shoot. The female structures develop at 
the top while male structures form at the base of a shoot in normal 
tree development (Niu et al., 2016), making self‐pollination difficult, 
and thus helping to maintain outcrossing rates and genetic diversity 
(Porth & El‐Kassaby, 2014). Furthermore, incompatibility mecha‐
nisms (pollen discrimination) in conifers occur within the ovule and 
are mostly postzygotic (Owens, Takaso, & Runions, 1998).

In order to facilitate pollen release and dispersal through wind 
travel, gymnosperms' male reproductive structures (male cones; pol‐
len grains) have evolved an impressive diversity of male cone posi‐
tioning, and grain shapes (Lu et al., 2011). This is seen as a necessity to 
overcome the innate constraints from gymnosperm's heavy (but not 
always exclusive) reliance on anemophily. In contrast, angiosperms 
evolved flowers with attractive colors and fragrances as signals for 
pollination by insects and other animals, pollen and nectar rewards 
as food source for the pollinator, as well as fruits for their seeds' 
protection but also dispersal by animals. Ovular secretion is also cru‐
cial to reproduction in gymnosperms as it fosters pollen germination 
and pollen tube growth, eventually leading to fertilization of an egg 
cell within gymnosperms' archegonia. Yet, virtually nothing is known 
about the molecular genetic basis of ovular secretion, an important 
characteristic in gymnosperms' megagametophytes (Zhang & Zheng, 
2016). A recent study on thirteen species representing all five main 
lineages of extant gymnosperms (Nepi et al., 2017) suggested that 
oval secretion chemical profiles showing higher levels of carbohy‐
drates and certain amino acids can identify recent or hint at ances‐
tral gymnosperm populations that are or were insect‐pollinated, 
respectively. Pollination drops functioning as gymnosperm nectar 
have not been chemically analyzed (Von Aderkas, Prior, & Little, 
2018), precluding a direct angiosperm–gymnosperm comparison at 
the moment. However, both gymnosperm ovular secretions and an‐
giosperm floral nectaries have shown selection over time driven by 
insects and their nutritive needs related to a higher energy metabo‐
lism required for flight (Nepi et al., 2017), suggesting a similar adap‐
tive mechanism. In any case, important insect pollinator–plant host 
shifts took place during angiosperm radiation in mid‐Cretaceous, 
leaving few survivors of previously common gymnosperm–insect 
pollinators either because of extinctions or insects' transition to an‐
giosperms' plant hosts (Peris et al., 2017). Anemophily could have 

also been an ancient event in angiosperms due to its importance in 
pioneer habitats (Gottsberger, 1988).

Archegonia develop from initial cells within the female gameto‐
phyte of the ovule through subsequent rounds of divisions giving 
rise to (outward) neck cells, and the central cell. This later develops 
into the large egg cell and the small ventral canal cell, which degen‐
erates as the egg cell matures. Despite its importance, the molecular 
regulation of archegonia development in the ovule of cone‐bearing 
gymnosperms has not been extensively studied, and the role of 
archegonia in egg fertilization is largely unknown (Zhang & Zheng, 
2016). The major challenge for such studies is the long duration of 
the pollination process (up to 13 months for pines) compared to the 
short period of time required for zygote formation. Archegonia were 
not found to produce pollen‐specific signals, but neck cells might 
produce these (Zhang & Zheng, 2016). Evidence from lower arche‐
goniatae such as ferns and bryophytes suggests auxin‐responsive 
genes might be involved in reproductive organ morphogenesis, dif‐
ferentiation, and cell turnover related to archegonial development 
(Zhang & Zheng, 2016). Some evidence also hints at a role for the 
arabinogalactan protein (AGP) gene family. Glycosylated AGPs could 
be involved in egg cell–sperm recognition, and their expression 
within the nucellus cells of the mature egg cell may be involved in 
promoting the targeted pollen tube growth (AGPs' glycosylation‐
level dependent; Zhang & Zheng, 2016). WUSCHEL‐related homeobox 
(WOX) transcription factor genes are implicated in conifer embryo 
formation and differentiation (patterning) which was tightly linked 
to polar auxin transport (ibidem).

As stated earlier, most genomic resources aimed at in‐depth 
elucidation of the molecular basis of conifers' reproductive develop‐
mental stages were developed for Pinus (Pinus tabuliformis: Du et al., 
2017; Niu, Yuan, Zhang, Chen, & Li, 2014; Niu et al., 2015; Niu et al., 
2016; Pinus sylvestris: Avia, Kärkkäinen, Lagercrantz, & Savolainen, 
2014); Picea (Carlsbecker et al., 2013; Vázquez‐Lobo et al., 2007); 
and recently for Cryptomeria japonica (Katahata, Futamura, Igasaki, & 
Shinohara, 2014; Tsubomura, Kurita, & Watanabe, 2016). The flower 
development gene families (MADS‐BOX, LFY/NDLY, phosphatidyleth‐
anolamine‐binding protein (PEBP) FLOWERING LOCUS T/TERMINAL 
FLOWER1‐like genes) are ancient, estimated to have been pres‐
ent before 300 Mya, predating the divergence of seed plants (Liu, 
Xiong, Li, & Fei, 2018; Moyroud et al., 2017). The first evidence of 
the importance of MADS‐box genes for conifer reproductive organs 
dates back to 2002 (reviewed in Zhang & Zheng, 2016). The bona 
fide FT locus is absent from gymnosperms; therefore, it represents 
an innovation in the angiosperm lineage (Klintenäs, Pin, Benlloch, 
Ingvarsson, & Nilsson, 2012). However, cryptic FT gene homologs 
in gymnosperms were identified through phylogenetic reconstruc‐
tion in three monophyletic clades (FT‐like, TFL1‐like and MOTHER 
OF FT AND TFL1‐like PEBP genes). None of these cryptic FT genes 
induce flowering (Liu et al., 2018). In gymnosperms, the TFL1‐like 
gene shows predominant expression in cone development of both 
sexes. For spruce, FTL1 is expressed in male cone development and 
FTL2 in female cone development. In addition, gymnosperm‐derived 
FTL2 genes are implicated in growth rhythm regulation (Liu et al., 
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2018). Recent evidence shows an important link between FT‐like and 
MADS‐box gene families, and growth rhythm control, bud set and 
growth cessation (FT‐like: e.g., P. sylvestris: Avia et al., 2014; P. abies: 
Karlgren, Gyllenstrand, Clapham, & Lagercrantz, 2013; MADS‐box: 
Petterle, Karlberg, & Bhalerao, 2013). This suggests early molecular 
actors in reproductive development and seasonal growth cessation 
are similar.

Investigating aberrant reproductive structures for the analyses 
of gender expression in cones can provide important insights into 
the complete or partial transformation of male cones into female 
cones (homeosis). Of particular consideration is the molecular study 
on teratological reproductive structures. Niu et al. (2016) demon‐
strated that both male and female structures of bisexual cones 
were functional in P. tabuliformis (high pollen grain germination 
rate, seed producing conelets); however, the transcriptomes of the 
male structures from the bisexual cones were found to be distinct. 
The authors identified key regulators among MADS‐box genes (i.e., 
PtDAL1, PtDAL2, PtDAL3, PtDAL4, PtDAL10, PtDAL14, PtMADS1 and 
PtMADS3), as well as the two LFY/NDLY genes (the latter usually only 
expressed in female cones) that may have resulted in the presence 
of female structures in a male cone. Therefore, the observed sex 
transformation was the result of stark shifts in their gene expression 
patterns. Because male‐to‐female transformation in these bisexual 
cones was incomplete, the male‐to‐female homeosis did not involve 
a reduction in PtDAL11 and PtDAL13 expression, providing support 
that these two genes are essential to maintain the ancestral func‐
tion in sex determination (male cone) and specify the pollen‐bearing 
organs generated by this meristem (Niu et al., 2016). Another seed 
cone developmental mutant termed P. abies acrocona, characterized 
by early cone setting and homeotic transformations of vegetative 
shoots into female cones, revealed that gymnosperm LFY/NDLY 
genes are involved in reproductive initiation. This observation was 
based on the exceptionally high PaNDLY expression in the axis of the 
acrocona shoot at the transition from vegetative to female identity 
(Carlsbecker et al., 2013).

Finally, a single fertilization event within the ovule produces a 
diploid embryo that develops within a haploid female gametophyte. 
At early seed development, polyembryony is also an important re‐
productive feature in conifers, whereby multiple archegonia can 
be fertilized by different pollen grains. In all cases though, only the 
dominant embryo persists and matures while all others are aborted. 
The molecular basis of embryo persistence is unknown (Cairney & 
Pullman, 2007). The embryo suspensor stage is a critical stage in 
early embryonic development as it helps the embryo to grow within 
the female gametophyte, and to benefit from nutrient absorption 
while it enlarges. Gymnosperms contain genes of very similar se‐
quence to angiosperm embryogenesis‐regulating genes (Cairney & 
Pullman, 2007). The comparative synthesis by Cairney and Pullman 
revealed that in gymnosperm embryogenesis, subtle molecular in‐
teractions, spatially and temporally controlled gene expression, and 
few unique regulatory proteins can achieve differences in embryonic 
structure and development. One important example is the above‐
mentioned WOX transcription factor genes.

Recently, transcriptomic studies on embryogenesis in pines 
(P. sylvestris; Pinus pinaster; P. lambertiana; Araucaria angustifolia) and 
spruces (P. abies; Picea balfouriana) have been published (reviewed 
in Rodrigues et al., 2018). Nevertheless, in order to better under‐
stand gymnosperms' unique regulatory networks, any functional 
analysis of conifer developmental genes must be conducted by ex‐
pressing these genes in a conifer. Therefore, the development of a 
robust, easy‐to‐use and broadly applicable transformation system 
for conifers constitutes a prerequisite to a better understanding of 
several aspects of this phylum's cell and molecular biology (Cairney 
& Pullman, 2007). Up until now, this has not been achieved. More 
recent studies revealed a crucial role for small noncoding RNAs, 
and some of their target genes were revealed for the regulation of 
seed development and in embryo development (Rodrigues & Miguel, 
2017). Niu et al. (2015) identified such sRNAs specifically for male 
and female cones of P. tabuliformis, and with higher activities in the 
female than in the male reproductive structures. The miR156‐SPLs, 
miR159‐MYBs, miR172‐ AP2Ls, miR319‐TCP, and miR396‐GRFs in‐
teracting pairs found for this pine species coincided with those in 
angiosperms' reproductive development, suggesting ancient evo‐
lutionary histories of these sRNA regulatory pathways (Niu et al., 
2015).

4  | WATER‐ CONDUC TING X YLEM TISSUES

4.1 | Cellulose/hemicelluloses synthases and their 
regulation

Cellulose, composed by a (1 → 4)‐β‐d‐glucan chain, is one of the 
most important components of the plant cell wall and is also a de‐
cisive factor controlling plant cell mechanical properties (Kumar, 
Atanassov, & Turner, 2017; Sarkar, Bosneaga, & Auer, 2009). The 
evolution of cellulose enhanced plant cell adaptation ability to re‐
spond to changing environments (Sarkar et al., 2009). Cellulose is bi‐
osynthesized by cellulose synthases (CesA) at the plasma membrane 
(Meents, Watanabe, & Samuels, 2018). The CesA family belongs to 
the CesA superfamily including CesA‐like (Csl) gene families which 
harbor nine Csl subfamilies (CslA/B/C/D/E/F/G/H/J) (Yin, Johns, 
Cao, & Rupani, 2014). Csl subfamily proteins catalyze the biosyn‐
thesis of hemicelluloses, another polysaccharide component in the 
plant cell wall with a backbone similar to cellulose (Cosgrove, 2005; 
Suzuki, Li, Sun, & Chiang, 2006). The CesA gene number in gymno‐
sperms is similar to the one in angiosperms. For example, eight CesA 
genes were found in Pinus radiata (Krauskopf, Harris, & Putterill, 
2005), 17 CesAs in Cunninghamia lanceolata (Huang et al., 2012), six 
in P. taeda (Neale et al., 2014), and nine CesAs in G. montanum (Wan 
et al., 2018), in comparison with 10 and 18 CesA genes in Arabidopsis 
and Populus trichocarpa genomes, respectively (Suzuki et al., 2006). 
Recently, in the G. montanum genome reference paper, it was sug‐
gested that large expansions in the CslB/H subfamilies may explain 
the distinct growth characteristics in Gnetum when compared to 
other gymnosperms (Wan et al., 2018). It is interesting that CslB/
E/H/G that evolved from ancestral genes in ferns were lost in many 
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gymnosperms, such as P. abies, P. taeda, G. biloba, and other species 
(Yin et al., 2014).

Cellulose and hemicellulose biosyntheses are regulated at the 
transcriptional level (Li, Bashline, Lei, & Gu, 2014). In angiosperms, 
for example, at least 13 out of 126 MYB transcription factors were 
reported to be involved in cellulose formation by regulating CesA/
Csl gene expression directly or indirectly in Arabidopsis (Zhang, 
Nieminen, Serra, & Helariutta, 2014). However, in gymnosperms, 
only 13 Picea glauca and five P. taeda MYB genes were identified, 
suggesting a much lower number of MYB genes than in Arabidopsis 
and Populus (Bedon, Grima‐Pettenati, & Mackay, 2007). Some gym‐
nosperm MYB genes, which have conserved functions (e.g., PtMYB1 
and PtMYB4 in P. taeda), are expressed in the secondary xylem and 
involved in lignin biosynthesis as their homolog in Arabidopsis (Bedon 
et al., 2007; Patzlaff et al., 2003). Whether cellulose biosynthesis is 
regulated by MYB transcription factors is not clear in gymnosperms. 
However, the CesA genes' regulation network in gymnosperms might 
be less complex than in angiosperms. Cellulose biosynthesis is also 
affected by the content of lignin, another component of the plant 
cell wall (Endler & Persson, 2011). In Populus, artificial lignin bio‐
synthesis inhibition is coupled with cellulose production and higher 
growth, suggesting cellulose synthase activity is restricted by sub‐
strate content (Hu et al., 1999). In P. taeda, spontaneous mutations 
in lignin biosynthesis (Songstad, Petolino, Voytas, & Reichert, 2017) 
also caused fast stem growth, suggesting cellulose synthase activity 
may be naturally regulated by lignin content in gymnosperms (Gill, 
Brown, & Neale, 2003).

4.2 | Vascular NAC domain

The difference between water‐conducting xylem tissues (tracheids 
vs. vessels) is one of the main differences between gymnosperms 
and angiosperms (Wan et al., 2018). Tracheids, whose dual func‐
tion is water transport and mechanical support, constitute the 
xylem tissue in gymnosperms. In angiosperms, xylem tissue is more 
complex and consists of vessels, fibers, and rays (Patten, Vassão, 
Wolcott, Davin, & Lewis, 2010, 2010). In angiosperms, vessel cells 
are differentiated from cambium cells that undergo secondary cell 
wall biosynthesis and programmed cell death (Zhang et al., 2014). 
VASCULAR‐RELATED NAC‐DOMAIN6 (VND6) and VND7 are the 
key transcription switches on vessel element formation in Arabidopsis 
via activation of the transcription cascade involved in secondary cell 
wall biosynthesis and programmed cell death (Kubo et al., 2005; 
Ohashi‐Ito & Fukuda, 2014; Zhong, Lee, & Ye, 2010). There are seven 
VND genes encoded in the Arabidopsis genome, and VND1‐5 was also 
recently reported to be involved in vessel element formation (Tan et 
al., 2018; Zhou, Zhong, & Ye, 2014). All of the seven VND genes in 
Arabidopsis were specifically expressed in vessels and had conserved 
downstream targets controlling vessel formation (Zhong, Lee, Zhou, 
McCarthy, & Ye, 2008; Zhou et al., 2014). It is interesting that the 
P. abies and G. montanum genomes only encode two and one VND 
ortholog genes, respectively, and both of them are homologous to 
VND4/5/6 (Nystedt et al., 2013; Wan et al., 2018). There are two 

possible explanations for why vessels are absent in gymnosperms. In 
the first one, VND1–3 and VND7 may determine function in vessel 
formation (Wan et al., 2018), and at least, the dominant repression of 
VND7 showed a more severe phenotype than the dominant repres‐
sion of VND6 (Kubo et al., 2005). In the second one, vessel formation 
requires VND gene expansion and their co‐expression (Nystedt et 
al., 2013). Although the seven VNDs in Arabidopsis had conserved 
expression patterns and downstream genes, the expression level in 
vessels of different organs and activation strength were different 
(Zhou et al., 2014), suggesting the seven VNDs might coordinately 
work to regulate vessel formation.

5  | SECONDARY METABOLISM AND 
STRESS‐REL ATED GENE FAMILIES

5.1 | Abiotic stress—Dehydrins

Dehydrins are a group of proteins belonging to the late embryogen‐
esis abundant (LEA) gene family that are highly hydrophilic and are 
commonly associated with acclimation to low temperature and other 
environmental stresses involving cellular dehydration in plants (Rorat, 
2006). Dehydrins have been shown to be related to drought toler‐
ance (Hu, Wang, Du, & Huang, 2010; Lopez, Banowetz, Peterson, & 
Kronstad, 2003; Suprunova et al., 2004) and low temperature accli‐
mation (Danyluk et al., 1998; Gao & Lan, 2016; Strimbeck, Schaberg, 
Fossdal, Schröder, & Kjellsen, 2015) in several species. One study on 
Picea obovata showed a dehydrin accumulated to ~16× its initial level 
during acclimation from moderate to extreme low temperature tol‐
erance (Kjellsen, Shiryaeva, Schröder, & Strimbeck, 2010). Multiple 
studies demonstrate a similar relationship in other taxonomic 
groups, suggesting a strong association between low temperature 
acclimation and accumulation of dehydrins across taxonomic groups 
(Arora & Wisniewski, 1994; Kontunen‐Soppela & Laine, 2001; Liu et 
al., 2004; Renaut, Hoffmann, & Hausman, 2005; Rinne, Welling, & 
Kaikuranta, 1998). Furthermore, significant differentiation in allelic 
frequency has been observed at three dehydrin‐associated loci be‐
tween populations of P. sylvestris L. showing divergence for cold tol‐
erance (Wachowiak, Balk, & Savolainen, 2009). However, their data 
suggest that nucleotide polymorphism in most P. sylvestris dehydrins 
cannot be directly related to adaptive variation in cold tolerance 
(Wachowiak et al., 2009).

The specific mode of action of dehydrins is unclear, but some 
studies suggest that dehydrins stabilize membranes and macromole‐
cules in conditions of low water availability (Hanin et al., 2011). The 
size of the dehydrin gene family is highly variable ranging from two 
members in Amborella to more than 12 in Malus domesticus in an‐
giosperms. Gymnosperms are less studied, but within Pinaceae, the 
dehydrin family appears to be much larger relative to angiosperms, 
with a total of 53 having been identified in P. glauca (Stival Sena, 
Giguère, Rigault, Bousquet, & Mackay, 2018). Subfunctionalization 
is thought to be the primary driver for the increased diversity of 
dehydrins in conifers over angiosperms (Stival Sena et al., 2018). In 
contrast, extant species of Gnetum have reduced numbers of LEA 
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genes (and dehydrins) when compared to other gymnosperms (Wan 
et al., 2018). Gnetum also differs from other gymnosperms in that it 
only exists in warm, mesic habitats (Wan et al., 2018), lending more 
evidence to the role dehydrins play in adaptation to water stress.

5.2 | Defense systems

Conifer defenses against pests and pathogens involve many differ‐
ent gene families, and many of them have been well‐studied in terms 
of their occurrence within the genome (Warren et al., 2015; Zhou 
et al., 2019). Some of these include biosynthetic enzymes like the 
ones acting in oxygenation, phenoxy radical coupling or regio‐ or 
stereo‐selective reactions resulting in an immense diversity of de‐
fense compounds (for induced defenses see: Keeling & Bohlmann, 
2006; Kovalchuk et al., 2015; Oliva et al., 2015; Ralph, Yueh, et al., 
2006; Ralph, Park, Bohlmann, & Mansfield, 2006; Ralph, Jancsik, & 
Bohlmann, 2007; Visser, Wegrzyn, Myburg, & Naidoo, 2018; for con‐
stitutive defenses see: Keeling & Bohlmann, 2006; Ralph et al., 2007; 
Porth et al., 2011; Porth et al., 2012; Porth et al., 2018). Regulatory 
genes include the Sg4C R2R3‐MYB transcription factor that exhibits 
a significant gene family expansion in conifers (Bedon et al., 2010). 
Moreover, crucial biosynthetic genes for pest resistance (e.g., 3CAR; 
CYP720B4) feature high content of repetitive sequence regions and 
transposable elements, suggesting that diversification of the conifer 
TPS and P450 gene families may have been achieved by DNA trans‐
poson‐mediated translocation mechanisms (Hamberger et al., 2009). 
Another important feature of conifer TPSs is their high potential for 
functional plasticity such that few changes in amino acids can create 
new potent defense molecules (Keeling, Weisshaar, Lin, & Bohlmann, 
2008).

Because plants have a long evolutionary history of interaction 
with herbivores, hosts have acquired coevolved defenses (Futuyma 
& Agrawal, 2009). A special case is the gymnosperm G. biloba, which 
is largely herbivore‐free. Ginkgo's foliage produces ginkgolides, a 
class of terpene trilactones known as a potent antifeeding defense 
(Mohanta et al., 2012; Pan, Ren, Chen, Feng, & Luo, 2016). In gen‐
eral, the most effective host tree defenses exist against local pests 
and pathogens, while host defenses weaken under relaxed or ab‐
sent pathogen pressure. This is a recurrent problem with introduced 
foreign pest and pathogens, but also with native pests and patho‐
gens expanding their natural ranges. As climate warms, these native 
species may expand their ranges northwards or to higher altitudes, 
where they may encounter “naïve” hosts. Moreover, native species 
may change their metabolism to support a more aggressive behavior, 
leading to unprecedented population growth and range expansions, 
and threatening local and new host trees in a pest's newly invaded 
habitat. A widely publicized example of current range expansion is 
the mountain pine beetle (Dendroctonus ponderosae Hopkins). This 
pest epidemic in western North America is now threatening the bo‐
real forest (Cullingham et al., 2011).

Trees have developed different lines of defense that are more 
or less effective, and also alternative strategies such as tolerance. 
Anatomical and the associated chemical defenses in conifer bark 

have been described (Franceschi, Krokene, Christiansen, & Krekling, 
2005). Strength and rapidity of traumatic resinosis (direct defense) 
has often been associated with resistance. The physical structures 
studied in most detail are the parenchyma cells (locations of synthe‐
sis and storage of polyphenols), and the resin ducts (synthesis and 
storage of terpenes) that are located in the secondary phloem and 
the cambium. The traumatic resin canals are formed in the second‐
ary xylem as a way of active defense. Upon attack, reallocation of 
resources from primary processes to active defense, or the mobili‐
zation of the resources for host tolerance, takes place. Indirect tree 
defense responses that involve the attraction of predators or herbi‐
vore parasitoids have also been documented. Moreover, trade‐offs 
involving defense strategies involve display of chemical defenses, 
or rely on tolerance (Futuyma & Agrawal, 2009). In a recent study 
on the genomics of host defenses against the spruce shoot weevil 
(Pissodes strobi Peck), Porth et al. (2018) concluded that well‐estab‐
lished terpenoid‐related spruce defenses and tolerance to this her‐
bivore might be mutually exclusive.

It has been postulated that drought‐stressed conifers whose 
metabolism is diverted from growth to secondary compounds can 
rely more on constitutive, preformed defenses (Turtola, Manninen, 
Rikala, & Kainulainen, 2003). Also, it is well known that fast grow‐
ing individuals are biased toward induced defenses (Steppuhn & 
Baldwin, 2008). Therefore, trade‐offs between already established 
and induced defenses can be expected. These dynamics under dif‐
ferent environmental conditions need to be better studied in the 
future, while current genomic studies usually represent a snap‐shot 
situation aiming to identify few highly upregulated candidate genes 
from well‐annotated conifer defense metabolic pathways such as the 
phenylpropanoid and methylerythritol phosphate/mevalonate (Hall, 
Yuen, et al., 2013a; Keeling et al., 2011; Porth et al., 2011; Shalev 
et al., 2018; Warren et al., 2015; Zhou et al., 2019). In addition, the 
genetic networks between defenses in conifers and their reproduc‐
tive development seem to be intricate. With few exceptions, this 
important relationship has been largely ignored in conifer defense 
studies, mainly because the conifer reproductive genes (many are 
also gene family members) were under‐studied; thus, their exact 
functioning remains elusive (see section on Reproductive Biology). 
In any case, it is known that certain signaling pathways (jasmonate, 
ethylene, auxin, gibberellin) required for developmental processes 
(such as those important in reproduction) can be co‐opted for bi‐
otic stress responses (e.g., Du et al., 2017; Oliva et al., 2015; Thaler, 
Farag, Paré, & Dicke, 2002; Zi, Mafu, & Peters, 2014). Alternatively, 
these signaling pathways may evolve into new specialized pathways 
such as the conifer defensive resin production co‐opted from gib‐
berellin production (Zi et al., 2014).

Given the current knowledge about defensive gene family ex‐
pansion in gymnosperms (Porth et al., 2011, 2012; Warren et al., 
2015; Zhou et al., 2019), the challenge remains to identify the most 
potent defensive metabolites against herbivory or disease produced 
in these pathways. Here, we show examples of natural host de‐
fense compounds with proven dramatic negative impacts on pest 
development in Picea. Delvas, Bauce, Labbé, Ollevier, and Bélanger 
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(2011) identified acetophenones that act against the budworm 
Choristoneura fumiferana. Robert et al., 2010 showed 3‐carene and 
dehydroabietic acid acting against the weevil P. strobi. Moreover, 
(+) catechin was found effective against fungal pathogenicity in the 
form of Heterobasidion parviporum (Nemesio Gorriz et al., 2016). The 
work by Liu and Ekramoddoullah (2007, 2011) showed CC‐NBS‐LRR 
and TIR‐NBS‐LRR expression conveying resistance against white 
pine blister rust (caused by Cronartium ribicola) in western white pine.

For resistance breeding purposes, knowledge about defense me‐
tabolites' heritability (i.e., the extent of their genetic control) in the 
breeding population is required. The work by Méndez‐Espinoza et 
al. (2018) on acetophenones' genetic parameters remains the only 
work on this aspect to date. In the case of genetic marker‐assisted 
resistance breeding, it is important to ascertain the underlying ge‐
netic regulation for compounds of interest. This information is only 
available for a few metabolites. For example, Roach, Hall, Zerbe, and 
Bohlmann (2014) identified the related 3‐carene synthase, 2‐sa‐
binene TPSs. Hamberger, Ohnishi, Hamberger, Seguin, and Bohlmann 
(2011) found the specific cytochrome P450 of the CYP720B family 
implicated in dehydroabietic acid synthesis. Mageroy et al. (2015) 
found β‐glucosidase, the biosynthetic gene for acetophenones. 
Finally, Nemesio Gorriz et al. (2016) isolated a leucoanthocyanidin 
reductase for (+) catechin generation. Other studies have focused 
on identifying the biosynthesis locations for terpenoids (Abbott, 
Hall, Hamberger, & Bohlmann, 2010; Zulak & Bohlmann, 2010) and 
phenolic (Li et al., 2012) compounds to better target effective tree 
defenses in the future.

5.3 | A case study of functional pleiotropy with 
defense: the PDR ABC transporter family

Pleiotropic drug resistance (PDR) genes belong to a fungi and plant‐
specific gene family within the ATP Binding Cassette (ABC) gene 

superfamily (Crouzet, Trombik, Fraysse, & Boutry, 2006; Higgins, 
1992; Lamping et al., 2010). The PDR gene family was named fol‐
lowing the observation that members of its family confer resistance 
to various drugs; however, PDR genes are also involved in the trans‐
port of substrates not related to cell detoxification (Ito & Gray, 2006; 
Nuruzzaman, Zhang, Cao, & Luo, 2014; Pierman et al., 2017; Sasse et 
al., 2016). Three recent and completely independent studies on two 
spruces (P. glauca; P. glauca × engelmannii) and P. taeda are suggesting 
specific PDR genes as important key players in defense mechanisms 
against different herbivores (Mageroy et al., 2015; Porth et al., 2018) 
and pathogens (De la Torre et al., 2018). For example, research on 
spruce budworm (C. fumiferana) resistance identified gene WS0269_
K02 with high statistical support for its expression upregulation in 
budworm resistant versus nonresistant white spruces (Mageroy et 
al., 2015; information drawn from their Table S1). The same WS0269_
K02 gene was found in spruce shoot weevil (P. strobi) resistance 
(Porth et al., 2018, Figure 2). In pine, a closely related gene family 
member was identified for pitch canker disease (Fusarium circinatum) 
resistance (De la Torre et al., 2018). Because these genes' expres‐
sions were also correlated with drought resistance (De la Torre et al., 
2018) and growth rate (Porth et al., 2018), genetic pleiotropic func‐
tioning of conifer PDR genes could be implied. Drought resistance 
and growth might share a genetic relationship to a certain extent, 
as trees impaired in drought tolerance and succumbing to drought 
stress are expected to show decreased growth (Salmon et al., 2019). 
It has further been postulated that drought‐stressed conifers rely 
more on constitutive than on induced defenses (Turtola et al., 2003).

Our study found that the size of the PDR family in gymnosperms 
is smaller compared to angiosperms. This may indicate that gymno‐
sperm species require less PDR transporters than angiosperms to 
cope with their environment. The identified conifer PDR gene se‐
quences were further mapped to the PDR genes' phylogenetic tree 
for improved annotations (Figure 3). In the case of the white spruce 

F I G U R E  2   The white spruce PDR gene family member WS0269_K02 identified as a core gene. Spruce PDR gene (ABC transporter, blue 
dot) identified as “core gene” (Porth et al., 2018) in the gene regulatory network with growth (yellow dots) or defense phenotypes (against 
the stem‐boring spruce shoot weevil Pissodes strobi; green dots)



     |  219DE LA TORRE ET AL.

gene (identified by Mageroy et al., 2015 and Porth et al., 2018), 
WS0269_K02 mapped to cluster IV, a gymnosperm‐specific clade, 
and it was found to be putatively identical to the P. abies gene Pab_
MA_17319g0010, Table S1. In the case of the P. taeda gene (c3387/
f1p0/2274 identified in De la Torre et al., 2018), its transcript mapped 
to cluster II on the phylogenetic tree (sister to a group of the two 
conifer sequences Pab_MA_10427561g0010 and Pta_04241). Two 
hypotheses can be proposed to explain the diversification of the 
PDR gene family. First, PDR genes might have diversified by acquiring 
new physiological roles (neofunctionalization). Different plant spe‐
cies produce different metabolites, and diversification is expected 
in enzymes involved in the transport of these metabolites (Yazaki, 
2006). Secondly, the differential expression of PDR genes in differ‐
ent tissues or during different developmental stages might have pro‐
moted their diversification (subfunctionalization). To fully grasp the 
evolution of the PDR gene family, more PDR gene sequences from 
additional species across the plant kingdom are needed to better 
resolve PDR gene evolution and relationships (this was beyond the 
scope of the present study).

6  | NONCODING AND SMALL RNA S

Noncoding RNAs are a class of RNAs not involved in protein coding, 
but with very important functions as regulators in plant life cycle, 
response to the environment, and phenotypic plasticity (Borges & 

Martienssen, 2015; Shin & Shin, 2016). Noncoding RNAs can be 
divided into two categories, long noncoding RNAs (>200 nucleo‐
tides, nt) and small noncoding RNAs (sRNA) (20–24 nt) (Arikit, Zhai, 
& Meyers, 2013). Differences in sRNA size distribution can be ob‐
served between gymnosperms and angiosperms. The 21‐nt sRNAs 
are dominant in gymnosperms such as P. abies (Nystedt et al., 2013), 
Pinus contorta (Morin et al., 2008), Larix leptolepis (Zhang et al., 2013), 
and P. tabuliformis (Niu et al., 2015), whereas 24‐nt sRNAs represent 
the majority in angiosperms (Li et al., 2017; Morin et al., 2008). For 
a long time, 24‐nt sRNAs were thought to be absent from gymno‐
sperms, and now, we know they occur at low frequencies and are 
mainly restricted to reproductive tissues (Niu et al., 2015; Nystedt 
et al., 2013; Zhang et al., 2013). Therefore, the presence of 24‐nt 
sRNAs may be important in the regulation of reproduction in gym‐
nosperms (Niu et al., 2015). Because 21‐nt sRNAs are involved in tar‐
get gene silencing or protein translation inhibition and 24‐nt sRNAs 
are functional on chromatin remodeling (Borges & Martienssen, 
2015), it seems that sRNAs may play different regulatory roles in 
gymnosperm and angiosperm development, respectively.

In plants, the biogenesis of sRNA is dependent on dsRNA precur‐
sor cleavage mediated by DICER ribonucleases (DCL; Van Ex, Jacob, 
& Martienssen, 2011). DCL1 and DCL4 generate 21‐nt sRNAs, while 
DCL3 generates 24‐nt sRNAs. It is interesting that short variants of 
DCL1 were characterized in P. lambertiana (Gonzalez‐Ibeas et al., 
2016) and in the bryophyte Physcomitrella patens (Coruh, Shahid, 
& Axtell, 2014). This finding suggests that functional truncated 

F I G U R E  3   Phylogenetic analysis of 
vascular plant PDR protein sequences 
obtained by maximum likelihood. Protein 
sequences were arbitrarily grouped 
into nine clusters (I–IX) based on close 
sequence similarity. Red branches are 
leading to PDR sequences belonging to 
gymnosperm sequences. Sequence names 
have been pruned from the tree for the 
sake of clarity. Sequence names belonging 
to each cluster can be found in Table S1. 
Node support from 1,000 replicates is 
indicated for the basal nodes defining the 
nine putative PDR sequence clusters. For 
further details, see Appendix S2
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DCL1 might be the reason why 21‐nt sRNAs are dominant in gym‐
nosperms, although the relationship between conifer‐specific 21‐nt 
sRNA and short DCL1 is unclear (Gonzalez‐Ibeas et al., 2016). A co‐
nifer‐specific set of DCL1 proteins was found in P. glauca, P. abies, 
and P. lambertiana (Dolgosheina et al., 2008; Gonzalez‐Ibeas et al., 
2016). DCL3, which is involved in 24‐nt sRNAs biogenesis, was char‐
acterized through P. lambertiana transcripts, primarily expressed in 
reproductive tissues (Gonzalez‐Ibeas et al., 2016). Truncated DCL3 
was also discovered in P. glauca, and its expression level upregulated 
in seed development indicated that the DCL3 variant and its expres‐
sion level are responsible for 24‐nt sRNA generation in P. glauca (Liu 
& El‐Kassaby, 2017). The discovery of variant DCL partly explained 
the different sRNA size distribution between gymnosperms and an‐
giosperm, although further confirmation is needed. The 24‐nt sRNAs 
direct DNA methylation and affect histone modification which are 
related to chromatin condensation and silencing of transposable el‐
ements (Leitch & Leitch, 2012). The different silencing mechanisms 
were correlated with differences in genome sizes of angiosperms 
and gymnosperms (Dolgosheina et al., 2008; Leitch & Leitch, 2012).

7  | APPLIC ATIONS OF THE STUDY OF 
GYMNOSPERM GENE FAMILIES

Plant defense molecules are highly complex traits with nutritional 
value, flavor, and use in traditional medicine (Hamberger & Bak, 
2013). Genes encoding natural product pathways often group to‐
gether in biosynthetic gene clusters (Nützmann, Huang, & Osbourn, 
2016). Some of the genes reviewed in this study are newly studied 
members of gene families that hold great potential for biotechnolog‐
ical applications related to commercial and pharmacological value. 
The plant‐based dirigents (Pickel & Schaller, 2013), cytochrome 
P450s (Hamberger & Bak, 2013; Renault, Bassard, Hamberger, 
& Werck‐Reichhart, 2014), and terpenoids (Bohlmann & Keeling, 
2008; Singh & Sharma, 2015) have been recognized to hold potential 
for biotechnology. Because of the large metabolic diversity arising 
from the multitude of biochemical reactions for these gene families' 
members (P450s: Hamberger & Bak, 2013; TPSs: Boutanaev et al., 
2015; Chen et al., 2011; Chen et al., 2018; conifer TPSs: Hall, Zerbe, 
et al., 2013b; Zerbe et al., 2012; dirigents: Pickel & Schaller, 2013), 
new plant natural product pathways are likely to be discovered and 
functionally described. Perhaps the most famous compound of 
terpenoid origin for human uses is taxol, a potent anticancer drug 
(Wani, Taylor, Wall, Coggon, & McPhail, 1971) and whose biosyn‐
thesis in Taxus spp. has been elucidated (Croteau, Ketchum, Long, 
Kaspera, & Wildung, 2006). Pseudolaric acid B, a diterpene acid 
(originating from Pseudolarix kaempferi bark), is another well‐known 
drug that reduces tumor growth, in particular for melanoma (Gong, 
Wang, Tashiro, Onodera, & Ikejima, 2005). With ~50,000 different 
molecules identified in extant plants, terpenoids are structurally and 
functionally the most diverse plant metabolic group. They are of 
substantial commercial and pharmacological value as essential oils, 
fragrances, colorants, drugs, coatings, and speciality plastics (Sainz 

et al., 2016; Vranová, Coman, & Gruissem, 2012). For example, co‐
nifer terpenoid oleoresins are used by the naval stores industry to 
create rosin and turpentine used as adhesives, inks, solvents, and 
resins. Although their production was reduced due to the increase 
of less expensive petroleum‐derived substitutes, terpenoid oleo‐
resin might come back as an important source of “green” biofuels 
and bioproducts (Turner, Parrish, Zager, Fischedick, & Lange, 2018). 
Environmental and developmental factors affect the terpenoid path‐
way flux; understanding the complexity of the terpenoid pathway 
network in plants and its regulation remains a major challenge in 
terpenoid research but will facilitate future molecular breeding of 
agronomically useful traits (Vranová et al., 2012).

Some members of conifer gene families (such as the PDR gene 
family) can also be exploited for their potential to improve conifer 
tree growth on marginal or disturbed soils, thus providing an im‐
proved detoxification potential to employ conifers (i.e., spruces) in 
phytoremediation applications. In addition, functional characteri‐
zation of PDR genes is required before biotechnology applications 
can be performed on the PDR gene family, particularly for long‐lived 
trees (Lefevre, Baijot, & Boutry, 2015). Because PDRs have been 
shown to act in a variety of plant organs, above ground (foliage and 
reproductive structures) and below ground (in roots; Crouzet et al., 
2006), one of the most intriguing applications besides phytoreme‐
diation is the PDR's potential in conferring improved resistance to 
biotic stressors (De la Torre et al., 2018; Mageroy et al., 2015; Porth 
et al., 2018). Also, a better knowledge of the genes and gene families 
conferring phenotypic variation is the first step to create plantations 
with improved varieties through marker‐assisted breeding, genomic 
selection, or genetic modifications (CRISPR). For species with eco‐
logical importance, the identification of genes families involved in 
abiotic and biotic stress may contribute to identify species that are 
candidates to ecological restoration, or that may present increased 
potential to adapt to specific or changing climatic conditions.

8  | CONCLUSIONS

In this paper, we aim to understand how genes and gene families 
have contributed to the evolution of major functional differences in 
gymnosperms in comparison with its sister plant clade of flowering 
plants. Recently developed new reference genomes, transcriptomes, 
and genome‐wide resources in gymnosperms have enabled large‐
scale comparisons of functional divergence within gymnosperms, 
and between angiosperms and gymnosperms. Information about 
the genomic architecture underlying phenotypic variation is key for 
any applied breeding and management of commercially important 
gymnosperm species. With the development of new genomic tools 
and analytical software, future approaches will include a higher 
contiguity of reference genomes; completion of structural and func‐
tional annotation of reference genomes; increase in the number and 
density of physical, linkage, or genetic maps; whole‐genome re‐se‐
quencing of populations for GWAS studies; and genetic improve‐
ments through biotechnology.
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