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Abstract: This study investigated the anti-obesity effect of a polysaccharide-rich red algae Gelidium
amansii hot-water extract (GHE) in high-fat (HF) diet-induced obese hamsters. GHE contained 68.54%
water-soluble indigestible carbohydrate polymers. Hamsters were fed with a HF diet for 5 weeks to
induce obesity, and then randomly divided into: HF group, HF with 3% guar gum diet group, HF with
3% GHE diet group, and HF with orlistat (200 mg/kg diet) group for 9 weeks. The increased weights
of body, liver, and adipose in the HF group were significantly reversed by GHE supplementation.
Lower plasma leptin, tumor necrosis factor-α, and interleukin-6 levels were observed in the GHE+HF
group compared to the HF group. GHE also increased the lipolysis rate and decreased the lipoprotein
lipase activity in adipose tissues. GHE induced an increase in the phosphorylation of AMP-activated
protein kinase (AMPK) and the protein expressions of peroxisome proliferator-activated receptor
alpha (PPARα) and uncoupling protein (UCP)-2 in the livers. The decreased triglyceride and total
cholesterol in the plasma and liver were also observed in obese hamsters fed a diet with GHE. These
results suggest that GHE exerts a down-regulation effect on hepatic lipid metabolism through AMPK
phosphorylation and up-regulation of PPARα and UCP-2 in HF-induced obese hamsters.

Keywords: Gelidium amansii hot-water extracts; guar gum; orlistat; obesity; adipocytokines;
lipoprotein lipase

1. Introduction

Obesity is a global health care issue that is associated with metabolic diseases such as type 2
diabetes and hyperlipidemia [1,2]. Obesity, especially increased visceral adipose tissue, is a major risk
factor for cardiovascular disease [3]. Hypertrophic adipocytes increase the generation of inflammatory
cytokines such as tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6), which may cause chronic
inflammation and increase the risk of developing cardiovascular disease [4]. Functional foods have been
demonstrated to possess anti-obesity potential [5,6]. Therefore, functional foods or food ingredients
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against obesity may come to be recognized as a promising therapeutic strategy for prediabetes and
metabolic diseases.

Gelidium amansii (GA) is edible red algae, which is widely distributed in Japan, Korea,
China, and northeast Taiwan. The agar product (1,3-linked b-D-galactopyranose and 1,4-linked
3,6-anhydro-a-L-galactopyranose units) of GA [7] can be prepared to form a gel [8]. It has been shown
that GA possesses hypoglycemic effects in diabetic rats [9] and diabetic patients [10]. A recent study
showed that the hot-water extracts of GA (GHE), an agar-filtered product, can reduce plasma and liver
lipids by decreasing cholesterol absorption and increasing bile acid and fecal fat excretion in an animal
model [11]. The water soluble fibers in GA and GHE may contribute to reducing lipid accumulation in
the liver and adipose tissues. On the other hand, ethanol extracts of GA have been found to inhibit
lipid accumulation in a 3T3-L1 cell model [12], and decrease the weights of body and epididymal fat
and the levels of serum total cholesterol (TC) and triglyceride (TG) in an obese mouse model [13].
These findings suggest that GHE possesses beneficial effects for the improvement of lipid metabolism.
However, the detailed effect and mechanism of GHE on obesity still remain to be clarified.

Hamsters make a suitable animal model for studying lipid metabolism, because their cholesterol
and bile acid metabolism resemble to that of humans [14,15]. High fat (HF) diets have been shown to
promote obesity and hyperlipidemia [16,17]. In addition, guar gum (GG), which is rich in water-soluble
fibers processed from the endosperm of the cluster bean, is known for its hypolipidemic and anti-obesity
effects [18,19]. In the present study, we used hamsters fed with a HF diet as an obese animal model to
investigate the comparative effects of GHE and GG on lipid metabolism and obesity, and evaluated its
possible mechanism of action. Orlistat, which is known as a potent inhibitor of gastric and pancreatic
lipase and acts to reduce dietary fat absorption [20], was used as a positive control.

2. Results

2.1. Analysis of Carbohydrate Content and Monosaccharide Composition

The hot-water extract preparation was a polysaccharide-rich fraction of GA and contained
68.54 ± 1.43% carbohydrate polymers. Galactose (86.0%) was the major monosaccharide of the
water-soluble indigestible polysaccharide from GHE, with low amounts of fucose (8.3%), mannose
(1.5%), xylose (1.1%), and acidic sugar, glucuronic acid (2.0%). Rhamnose and glucose were also only
detected in a much lower amounts (<1%) (Table 1).

Table 1. Monosaccharide composition of the water-soluble indigestible polysaccharide from the
Gelidium amansii hot-water extract (GHE).

Molar Ratio of Monosaccharide Composition (100%)
Fuc Rha Ara Gal Glc Man Xyl GalA GlcA

8.3 ± 0.1 0.5 ± <0.1 nd 86.0 ± 0.5 0.6 ± 0.1 1.5 ± <0.1 1.1 ± <0.1 nd 2.0 ± 0.1

Data are presented as mean ± SD (n = 3). Values were determined by high-performance anion-exchange
chromatography with pulsed amperometric detection (HPAEC-PAD). Fuc: Fucose; Rha: Rhamnose; Ara: Arabinose;
Gal: Galactose; Glc: Glucose; Man: Mannose; Xyl: Xylose; Gal A: Galacturonic acid; Glc A: Glucuronic acid;
nd: Non-detected.

2.2. Effects of GHE on Body and Tissue Weights in HF Diet-Fed Hamsters

Supplementation of GHE, GG, or orlistat significantly decreased body weight in HF diet-fed
hamsters (Figure 1 and Table 2). As shown in Figure 1, hamsters fed a HF diet for 9 weeks had
significantly increased liver and adipose weights, which could be significantly reversed by GHE, GG,
or orlistat supplementation. GHE supplementation had lower adipose tissue weights than those fed a
diet with GG supplementation in HF diet-fed hamsters. In addition, orlistat, but not both GHE and
GG, significantly increased the food intake in hamsters fed with a HF diet (Table 2).
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Figure 1. Effects of GHE on body weight in hamsters fed different diets for 14 weeks during induction
period (weeks 0–5) and experimental period (weeks 6–14). Data are presented as mean ± SD (n = 8).
Con: Normal control group; HF: Obese hamsters fed a high-fat diet; GG: Obese hamsters fed 3% guar
gum in the high-fat diet; GHE: Obese hamsters fed 3% Gelidium amansii hot-water extract in the high-fat
diet; OL: Obese hamsters fed a high-fat diet with orlistat (200 mg/kg diet) in the diet. Values denoted
by different letters differ significantly (p < 0.05) among one another.

Table 2. Effects of body weights, food intake and tissue weights in hamsters fed different diets for
9 weeks.

Parameters Con HF GG GHE OL

Initial body weight (g) 106.4 ± 6.7 b 118.4 ± 7.4 a 115.9 ± 5.6 a 116.9 ± 5.6 a 116.2 ± 8.2 a

Final body weight (g) 110.6 ± 8.7 d 133.7 ± 9.4 a 125.7 ± 3.0 b 121.9 ± 3.9 bc 115.5 ± 8.6 cd

Body weight gain (g) 4.2 ± 7.9 bc 15.3 ± 4.5 a 9.8 ± 3.8 b 5.0 ± 4.5 bc -0.7 ± 5.2 c

Food intake (g/days) 8.3 ± 0.3 b 8.1 ± 0.4 bc 7.8 ± 0.4 c 7.8 ± 0.4 c 9.3 ± 0.3 a

Feed efficiency ratio (%) 0.7 ± 1.4 cd 2.7 ± 0.8 a 1.8 ± 0.7 ab 0.9 ± 0.8 bc
−0.1 ± 0.8 d

Fasting body weight (g) 108.3 ± 8.3 d 130.6 ± 9.5 a 123.5 ± 4.3 ab 119.3 ± 3.8 bc 113.2 ± 9.2 cd

Liver weight (g) 3.2 ± 0.3 d 6.1 ± 0.3 a 5.1 ± 0.3 b 5.0 ± 0.1 b 3.6 ± 0.2 c

Relative liver weight (g/100 g BW) 3.0 ± 0.2 d 4.7 ± 0.2 a 4.1 ± 0.1 b 4.2 ± 0.1 b 3.2 ± 0.2 c

Perirenal fat (g) 1.0 ± 0.3 c 2.0 ± 0.2 a 1.8 ± 0.1 a 1.5 ± 0.2 b 1.2 ± 0.2 c

Paraepididymal fat (g) 0.7 ± 0.2 d 1.7 ± 0.2 a 1.3 ± 0.1 b 1.1 ± 0.2 c 0.9 ± 0.2 c

White adipose tissue weight (g) 1.7 ± 0.6 e 3.6 ± 0.4 a 3.1 ± 0.2 b 2.6 ± 0.3 c 2.1 ± 0.5 d

Relative white adipose tissue weight (g/100 g BW) 1.5 ± 0.4 d 2.8 ± 0.2 a 2.5 ± 0.2 a 2.1 ± 0.2 b 1.8 ± 0.3 c

Data are presented as mean ± SD (n = 8). Con: Normal control group; HF: Obese hamsters fed a high-fat diet; GG:
Obese hamsters fed 3% guar gum in the high-fat diet; GHE: Obese hamsters fed 3% Gelidium amansii hot-water
extract in the high-fat diet; OL: Obese hamsters fed a high-fat diet with orlistat (200 mg/kg diet) in the diet. Values
denoted by different letters differ significantly (p < 0.05) among one another. Food efficiency ratio (FER) = [weight
gain (g)]/[total food intake (g)] × 100. Values denoted by different letters differ significantly (p < 0.05) among
one another.

2.3. Effects of GHE on Plasma, Liver, and Fecal Lipids and Adipocytokines in HF Diet-Fed Hamsters

Hamsters fed with a HF diet had a significant increase in the plasma TC and TG levels, which
could be significantly reversed by GHE, GG, or orlistat supplementation (Table 3). Moreover, animals
fed the HF diet significantly enhanced TC and TG contents in the liver, which could also be significantly
reversed by GHE, GG, or orlistat supplementation (Table 4). GHE supplementation had lower hepatic
triglyceride contents than those fed a diet with GG supplementation in HF diet-fed hamsters (Table 4).
Both GHE and orlistat supplementation significantly increased the fecal TC and TG contents; GG
supplementation significantly increased the fecal TG, but not TC, contents (Table 4).

As shown in Table 3, hamsters fed with the HF diet had a significant increase in plasma leptin,
IL-6, and TNF-α levels, which could be significantly reversed by GHE, GG, or orlistat supplementation.
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Table 3. Effects of different diets on plasma biochemistry in hamsters for 9 weeks.

Parameters Con HF GG GHE OL

Glucose (mg/dL) 148.8 ± 13.6 a 153.3 ± 12.5 a 144.2 ± 21.1 a 144.9 ± 23.1 a 161.0 ± 15.7 a

Triglyceride (mg/dL) 58.4 ± 13.9 c 173.7 ± 34.7 a 139.3 ± 27.6 b 128.1 ± 21.2 b 119.8 ± 28.1 b

Total cholesterol (mg/dL) 80.6 ± 13.4 d 390.1 ± 76.9 a 252.4 ± 31.7 b 285.9 ± 42.0 b 136.4 ± 22.5 c

Leptin (pg/mL) 245.4 ± 81.3 d 818.6 ± 241.9 a 607.9 ± 232.0 b 484.0 ± 155.5 bc 352.5 ± 134.2 cd

TNFα (pg/mL) 37.7 ± 1.4 d 53.8 ± 1.2 a 40.5 ± 1.8 b 39.2 ± 2.1 bc 37.3 ± 0.7 cd

IL-6 (pg/mL) 10.5 ± 1.5 b 21.5 ± 8.2 a 11.8 ± 3.2 b 10.2 ± 3.4 b 8.8 ± 2.1 b

Data are presented as mean ± SD (n = 8). Con: Normal control group; HF: Obese hamsters fed a high-fat diet; GG:
Obese hamsters fed 3% guar gum in the high-fat diet; GHE: Obese hamsters fed 3% Gelidium amansii hot-water
extract in the high-fat diet; OL: Obese hamsters fed a high-fat diet with orlistat (200 mg/kg diet) in the diet. Values
denoted by different letters differ significantly (p < 0.05) among one another.

Table 4. Effects of different diets on liver and fecal lipid concentrations in Syrian hamsters for 9 weeks.

Lipids Con HF GG GHE OL

Liver
Total cholesterol (mg/g Liver) 5.9 ± 1.9 d 71.2 ± 6.4 a 42.8 ± 5.8 b 40.4 ± 6.5 b 17.0 ± 6.7 c

Total cholesterol (mg/Liver) 19.1 ± 7.3 d 434.1 ± 44.1 a 218.3 ± 31.9 b 201.2 ± 31.3 b 61.0 ± 21.6 c

Triglyceride (mg/g Liver) 2.9 ± 0.4 d 9.5 ± 1.1 a 7.8 ± 1.7 b 6.1 ± 1.6 c 7.3 ± 1.5 bc

Triglyceride (mg/Liver) 9.2 ± 1.7 d 57.6 ± 5.6 a 39.4 ± 7.9 b 30.6 ± 7.9 c 26.6 ± 5.9 c

Feces
Total cholesterol (mg/g feces) 3.7 ± 0.5 d 4.7 ± 0.9 cd 5.0 ± 1.3 c 10.3 ± 1.1 a 7.1 ± 1.5 b

Total cholesterol (mg/day) 4.3 ± 0.6 b 5.5 ± 1.3 b 5.3 ± 1.7 b 11.8 ± 1.6 a 12.5 ± 3.5 a

Triglyceride (mg/g feces) 3.2 ± 0.2 c 3.5 ± 0.3 c 4.7 ± 0.5 b 4.7 ± 0.3 b 106.4 ± 13.8 a

Triglyceride (mg/day) 3.8 ± 0.4 c 4.0 ± 0.5 c 5.0 ± 0.7 b 5.5 ± 0.7 b 185.5 ± 29.4 a

Data are presented as mean ± SD (n = 8). Con: Normal control group; HF: Obese hamsters fed a high-fat diet; GG:
Obese hamsters fed 3% guar gum in the high-fat diet; GHE: Obese hamsters fed 3% Gelidium amansii hot-water
extract in the high-fat diet; OL: Obese hamster fed a high-fat diet with orlistat (200 mg/kg diet) in the diet. Values
denoted by different letters differ significantly (p < 0.05) among one another.

2.4. Effects of GHE on TG Contents and Lipolysis Rate and LPL Activity in Adipose Tissues and Lipid
Metabolism-Related Protein Expressions in the Livers

Hamsters fed the HF diet significantly increased TG contents in the adipose tissue, which could
be significantly reversed by GHE, GG, or orlistat supplementation (Figure 2). It is interesting to note
that the GHE group had lower TG contents in the adipose tissue than those of the GG group.

Hamsters fed the HF diet showed a decreased lipolysis rate and increased LPL activity in the
adipose tissues (Figure 3). Supplementation of GHE, GG, or orlistat in the diet significantly increased
the lipolysis rate and decreased the accumulation of TG and LPL activity in the adipose tissues. Higher
lipolysis rate was observed in animals treated with GHE as compared to the GG group (Figure 3A).

Figure 2. Cont.
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Figure 2. Effects of GHE on triglyceride content per gram (A) and total (B) paraepididymal and
perirenal fat pads in hamsters fed different experimental diets for 9 weeks. Data are presented as mean
± SD (n = 8). Con: Normal control group; HF: Obese hamsters fed a high-fat diet; GG: Obese hamsters
fed 3% guar gum in the high-fat diet; GHE: Obese hamsters fed 3% Gelidium amansii hot-water extract
in the high-fat diet; OL: Obese hamsters fed a high-fat diet with orlistat (200 mg/kg diet) in the diet.
Values denoted by different letters differ significantly (p < 0.05) among one another.

Figure 3. Effects of GHE on lipolysis rate (A) and lipoprotein lipase activity (B) of paraepididymal and
perirenal fat pads in hamsters fed different experimental diets for 9 weeks. Data are presented as mean
± SD (n = 8). Con: Normal control group; HF: Obese hamsters fed a high-fat diet; GG: Obese hamsters
fed 3% guar gum in the high-fat diet; GHE: Obese hamsters fed 3% Gelidium amansii hot-water extract
in the high-fat diet; OL: Obese hamsters fed a high-fat diet with orlistat (200 mg/kg diet) in the diet.
Values denoted by different letters differ significantly (p < 0.05) among one another.
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The protein expressions of phosphorylated adenosine monophosphate (AMP)-activated protein
kinase (AMPK), peroxisome proliferator activated receptor (PPAR)-α, and uncoupling protein (UCP)-2
were significantly decreased in the livers of obese hamsters, which could be significantly reversed by
GHE, GG, or orlistat supplementation (Figure 4).

Figure 4. Effects of GHE on the protein expressions of phosphorylated AMPK (A), PPARα (B), and
UCP-2 (C) in the livers of hamsters fed different experimental diets for 9 weeks. Data are presented as
mean ± SD for 4–5 Syrian hamsters. Con: Normal control group; HF: Obese hamsters fed a high-fat
diet; GG: Obese hamsters fed 3% guar gum in the high-fat diet; GHE: Obese hamsters fed 3% Gelidium
amansii hot-water extract in the high-fat diet; OL: Obese hamsters fed a high-fat diet with orlistat
(200 mg/kg diet) in the diet. Values denoted by different letters differ significantly (p < 0.05) among
one another.

3. Discussion

In this study, we demonstrate for the first time that supplementation of GHE in HF diet-induced
obese hamsters effectively induces (1) a reduction in body and adipose tissue weights, (2) a decrease in
plasma TC/TG levels and hepatic TC/TG accumulation and adipose TG content, (3) an increase in fecal
TC/TG content, (4) adipose tissue lipolysis and fatty acid β-oxidation, and (5) AMPK-related signals.

Our previous study showed that hamsters fed a HF diet with 1.5% GHE for 6 weeks effectively
activate the phosphorylation of AMPK and reduce the protein expressions of SREBP-1 and SREBP-2
in the livers, thereby decreasing the hepatic lipogenesis and lipid accumulation as compared with
HF diet-fed alone group [11]. In the present study, hamsters were fed with a HF diet for 5 weeks to
induce obesity. GHE (3%) supplementation for 9 weeks significantly induced an anti-obesity effect
and an increase in the AMPK phosphorylation and PPAR-α and UCP-2 protein expression in obese
hamsters. AMPK activation is known as a major therapeutic target for obesity [21], fatty liver [22], and
hyperlipidemia [23]. Yoon et al. showed that an increase in the expression of phosphorylated AMPK
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protein led to an increase in the expression of PPARα protein and an increase in the oxidation of fatty
acids [24]. PPARα regulates target genes associated with fatty acid oxidation and lipid metabolism
such as UCP-2 [25]. Therefore, one of the mechanisms by which obese hamsters with guar gum and
GHE treatment can reduce the lipid contents in the liver may be due to promoting the oxidation of fatty
acids in the liver by increasing the activities of phosphorylated AMPK, PPARα, and UCP-2 in the liver.

Consumption of a high-fat diet leads to obesity and hyperlipidemia in hamsters. Obese hamsters
fed guar gum, GHE, or orlistat significantly reduced body weight, adipose tissue weight, and plasma
levels of TC and TG. Orlistat has been reported to be an inhibitor of small intestinal lipase that
reduces dietary fat absorption, and is used to treat obesity [20]. GG is rich in water-soluble fiber, and
ingestion of GG can decrease plasma and liver lipids by increasing bile acid excretion to decrease fat
absorption [26–28]. Frias and Sgarbieri showed that GG contained approximately 75% water-soluble
fiber [29]. The GG and GHE used in the present study contained approximately 82.5% and 68.6%
water-soluble fiber, respectively [11]. Thus, one of the reasons that GG and GHE can improve plasma
and liver lipid metabolism may be related to the high levels of water-soluble fiber.

Adipose tissue is known to be an important endocrine organ that generates adipocytokines to
affect energy metabolism and insulin sensitivity [30]. Hypertrophic adipocytes produce large amounts
of inflammatory factors such as leptin, TNF-α, and IL-6 [31]. Feeding a red algae (GA) diet has been
shown to significantly decrease plasma TNF-α, leptin, and TC/TG levels, but not affect the weights
of body, liver, and adipose tissue, in a high fructose diet-impaired glucose tolerance rat model [32].
In the present study, both GHE (hot-water extract of red algae) and GG could significantly decrease
plasma leptin, TNF-α, IL-6, and TC/TG levels and the weights of body, liver, and adipose tissue in
obese hamsters. These results indicate that both GHE and GG may regulate plasma adipocytokines by
lowering adipose tissue weight in hamsters. However, GHE is more effective than GG in reducing
adipose tissue weight and the TG contents in the liver and adipose tissue. Moreover, lipoprotein lipase
(LPL) activity in adipose tissue has been suggested to be closely related to obesity formation [33]. The
present study also found that both GHE and GG could enhance the phosphorylation of AMPK in the
liver, increase the lipolysis rate, and decrease the accumulation of TG and the LPL activity in the adipose
tissues of obese hamsters. Watt et al. have demonstrated that increased AMPK phosphorylation can
promote hormone-sensitive lipase (HSL) activation in the adipose tissue [34]. GG has been shown to
enhance the activation of AMPK in both the liver and adipose tissue of HF diet-fed mice [35]. Kang et al.
also found that the feeding of a red algae ethanol extract could increase the AMPK phosphorylation in
the liver of obese mice and increase the amount of HSL protein in the adipose tissue [36]. Therefore, our
findings suggest that GHE supplementation may decrease LPL activity and increase the rate of lipolysis,
which lowers triglyceride content in the adipose tissue thus reducing the adipose tissue weight.

In this study, we found that galactose (86.0%) was the major monosaccharide of the water-soluble
indigestible polysaccharide from GHE. We propose that galactans, indigestible polysaccharides, is
a major and potent component of the seaweed extract. A similar polysaccharide rich extract from
Ceylon moss (Gelidium amansii) has been reported by Wi et al. (2009) [37]. The report indicated that
the seaweed contains 53.4% carbohydrates, consisting of galactose (23.4%) and glucose (22.3%). The
difference of monosaccharide composition with low glucose content is a result of digestion treatment of
α-amylase and amyloglucosidase used in our protocols. Our results provide more information by using
a sophisticated hydrolysis protocol to release glycosidic linkages with less degradation. The structural
details of the galactans need to be elucidated in future studies.

4. Materials and Methods

4.1. Reagents and Solvents

Barium acetate, chloroform, heparin, hydrochloric acid (HCl), isoproterenol, methanol,
N-tris-(hydroxymethyl)methyl-2-aminoethanesulfonic acid, phenol, p-nitrophenyl butyrate, sodium
acetate, sodium hydroxide (NaOH), sulfuric acid, and trifluoroacetic acid (TFA) were obtained from
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Sigma-Aldrich (St. Louis, MO, USA). A cholesterol enzymatic kit (Audit Diagnostics, Cork, Ireland),
a TG enzymatic kit (Audit Diagnostics, Cork, Ireland), a glucose detection kit (Audit Diagnostics, Cork,
Ireland), and plasma TNF-α, IL-6, and leptin ELISA kits (Assay Design, Ann Arbor, MI, USA) were
used. A radio immunoprecipitation buffer (Cell Signaling Technology, Beverly, MA, USA) and an
enhanced chemiluminescence kit (PerkinElmer, Waltham, MA, USA) were used.

4.2. Hot-Water Extract of GA (GHE)

The dry material of GA was obtained from the market at Keelung, Taiwan. GA was stored at
4 ◦C until used. For preparing GHE, GA (20 g) was added to the deionized water (400 mL), and then
autoclaved at 121 ◦C for 20 min. After cooling, the samples were filtered and lyophilized. The harvest
weight of GHE was 5.71 g, which the recovery rate was about 28.5%. The general composition of GHE,
determined by the method of the Association of Official Agricultural Chemists (AOAC) [38], involved
moisture 6.5%, ash 4.6%, crude fat 0.25%, and crude protein 6.7%. Moreover, GHE contained 68.6%
water-soluble dietary fiber, according to the analysis by the Food Industry Research and Development
Institute, Hsinchu, Taiwan [38].

4.3. Analysis of Carbohydrate Content and Monosaccharide Composition

GHE was re-dissolved in the deionized water and digested by α-amylase at pH 6.0, 30 min, 95 ◦C;
protease at pH 7.5, 30 min, 60 ◦C; and amyloglucosidase at pH 4.5, 30 min, 60 ◦C. After the enzymes
digestion, polysaccharides were precipitated and collected with 4 volumes of 95% ethanol.

The carbohydrate content was determined as previously described [39]. D-galactose was used
as the standard and dissolved in the deionized water to construct the standard curve. The sample
(200 µL) and 5% (W/V) phenol solution (200 µL) were mixed. After the solution was mixed, 1 mL 18 M
sulfuric acid was added into the solution. After the solution was mixed and cooled, the absorbance
at 490 nm using a spectrophotometer (Helios Omega, Thermo Fisher Scientific, San Jose, CA, USA)
was measured. The absorbance value was subjected to the standard curve and the total carbohydrate
concentration of the solution was calculated.

The monosaccharide composition analysis was performed as previously described [40]. The
polysaccharides samples were methanolyzed with anhydrous 2 M HCl in absolute methanol, in a
hydrolytic tube at 70 ◦C for 12 h. After methanolysis, the methanolysis reagent in the resulting solution
was evaporated, and the residue was then subjected to acid hydrolysis with 2 M TFA at 100 ◦C for 1.5 h.
In the resulting solution, TFA was removed by washing with methanol until TFA was removed. The
sugars in the hydrolyzate were analyzed by high performance anion-exchange chromatography with
pulsed amperometric detection (HPAEC-PAD). In neutral monosaccharide analysis, the analyte was
separated by CarboPac PA10 guard column (4 mm × 50 mm) coupled with CarboPac PA10 IC Columns
(4 mm × 250 mm). Columns were eluted at a flow rate of 0.5 mL/min with 25 mM NaOH, containing
1 mM barium acetate. In acid monosaccharide analysis, the analyte was separated by CarboPac PA10
guard column (4 mm × 50 mm) coupled with CarboPac PA10 IC Columns (4 mm × 250 mm). Columns
were eluted at a flow rate of 0.8 mL/min with 75 mM NaOH, containing 1 mM barium acetate and
150 mM sodium acetate.

4.4. Animals and Treatments

The adult male Syrian hamsters (6-week-old) were obtained from The National Laboratory
Animal Center (Taipei, Taiwan). Hamsters were individually housed in stainless steel cages in a room
(23 ± 1 ◦C and 40–60% relative humidity) with a 12-h light–dark cycle. Hamsters were acclimated for
1 week and fed a standard laboratory diet (5001 rodent diet, Lab Diet, PMI Nutrition International
Inc., Brentwood, MO, USA). Hamsters were then divided into normal and obese groups. Hamsters of
the obese group were fed with a high-fat (HF) diet for 5 weeks to induce obesity. The obese hamsters
were then randomly divided into four experimental groups: HF group, HF with 3% GG diet group
(GG group), HF with 3% GHE diet group (GHE group), and HF with orlistat (200 mg/kg diet) group
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(OL group). The experimental diet compositions are listed in Table 5. Each experimental group was
fed the experimental diets for 9 weeks. The normal control group was fed a standard laboratory diet
(5001 rodent diet). Animals were given ad libitum access to food and water. Body weight was detected
every week and fecal samples were collected during the final 3 days in week 9. The fecal samples were
dried and weighed. This animal study was approved by the Animal House Management Committee
of the National Taiwan Ocean University. All animal experiments were performed in accordance
with the guidelines for the care and use of laboratory animals, as issued by the National Laboratory
Animal Center. GG powder (GGP 200 LI-MV) was obtained from Lotus International (Rajasthan, India).
Orlistat was as a positive control that was obtained from Weidar Chemical & Pharmaceutical CO., LTD.
(Taichung, Taiwan).

Table 5. Composition of experimental diets (%).

Composition Con HF GG GHE OL

Chow diet 100 86.9 86.9 86.9 86.9
Coconut oil - 6 6 6 6
Soybean oil - 4 4 4 4
Cholesterol - 0.1 0.1 0.1 0.1
Cellulose - 3 - - 3

Gelidium amansii hot-water extract - - - 3 -
Guar gum - - 3 -

Total 100 100 100 100 100

Orlistat - - - - 200 mg/kg diet

Kcal (100 g) 345.6 396.3 395.9 396.9 396.3

Con: Hamsters fed a chow diet group; HF: Obese hamsters fed a high-fat diet group; GG: Obese hamsters fed 3%
guar gum in the high-fat diet group; GHE: Obese hamsters fed 3% Gelidium amansii hot-water extract in the high-fat
diet; OL: Obese hamsters fed a high-fat diet with orlistat (200 mg/kg diet).

4.5. Collection of Blood and Tissue Samples

At the end of the experiment, overnight-fasted hamsters were sacrificed under CO2 anesthesia.
Blood was collected and plasma was prepared by centrifugation at 1750× g for 20 min (4 ◦C). Liver and
perirenal and para-epididymal adipose tissues were isolated and weighed. All tissue samples were
immediately frozen and stored at -80 ◦C until further analysis.

4.6. Determination of Plasma Lipids

Both TC and TG levels in the plasma were determined by using a cholesterol enzymatic kit (Audit
Diagnostics) and TG enzymatic kit (Audit Diagnostics), respectively.

4.7. Determination of Plasma Glucose, Tumor Necrosis Factor α (TNF-α), Interleukin 6 (IL-6), and Leptin

Plasma glucose was measured using a glucose detection kit (Audit Diagnostics, Cork, Ireland).
The plasma levels of TNF-α, IL-6, and leptin were determined by the ELISA kits (Assay Design,
Ann Arbor, MI, USA).

4.8. Determination of Liver Lipids, Fecal Lipids, and Bile Acid Levels

Both liver and fecal lipids were extracted with a chloroform/methanol solution (v/v, 2:1) as
previously described by Folch et al. [41]. The levels of both TG and TC were determined by the method
of Carlson and Goldfarb [42]. Fecal bile acids were extracted and detected according to the method of
Cheng and Lai [43].
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4.9. Lipolysis Rate Measurement

Lipolysis rate measurement was determined as previously described [44]. The 0.2 g of adipose
samples were minced and placed into 2 mL of N-tris-(hydroxymethyl)methyl-2-aminoethanesulfonic
acid (25 mM) buffer containing isoproterenol (1 µM), and then incubated at 37 ◦C. After 1, 2, and 3 h of
incubation, 0.2 mL of medium was used to analyze the concentrations of glycerol using a commercial
reagent (RANDOX GY105, Amtrim, UK), and then the absorbance at 520 nm was recorded by a Hitachi
U2800A spectrophotometer. The lipolysis rate was indicated by micromoles of glycerol released per
gram of tissue per hour.

4.10. Lipoprotein Lipase (LPL) Activity

LPL activity in adipose samples was determined as previously described [45]. The 0.1 g of
adipose samples were minced and placed into Krebs-Ringer bicarbonate buffer (pH 7.4) containing
heparin (10 units/mL) for 60 min at 37 ◦C. The heparin solution was mixed with an equal volume
of p-nitrophenyl butyrate (pNPB; 2 mM). Absorbance at 400 nm was recorded by a Hitachi U2800A
spectrophotometer. LPL activity was indicated as the amount of p-nitrophenol formed over the 10
min incubation.

4.11. Western Blot Analysis

The proteins in the livers were extracted using a radio immunoprecipitation buffer (Cell Signaling
Technology). The 40µg of tissue proteins were separated on 10% sodium dodecyl sulfate polyacrylamide
gels and transferred to polyvinylidene fluoride membranes (Bio-Rad, CA, USA). After blocking, the
membranes were probed with primary antibodies for β-actin (Biovision, Mountain View, CA, USA),
AMPK, phospho-AMPK (Thr172) (Cell Signaling Technology), PPAR-α (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), and UCP-2 (Origene, Rockville, MD, USA) overnight at 4 ◦C, followed by
incubation with horseradish peroxidase linked secondary antibodies for 1 h at room temperature, and
then detected by enhanced chemiluminescence (PerkinElmer). Signal intensities were quantitated
using the Quantity One Software (BioRad, Hercules, CA, USA).

4.12. Statistical Analysis

Data are presented as mean ± standard deviation. The significant difference from the respective
controls for each experimental condition was assessed by one-way analysis of variance and two-tailed
Student t-test. The statistical analysis was performed by statistical software SPSS for Windows version
12.0 (SPSS, Chicago, IL, USA).

5. Conclusions

Based on these findings, supplementation of GHE to HF diet-induced obese hamsters can activate
AMPK phosphorylation and up-regulate PPAR-α and UCP-2 protein expressions, which increase the
fatty acid β-oxidation in the liver. GHE has beneficial effects on reducing the weight of body and
adipose tissue, plasma TC and TG levels, TG content in adipose tissue, and hepatic lipid accumulation.
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